
ISTITUTO NAZIONALE DI FISICA NUCLEARE
CNAF

INFN/TC-04/02
18 Marzo 2004

A SUPPORTING THE DEVELOPMENT PROCESS OF THE DATAGRID
WORKLOAD MANAGEMENT SYSTEM SOFTWARE WITH GNU

AUTOTOOLS, CVS AND RPM

List of authors in the following page

Abstract

DataGrid is project funded by the European Commission to develop and deploy
distributed computing components for reference applications in the domains of Particle Physics,
Earth Observation and Bioinformatics. The software development is shared among nine
contractual partners, in seven different countries, and is organized in work-packages covering
different areas. In this paper, we discuss how combination of Concurrent Version System, GNU
autotools and other tools and practices was organised to allow the development, build, test and
distribution of the DataGrid Workload Management System. This is the product of one speci_c
work-package that is not only characterised by rather high internal geographic and administrative
dispersion (four institutions with developers at nine different locations in three countries), but by
the fact we had to integrate and interface to dozen of third-party code packages coming from
different sources, and to the software products coming from other three development work-
packages internal to the project.

high level of central co-ordination needed to be maintained for project-wide steering, and
this had also to be re_ected in the software development infrastructure, while maintaining ease-of-
use for distributed developers and automated procedures wherever possible.

PACS.: 11.30.Er,13.20.Eb;13.20Jf;29.40.Gx;29.40.Vj

Published by SIS–Pubblicazioni
Laboratori Nazionali di Frascati

G. Avellino + , S. Beco + , B. Cantalupo + , A. Maraschini + , F. Pacini + ,
S. Monforte , , M. Pappalardo , ,

D. Kouril - , A. Krenek - , Z. Kabela - , L. Matyska - , M. Mulac - ,
J. Pospisil - , M. Ruda - , Z. Salvet - , J. Sitera - , M. Vocu - ,

F. Giacomini . , E. Ronchieri . ,
A. Gianelle / , R. Peluso / , M. Sgaravatto /

M. Mezzadri 0 , F. Prelz 0 ,
A. Guarise 1 , R. Piro 1 , A. Werbrouck 1

D. Colling 2
+43 DATAMAT S.p.A, GRID R&D Group, Space & Environment Division,

Via Laurentina, 760 -I- 00143 Rome, Italy
,53 INFN, Sezione di Catania, Dip. di Fisica e Astronomia dell’Universita’ di Catania,

Via S. Sofia 64, I-95123 Catania, Italy
- 3 CESNET, z.s.p.o., Zikova 4160 00 Praha, Czech Republic
. 3 INFN CNAF, Viale B. Pichat 6/2, I-40127 Bologna, Italy
/53 INFN, Sezione di Padova, Dip. di Fisica Galileo Galilei,

Via Marzolo 8, I-35131, Padova, Italy
0 3 INFN, Sezione di Milano, Dip. di Fisica dell’Universita’ di Milano,

Via G. Celoria 16, I-20133, Milano, Italy
1 3 INFN, Sezione di Torino, Via P. Giuria 1, I-10125, Torino, Italy

2 3 Imperial College London, UK

1 Introduction

There are many problems related to the distributed development model of the DataGrid
[1] project. A large number of people spread all over Europe has to write software
packages that are inter-dependent and therefore call for frequent integration. The work-
package 1, WP1, [2] dealing with the provision of a Workload Management solution was
rather complicated in the project, both in terms of internal geographic and administrative
dispersion (four institutions with developers at nine different locations in three countries),
and in terms of software dependencies. It was therefore divided into components, under
the responsibility of local development teams. The fundamental requirement for concur-
rent development directed us to the use of Concurrent Version System (CVS) [14], which
is the most common solution in the open software community, as detailed in section 2.

The components contained in the Workload Management System (WMS) [15] have
a complex dependency structure: such dependencies can be divided in four categories:

1. Non-EDG packages: packages that are developed outside the DataGrid project,
such as MySQL, Boost libraries, Condor libraries and executables.

2. Non-WMS EDG packages: packages that are developed by EDG work-packages

2

different than WP1. For instance, in this category we can find for example Data
Management and Information Service libraries.

3. Modified non-EDG packages: packages that are developed outside the DataGrid
project, but that needed to be modified by WP1, such as trio, Bypass and the Globus
FTP server. They needed to be customized to our requirements and they are man-
aged in our package and distributed with it.

4. WMS components: software components developed entirely by WP1. The cross-
dependencies among WMS components make it rather difficult to cleanly partition
it as separate packages. However, we put some extra effort in identifying and sepa-
rating our internal dependencies: at the end we were able to provide several WMS
RPMs [11] and not just a single monolith.

These constraints specifically affect the semantics of the package configuration op-
tions, that must have the ability to scan and resolve the dependencies needed by either a
single WMS component or the entire system.

This paper is structured as follow: section 2 briefly describes our usage of CVS,
section 3 describes how we have addressed the aforementioned issues with the help of
GNU autotools [3], section 4 is dedicated to the way we release and distribute our soft-
ware using RPM [11] and LCFG [12], section 5 describes our modus operandi, section 6
describes the procedure before the release and the distribution of our software.

2 CVS and the EDG-WMS code

Given the project structure, as outlined in the section 1, CVS was adopted for early
WMS development, and was later agreed upon as standard software repository tool for
the project at large. CVS lets developers to separately modify a file and then keep track
of the changes made by other people. Moreover, it makes possible to allow a programmer
to have more than one version of the same code file.

CVS solves the problem of concurrent accesses to files by insulating the different
developers from each other: each developer works in his own directory, then CVS helps
him to merge the results when the work is done. In addition, this merge is done authomat-
ically as long as it is safe, otherwise conflicts are clearly identified so that they can be
resolved manually, preventing loss of others’ works. Another interesting feature is the
possibility to store each modified version of files. Doing this, it can be easy to intercept
the right point in the development where a bug is introduced.

3

Within CVS branches are the way to keep track of different source trees containing
very different versions of the same file. This is useful, for example, to when developing
new features together with correcting bugs on the already written (and working) code.

The branching feature of CVS let us be able to create parallel trunks of the software,
so that it is possible to modify and debug our code without affecting the main branch
(called CVS HEAD). Due to the small time slots between two releases of the DataGrid
software, we also add new software functionalities in ad-hoc created “branch”. Then,
when needed, and after some stabilization period, such modifications can be merged to
the main trunk. The way we have used to deploy our software using CVS is described in
section 6.

CVS, however, is not a complete tool to develop code. It is not made to substitute
any management model. It cannot provide good communication between developers. The
use of other tools is needed in order to achieve those results. Besides the use of e-mails
and other “classical” communication media, we have found greatly beneficial to maintain
constant communication among developers via IRC (Internet Relay Chat). In addition, we
found very useful to keep trace of open actions and bugs using Bugzilla (Bug Tracking
System) [4].

3 Configuration of the EDG-WMS software

Currently, the DataGrid software builds and runs on just one architecture (RedHat Linux
7.3), but it will probably run on others in the future. This is one of the reasons for the
generalised adoption in all software packages and components in DataGrid of the GNU
autotools . Another useful feature of GNU autotools is to simplify building and distribut-
ing of source code programs: any of them may be built using a simple, standardized two
step process (687:9<;>=:?A@CB<DFE GIHKJ<D). There is no need to install any special tool in order to
compile the code.

The GNU autotools also allow to cleanly address a specific requirement of the
WMS, namely the configuration of individual components inside the same package, and
the handling of numerous and diverse external or third-party packages and libraries.

Another reason of our GNU autotools choice lies in the fact that they can be easely
used to obtain the configuration even of sub-packages. In addition, the handling of exter-
nal or third part software and libraries is quite easy.

3.1 Source tree organization

The EDG WMS package is divided in smaller components. Each component represents
some special functionality of the package, containing for instance daemons, libraries, test

4

workload

checkpointing

common

dgas

interactive

jobcontrol

logging

networkserver

planning

proxyrenewal

purger

test

thirdparty

userinterface

Figure 1: WMS Source Tree

5

proxyrenewal

purger

interactive

checkpointing

userinterface

networkserver

client server

controller

jobcontrol

monitor

proxy

trio bypass

ssl_utils loki

thirdparty

common

logging

serverclient

dgas

manager

planning

matchmaking

Figure 2: WMS dependency graph

programs, and documentation. The components show various levels of inter-dependencies
(e.g. “common” components that are used by other components, components providing
various services accessible via APIs).

The whole package is organised in a single directory tree, that can be downloaded
from the CVS server and that can be transferred as a single archive file. Each compo-
nent is identified by a sub-directory. The main directory is called L>7MB8JINO78HAP . In Figure 1
there is a graphical rapresentation of the organization of the main components of WMS.
Further levels are present inside each component sub-directory. These inner levels do not
have a common structure, as each component may be quite different from the other ones:
some of them are daemons, some others are simply libraries. The lack of a common struc-
ture makes even more difficult to have a simple and common build strategy for each of
them. Clients of the daemons, for example, are claimed to be compiled even by different
components than the current one. This is the main source of inter-dependency between
components themselves and it has been the most difficult thing to achieve while designing
our build structure.

6

3.1.1 Main components

The main components of LI7MB8J>NO7AHAP are the following:

6RQSDS6:J8T>7C=R9VUW=X9C?ZY
Libraries and header files for user APIs to the EDG checkpointing utility.

687RGVGW7:9[Y
General purpose libraries and utilities used by all the \V]O] and ^AHK_<H code.

PO?CHS`aY
Daemons, libraries and command line API for the EDG accounting system.

=X9VUSDABCH<6:Ub=R_<DcY
Support for Interactive job manipulation.

d 7:eb687:9VUVBI7ONFY
Libraries and daemons for final submission and monitoring of the job status.

NO7M?V?>=X9C?fY
Daemons, libraries, and header files for Logging and Bookkeeping service.

9SDKUVLI7MB8J>`ADAB8_<DABZY
Daemons and clients for secure communication between the User Interface and

the WMS.

T>NAHK9O9b=X9C?ZY
The core of the WMS containing the daemons, and libraries for the best resource

identification.

TCBS7KgOhOBCDM9IDKL<HCNFY
Daemons and libraries for user credential handling.

TO@CBV?CDABfY
Daemons and libraries for job space deallocation.

U<D<`iUZY
Test programs for all the WMS.

U8Qb=iBOPATSHABOUVhfY
External packages (gridftp [6], bypass [7], SSL utilities [6], trio [8], loki [9])

modified to fit our need.

@W`KD8B>=X9VU<D8BO;CH<6KDjY
Command line and \O]O] APIs, Graphical User Interface for the access to the

DataGrid .

In Figure 2, it is shown a graphical representation of the internal dependencies in the
WMS. Each box (both squared and rounded) represents one of the forgoing components.
Sometimes part of the internal structure of a component is shown with a thin box. The

7

direction of the arrow means that the destination object depends on the source one, the
dots show where two arrows are connected together.

The meaning of a dependency (arrow) may vary with the two sides of the depen-
dency itself. For example, it may happen that a module depends on just some sort of client
of the other one, or it may happen that some module needs to use some functionality of
the other one. Component dependency may occur with various mechanisms: client/server,
utility library, access API, etc.

For the sake of simplicity, in Figure 2 only internal dependencies among our mod-
ules are shown, while external ones are not.

3.2 Configure structure

Each dependency reflects on the way we configure the whole package. The main goal of
our configuration system is to allow the developers of a single component to compile as
less things as possible instead of compiling the whole package. The build of the entire
package can take up to 90 minutes on a commodity PC. Also, not all external depen-
dencies are required by every component. Capturing the complex component interaction
pattern of Figure 2 has proven to be difficult, and in some specific cases impossible with
the available tools.

The adopted solution is probably not the best one. We have felt the strong need
of having some sort of “autodep” tool, that is some automatic way to express external
and internal dependencies in a fashion similar to that of “common” autotools. This work
has been started but not finished due to lack of time, and we hope that we will be able to
provide a similar functionality for future releases.

In this situation, the “fast and furious” way has been to hardcode enabling options
and conditionals directly into the 687:9C;W=:?A@CBCDjk�=X9 file [13]. Each conditional was tied to
a submodule (or part of it) and its (de)activation has been obtained with a large number
of lOlm=:;cnOn statements hardcoded in the 687:9C;W=:?A@CBCDjk�=X9 .

The effect of enabling some components or some of its parts was to allow the
building of some programs/libraries or to include whole directory trees necessary for
that part. The compilation of each component is enabled by default: it can be explic-
itly disabled using the appropriate configure option (oOoODM9SHKe>NADOoIpVqWrtsvuOwKqyxMz:{>|Xs}zt~K9>7 or
oOoAP>=O`KHMe>NADVoIpOqbr�svuVwMqaxiz:{W|tsyz) or enabling another module that does not depend on it.

Each enabled submodule will also cause the checking for the presence of any other
external package related to it.

8

3.2.1 Example of enabling/disabling a submodule

Here we show an example of how we allow the enabling of one of those components and
how its dependencies are handled inside the configuration. We have chosen a “simple” one
(simple as regard the number of dependency): the TCBI7MgOhOBCDK9SDKL<HCN (a standalone daemon
taking care of obtaining renewed user proxies from an external service).

In the 687:9C;>=i?A@CBCDck�=X9 file, we add a conditional variable to guarantee its default
abilitation:

�M�K��X�8� �R�V�X�C�i� �8�R�O�:�O�K�i�i�8�O�
�M�K�

Together with it, we add the corrisponding HM@VUI7V6O7:9C; [13] m4 macro in order to
have the correct configuration switch in the 687:9<;>=:?A@CB<D script:

�M�K�� �C�
� �C���8�A�M�i�K�8�X�V�R�V�K���R�A�C�R�R�
� �C�
�K� �:�8� �K�K�M�K�M�v� �8�R�O�:�O�K������K� �R�V�X�C�i� � �8�R�O�:�O�K� �M S�:� � �A�8�M�i�

�8�X�V�:�O�K� � � �i¡8�X V�:�K�M�8�O�X¢M¢}�
�R�V�X�V�M� �8�X�V�:�O�K�:�}£K£5¤M�X�C�X�V�M�:¥O�K�§¦K¦M�
�R�V�X�V�M� �8�X�V�:�O�K�:�:�V�V¨

�M�K�

Note that if the option is not given to the 687:9C;>=i?A@CBCD [13] script, the default value
of the DM9IHMe>NAD pVqWr�s}uOwKqyxizVu�©ZªA«OuM{ is “no”.

In the 687:9<;>=:?A@CB<Dck�=X9 file, after the declaration of all the configure options and
variables, there is one big lOlm=:;cnOn statement used to disable the submodules not explicitely
enabled in the 687:9C;>=i?A@CBCD invocation:

�M�K��X¡¬�8�V���­£K£®�8¤i�R�C�t�C�i� ¯±°v²t³I¦M¦��´£K£µ�i�8�O�b¦K¦�¶� �·£M£µ�A¤M�R�V�X�V�M� ¯±°�²±¸�¦K¦��­£M£µ�M�A�V�W¦K¦¹¶
�M�K� � �·£M£µ�A¤M�R�V�X�V�M� �8�X�V�R�V�K�§¦K¦º�­£K£µ�i�8�O�b¦K¦»¶
�M�K� � �·£M£µ�A¤M�R�V�X�V�M� ¯±°�²�¼v¦K¦��­£M£µ�M�A�V�W¦K¦¬½��:¾V�R�
�R�A� �R�C�t�C�i� ¯�°v²t³m�8¤i�R�V�X�C�i� ¯±°�²X³
�R�A� �R�C�t�C�i� ¯�°v²�¸M�8¤i�R�V�X�C�i� ¯±°�²±¸

�M�K� �R�A� �R�C�t�C�i� �A�R�O�:�V�M�i�A¤M�R�V�X�V�M� �A�R�O�:�V�M�

9

�M�K� �R�A� �R�C�t�C�i� ¯�°v²�¼K�8¤i�R�V�X�C�i� ¯±°�²�¼
¡O�
�M�K�

The net effect of this test is that if one or more options are enabled, only the cor-
risponding lOl�7:TVU DM9SHMeWNAD ¿}nOn variable is set to the value lOl5hCDS`}nOn .

Once all these variables have the right value, many tests are done in order to check
what external dependency has to be tested for (see section 3.3). The values of the
lOl�7:TCU DK9SHMe>NAD ¿}nVn variables are then copied to another variable:

�M�K�¾V�:¥8� �A�R�V�R�V�M�i�8¤i�R�A� �R�V�X�C�i� �8�R�O�:�O�K�
�M�K�

These QSHK_SD ¿ variables are then tested together with the conditions on external
dependencies (see section 3.3) in order to understand which of the (selected) submodules
have to be built:

�M�K��X¡¬�8�V���­£K£®�8¤t¾C�:¥A� ÀV�i�A�8�i�M�y¦M¦Á�­£M£µ�:�O�v¦M¦¬½»�i¾V�X�
¾C�R¥8� �8�X�V�R�V�K�:�:�O�
¾C�R¥8� ¯±°�²MÂ:¯XÃX�R�V�
�K�M�¡O�

�M�K�

This bunch of tests will result in having all the QSHK_SD ¿ variables set to lOl5hCD<`ynOn or
lOl®9>7anOn . They are then used to enable the appropriate HK@VUI7RGIHAJ<D [13] conditionals, using
constructs like:

�M�K��:Ä �KÅ:�iÆSÇtÈCÇ:ÅR�A�M�����:ÄO� �:ÉIÇt�iÆ �A�K�M�MÊA�M� �
�8�O�t�&�A¤X¾V�:¥8� �S� � �M�tÀC�R�Ë�Ì�i�8�V��¶� �¬�A¤X¾V�:¥8� � ÀS�t�C�iÍK�i�&�&�i�8�O��¶� �¬�A¤X¾V�:¥8� �A�R�V�R�V�M���&�M�A�V��¶� �¬�A¤X¾V�:¥8� �i�MÍXÀC�R�<�X�8�:�¬�&�i�8�V��¶� �¬�A¤X¾V�:¥8� ÎR�R�8�M�8�K�K�M�:�¬�&�i�8�V�K¨

�M�K�

In this example the QIHK_<D BCDM9SDAL<HCN variable may also enable other conditionals,
like ÏAÐ<\ ÑKÒ§Ó:Ô8Õ \VÖMÐOÐIÖA× , ÏAÐ<\ ÑKÒØÓiÔ8Õ ÙOÚWÓRÛOÕVÜVÏ8ÛOÙOÝ and others on which TCBS7MgVhOBCDM9SDAL<HCN
depends. The system is made in a way that enabling another component depending on

10

TCBS7MgVhOBCDM9SDAL<HCN enables all these conditionals too, together with any other one specific for
that component.

These conditionals are used in the ÐSHKJSDA;>=ANADjk5HiG [13] files by the HM@VU>7RGIHKJ<D tool to
understand which programs, libraries and subdirectories have to be included in the build
process. In the main ÐSHKJSDA;>=ANADjk5HiG (the one in the LI7KB8JINO7AH8P directory) we will find
something like:

�M�K��X¡ �iÄO� �:ÉIÇt�iÆ �A�K�M�MÊA�M�
ÊK� �K�K�M�MÊ8�i� �Þ�8�A�M�M�M�8�X�V�:�O�K�
�X� � �X¡
�M�K�

Where the ßCÔ ¿ variables represent the subdirs to be included in the build process:

�M�K�àtÉ8�MÆ<Ç��Oà �áÎ:�X�O¡V�XÍâÀCãË¶
¤ �®ÊA� ä<åçæMèCétê ³:¨�¶
¤ �®ÊA� ä<åçæMèCétê ¸V¨�¶

�M�K� ¤ �®ÊA� �A�M�K�iÊ8�M� ¨�¶
�M�K� ¤ �®ÊA� ä<åçæMèCétê ÃK¨
�M�K�

Then, in the ÐSHAJ<DA;>=AN8Dck5HiG relative to the TCBI7MgOhOBCDK9SDKL<HCN subdir we will find some-
thing like:

�M�K��X¡ �iÄO� �:ÉIÇt�iÆ �A�K�M�MÊA�M�
�ç�S��� ë �VÅi�:�8�:ÄVà �Ë� � Í � �V� � �8�X�V�R� �
�<��� ë �OÅi�i�A�iÄOà �Ì� � Í � �O� � �8�R�O�:�
�O�O���S�t� �MÈK�<Ç��M�A�i�SÇ��Oà ���A���O� � Í �O� �A�R�O�:�V�M� � �K�
�M�K��X� � �X¡
�M�K�

That is, we will compile the DAPO?CoKL>NAoABCDM9IDKLVP daemon, the DAPO?<oKLINAoAB<DM9SDKL com-
mand line and the (internal) APIs library in order to interface with the daemon.

3.3 M4 files utilizations

As previously mentioned, some of the packages the WMS depends upon come from the
DataGrid project, other ones are externally provided:

11

DataGrid packages: ÛCìKÐCÏ , ^AHK_<H"íOD<6R@=RUVh , ì8ÏV\8ÔjE*î<ÖKÐSí , and Û<DKT>NC=86KHïÐSHK9SHA?CDAB .
Non DataGrid packages: ì<NV7:eO@W` [6], ðVgATIHKU [10], Ï8ÛVð<í , ÐChCíOñ8Ô , ÐCh8ÜVBS7KgOh ,

\<NAH<`V`iÏOP and \<NAHS`O`iÏOP d , \VÖ8ì , \S7:9CPS7MBCì , ÑS7O7C`:U , ^KHA_<H , íKLW=i? , ÜVh8U8QW7:9 and Ü<DABSN .
In order to correctly detect the presence and the position of such packages, it is

necessary to create a large number of specific tests and set some variables. These tests
may be put directly inside the 6O7:9C;>=:?8@CBCDck�=R9 file, but this would only make this file
unreadable. So we decided to create a specific M4 [5] file for every package that doesn’t
already provide one.

These M4 files define just one macro called something like ÏV\ òVó§ôRõVó§öR÷ . In general
they take three arguments: the version of the package (when applicable), the action to
perform when the right package is found, and the action when it is not.

The generic action of such macros is to check whether (and where) the include
files and libraries are there (if the package is a library), or try to understand the path of
some kind of executable (for example for Ü<DABIN or ^KHA_<H). Sometimes they made both
operations (for example for íALW=:?).

The first kind of macros defines two (or more, in some special cases) ÐSHKJ<D8;>=ANAD
variables, usually called òVóØô:õVó§öR÷ Ô>ÓiÑCí and òCóØô:õVóØö:÷ \8øOÔVÏVìVí . The first one will contain
the path and the name(s) of the library(ies), while the second will contain the path for
the include files (if present). Some of these macros will also define C macros containing
other information useful for the compiler.

The second kind of macros, instead, defines ÐSHAJ<DA;>=AN8D variables usually called
ÛAÒ<×OòCóØô:õVóØö:÷ , which will contain the full path for the required executable.

Inside the 687:9C;W=:?A@CBCDjk�=X9 file such M4 macros are used as follows (using the same
example as of section 3.2):

�M�K��X¡¬�8�V���­£K£®�8¤i�R�8� �X�C�X�V�M� � ÀS�X�V�iÍK�i�y¦M¦Á�­£M£µ�M�A�V�W¦K¦¹¶� �·£M£µ�A¤M�R�A� �R�V�X�C�i� �I� � �M��À<�X�F¦K¦Á�­£K£µ�i�8�O�b¦K¦»¶� �·£M£µ�A¤M�R�A� �R�V�X�C�i� �M�MÍtÀ<�X�S�X�A�i�}¦K¦Á�­£M£µ�i�8�V�W¦K¦¹¶� �·£M£µ�A¤M�R�A� �R�V�X�C�i� Î:�R�A�K�A�A�K�i�i�}¦K¦Á�­£M£µ�i�8�V�W¦K¦¹¶� �·£M£µ�A¤M�R�A� �R�V�X�C�i� �8�R�O�:�O�K��¦M¦Á�´£K£®�M�A�V�b¦M¦ ½»�i¾O�R�
�A� ÄAù ë �OÅiúMù�� � ¢}�û¾C�:¥A� ÀO�i�A�8�M�i�A�i�8�V�W�'¾V�:¥A� ÀO�i�A�8�M�i�A�R�V�C¨

¡O�
�M�K�

That is, when one of the components that depend on the ÐCh8ÜCBS7MgOh external package
is enabled, the test for its presence is carried on. In this specific example, we were inter-
ested in this test when the 7:TVU DM9SHKe>NAD BCDM9IDKL<HCN variable was set. In order to be sure that
the value of the QSHK_<D ¿ variables is something like lOl5h<D<`}nOn or lVl®9>7ynOn their values are
set by default to lOl®9>7ynVn before actually performing all these tests.

12

4 Releasing and distributing the code

In the DataGrid project it has been decided to release and distribute the code using the
RPM Package Manager. It provides extensive and accessible package management ser-
vices.

We have had to follow simple DataGrid rules [16] and added some internal proce-
dure to quickly check the WMS RPMs.

In the 687i9C;>=:?A@<BCDck�=X9 file, we add the M4 macro ÏV\ ðOÕCì ÛOÜ8ÐIí which sets the
directory where WMS RPMs must be built. Its default is lµTVLVPcl . We also add another M4
macro ÏV\ ÛOÜ8Ð which defines the variables ÛOÜ8Ð Ô>Ó:ÑCí , ÛVÜ8Ð \8øOÔOÏVìCí , and ÛOÜ8Ð Ñ>Ó:× ÜVÏ8ÙVÚ ,
used in the ÐSHKJSDA;>=ANAD to build a simple code that reads spec files and returns the files that
go in the RPMs.

In the main ÐSHKJSDA;>=ANADjk5HiG (the one in the LI7KB8JINO7AH8P directory) we will find some-
thing like:

�M�K��:�iÀfü ¤ �®� ë Ä à ë �A�Aà ¨
ÀS�XýO� � �A���þ �<��� þ ÀOý � �t� � �á¶

ÿ:� ë Ä àKÅtÉA�O�:�Oà ë �iÈ��8ÿ ¶
ÿ:� ë Ä à ë �8� ë �iÈ��Oÿ ¶
ÿ:� ë Ä �iÉSÇt�MÆ ë �MÈ��8ÿ ¶
ÿ:� ë Ä � ë ÄVà ë �iÈ��Oÿ ¶
ÿ:� ë Ä àR� ë ÄVà ë �MÈ��8ÿþ �<��� þ Î�� � ÿ ë �A���8�K�i�8ÿ � ÿ��M�M�OàOÇ:ÅR�8ÿ � �O�R� � Í�� ÿR� ë Ä Æ<Ç��Oÿ þ àMÅXÉA�8�i�8à¡A�:�Ì¡V�:�M�Ë�m�ï¤ �µ� ë Ä à ë �8�Aà ¨W½ � �Ë¶þ �<��� þ Î���¤M¤i¡O�i�M� ÿ:� ë Ä à ë �A� ë �MÈ��Oÿ ½¹¶

� �X�V�
¡A�:�Ì¡V�:�M�Ë�m�ï¶

ÿ:� ë Ä à ë �8� ë �iÈ��Oÿ þ	� � �m�O�OÎb½ � �Ì¶�i�:À �K� � �M¡O���V��
 �A�R� � �X� ÿR� ë Ä Æ<Ç��8ÿ
 � �C�&¤K¤:¡V�:�M�v½»¶
� �X�V�

�M�K�
So, it is enough to run the command GIHKJ<D BAT8G to build WMS RPMs.
In our package we have organized our code in four spec files. The main one covers

the main WMS services and APIs, two of them apply to a cople of external packages that
needed modifications, the last one just includes the testsuite description.

We have added another target called G>HKJ<D BAT8GIo<6:QSD<6:J�ÕOðSíKÙOÕWÓRÛ<~
�S=X9W`iU<HCNON·NO7V6KHKUb=A7:9�� ,
considering that the WMS package is quite complex, and in order to avoid running the
full time-consuming command GIHKJ<D BAT8G when there are some errors in the package, e.g.
a new header file has been added in the code but not included in the ÐSHKJ<D8;>=ANADck�HiG .

13

This target builds the program 6RQSD<6iJV;>=ANADS` which reads the spec files and extracts
the list of files that goes in the RPMs, putting it in a file called BAT8G<;>=8NAD<`ak U8GVT . Then it
runs the commands GIHKJ<D"HMTØ=:PS7V6 , and GIHKJ<D·=X9b`:U<HCNON ÕOðSíKÙOÕWÓRÛ<~
�S=X9W`iU<HCNON NV7V6KHKUW=87:9�� .
The following piece of code produces two files: =X9W`:USHCNONADAPV;>=ANAD<` 9>7iUW=R9VU8QSD<`:TSD<6i;>=8NADck UVgOU
and `RTID<6i;>=AN8D<` 9>7iUb=X9W`:U<H<NONADAPfk®UVg8U .
�M�K�Íi�8�R��
�����
�¤ �µÆSÇ������<Çt�M�Oà ¨�¶

� Î� A� � � ¦&¦ � ¡	�¬¶
� �m�O�OÎX¡V�i�i�V� �O�i�C�m�I���O�K�M�M� � � �K�M��ÍM�A�R��
�� �
�¤ �®ÆSÇ������CÇt�K�8à ¨�¶
� Î� A� � � ¦&¦ � ¡	�¬¶
� ���S�t�8�K�K�i� � ¡V�i�i�V� �O�i�V���8�:¾V�O�m�V�8ÎR¡O�i�M� � �K�M�

�M�K�

Once obtained such files someone can edit the file `RTSD<6M;>=ANAD<` 9>7iUW=X9b`:U<HCNON8DAPfk UVgOU
to check if the spec files contain some old files. By viewing the file =X9W`:U<H<NONADAPO;W=ANAD<` 9>7iU<o
=X9VU8QID<`RTSD<6M;>=ANADck®UVg8U it is possible to verify if we need to upgrade the spec files.

5 A bit of sociology

As already mentioned, WMS is developed by a group of persons working for different
institutions in different european countries. This is not just addressed by an appropriate
choice of tools, as described in the previous sections, but also by appropriate organisa-
tion. In our case, the role of the packager was introduced, with the task of organising
the code tree structure, providing templates for the packaging of new components, over-
seeing on the application of project-wide rules [16] and on the uniformity of build pro-
cedures. While this role entailed being called to solve many build and installation issues
for any component, it allowed all developers to converge towards common formats for
the ÐSHKJ<DA;W=ANADck5HMG and M4 files, and a 687:9C;>=i?A@CBCDck�=X9 organized for all needed tasks.
In addition, it allowed developers to concentrate just in code development instead of its
organization.

6 Deployment procedure

A specific procedure was implemented to allow developers to keep committing changes
to CVS HEAD without disrupting the test procedures related to the cut of new releases.

For each new release, the set of bugs and new features to be addressed (as extracted
by the project bug-reporting system) is defined, and communicated via e-mail or on the
IRC channel where most of the communication within the work-package WP1 is occur-
ring. When all development issues are resolved (this is again known by interaction via

14

IRC), an e-mail is sent to the work-package WP1 mailing list, communicating the start
time of the test session. Before this time, developers have to commit all pending changes
with respect to the upcoming release. When the announced time arrives, a CVS branch
called USD<`:U ���Øz��Vpb«OuM{! is created. Software is entirely rebuilt starting from that branch
and various tests are performed, including the execution of the work-package WP1 spe-
cific regression test suite. If errors are found, these are fixed and committed to the branch.
When the test results are satisfactory, the release is tagged on the branch and all the ap-
plied fixes are merged to the main trunk.

7 Conclusion

We have summarised our experiences, the limits found and the extensions added to stan-
dard code management and packaging tools adopted by the EU DataGrid project, in order
to accomodate the practical needs of the Workload Management work-package. The lat-
ter is characterized by a distributed development team, taking part in a centrally-managed
project, and by the specific need to integrate a very complex set of dependencies, either
external to the project, or external to the work-package WP1, or specific to the WMS
component relationship. The tools that were used are CVS as repository, GNU autotools
as manager of the building package, RPM as manager of the package. The missing func-
tionality is mainly centered around the description of dependencies at the GNU autotools
level, for which a dedicated, yet-to-be-developed “autodep” tool was felt to be useful.

8 Acknowledgements

The authors wish to thank to all the WMS team for their help and support in developing a
better organization of the WMS package. We also thank the EU and our national funding
agencies for their support of this work.

The DataGrid project is funded by the European Commission under contract IST-
2000-25182.

9 Availability

EU DataGrid is distributed under a BSD-based license, its text is available at:

http://eu-datagrid.web.cern.ch/eu-datagrid/license.html

The source code can be downloaded in several formats from:

http://marianne.in2p3.fr/datagrid/repository/

15

References

[1] The DataGrid Project. http://eu-datagrid.web.cern.ch/eu-datagrid

[2] DataGrid Workload Management Work Package. http://server11.infn.it/workload-
grid

[3] GNU Manuals Online. http://www.gnu.org

[4] Bugzilla Bug Tracking System. http://www.bugzilla.org

[5] GNU m4. http://www.gnu.org/software/m4/m4.html

[6] The globus alliance. http://www.globus.org/

[7] Bypass. http://www.cs.wisc.edu/condor/bypass/

[8] Trio - portable and extendable printf and string functions. http://daniel.haxx.se/trio/

[9] loki. http://sourceforge.net/projects/loki-lib/

[10] The Expat XML Parser. http://expat.sourceforge.net/

[11] RPM Package Manager. http://www.rpm.org/

[12] LCFG (ng). www.lcfg.org

[13] G.V. Vaughan et al, GNU Autoconf, Automake, and Libtool. New Riders, (October
2000)

[14] K. Fogel et al, Open Source Development with CVS. Coriolis Group, (October 2001)

[15] G. Avellino et al, The EU DataGrid Workload Management System: towards the
second major release, 2003 Conference for Computing in High-Energy and Nuclear
Physics (CHEP03), La Jolla, California, (24-28 Mar 2003)

[16] Quality Assurance Group, European DataGrid Developers’ Guide, (2003)

16

