

ISTITUTO NAZIONALE DI FISICA NUCLEARE

Sezione di Milano

<u>INFN/TC-03/02</u> 7 Febbraio 2003

CYCLOTRON PRODUCTION OF "HIGH SPECIFIC ACTIVITY" RADIOCHEMICAL FORMS OF VANADIUM, MANGANESE AND THALLIUM FOR METALLO-TOXICOLOGICAL STUDIES

Flavia Groppi¹, Claudio Birattari¹, Mauro Bonardi¹, Luigi Gini¹ Mario Gallorini³, Enrico Rizzio³, Enrico Sabbioni⁴, Enzo Menapace⁵ Dolores Arginelli⁶, Alberto Ghioni¹ and Hae Song Mainardi¹

 ¹⁾Radiochemistry Laboratory, Accelerators and Applied Superconductivity Laboratory, L.A.S.A., via F.lli Cervi 201, I-20090 Segrate, Università degli Studi and National Institute of Nuclear Physics, INFN Section of Milano, via G. Celoria, 16, I-20133 Milano, Italy
 ³⁾Unit for Radiochemistry and Spectroscopy, CNR, via Taramelli 12, I-27100, Pavia, Italy
 ⁴⁾Institute for Health and Consumer Protection, IHCP, JRC-Ispra, European Commission, EC, via E. Fermi 1, I-21020 Ispra, Varese, Italy
 ⁵⁾Division for Advanced Physical Technologies, ENEA, via Don Fiammelli 2, I-40128 Bologna, Italy
 ⁶⁾Institute for Radiation Protection, IRP, ENEA, I-13040 Saluggia, Vercelli, Italy

Abstract

In this paper are presented the production methods for very "high specific activity" radionuclides (HSARNs) of vanadium (V), manganese (Mn) and thallium (Tl), which have been developed in our laboratories for labeling different chemical forms of these elements present in the echo-systems in ultra-trace amounts, for metallo-toxicological and bio-kinetic studies. Use was made of both *cyclotron* and thermal *nuclear reactor*. If the nuclear reaction and/or decay product has atomic number different from irradiated target, it is possible separating the radioactive nuclide from irradiated target, without *intentional* addition of isotopic carrier. These kinds of radionuclides are named No Carrier Added, NCA, and their *specific activity* is very high and can reach values close to the theoretical Carrier Free one, CF.

The experimental determination of specific activity, chemical and radiochemical purities is mandatory for all these kinds of applications.

PACS: 82.90.+j

Published by **SIS–Pubblicazioni** Laboratori Nazionali di Frascati

1 INTRODUCTION

We showed in several previous papers how the use of "very high specific activity radiotracers" would be very effective for studying the behaviour of different chemical forms of chemical elements at ultra-trace level¹⁻³). In practice, the analysis of trace chemical species either inorganic or organo-metallic and the study of their effects on living organisms, require very sensitive analytical techniques. In most cases, the toxicological impact of Long Term and Low Level Exposure (LLE) to ultra-trace elements, is unknown and depends on both the *amount* of trace element and it *chemical form* in particular. These last points are the *key-factors* to set up experiments, which are representative of the real environmental behaviour of the chemical species under investigation^{1,3}).

In order to simulate the uptake of different chemical forms of ultra-trace elements, the use of short-lived and *High Specific Activity RadioNuclides* (HSARNs) offers an almost unique very accurate and representative method to carry out metallo-toxicological studies on both *cell cultures* and *laboratory animals*. It is evident that the direct and raw *extrapolation* to *humans* of results obtained is a difficult and questionable task, whereas the direct analysis of human tissues, body fluids and bioptic specimen offers only indirect information about the behaviour of chemical species in main body compartments.

The activity $\mathbf{A}(t)$ of a radionuclide (radioisotope has a less general meaning) in a radioactive preparation or substrate is measured in Bq in the Systeme Internationale of units SI, whereas its activity concentration $\mathbf{C}_{\mathbf{A}}(t)$ is measured in either Bq kg⁻¹ or Bq m⁻³ of substrate itself. Conversely, the specific activity $\mathbf{A}_{\mathbf{S}}(t)$ of the same radionuclide is defined as the ratio between the activity of a stated radionuclide and the mass \mathbf{m} (in kg) of isotopic carrier present in the sample, as by definition of Eq. (1):

$$A_{S}(t) = Activity of a RN on total mass of isotopic carrier = N(t) λm^{-1} (1)$$

in which: **N**(t) (atoms) is the number of radioactive atoms in the sample at time t (s), λ (s⁻¹) = ln2/t_{1/2} is the decay constant and **t**_{1/2} (s) is the physical half-life of radionuclide itself. In the SI, this derived *quantity* is measured in Bq kg⁻¹, i.e. in most common cases in MBq µg⁻¹ to GBq µg⁻¹.

With the term *isotopic carrier*, we mean the total amount of both stable and radioactive atoms of same Z (atomic number \equiv number of protons P of atomic nucleus) present in the sample⁴⁻⁸⁾. Whenever it is experimentally proved that a radionuclide of atomic mass M (kg mol⁻¹) is *absolutely free* of isotopic atoms (both stable and radioactive), the radionuclide concerned is defined *carrier-free* CF.

It this particular case only, its specific activity $A_S(CF)$ is a *physical constant*, an *intensive parameter* defined by the definition and identity (Eq. 2), i.e. N_{Av} is the Avogadro's number in proper units. In practice, this condition is very rare and regards a few radioelements only, i.e. super-actinoids and super-heavy elements produced in few atom amounts, radionuclides obtained by high-resolution mass separators and a few other selected cases ⁶⁻⁹⁾.

$$\mathbf{A}_{\mathbf{S}}(\mathbf{CF}) \equiv [\mathbf{N}_{\mathbf{A}\mathbf{v}} M^{-1}] \lambda \tag{2}$$

A molar specific activity, or simply molar activity, $\mathbf{A}_{\mathbf{m}}(t) \equiv \mathbf{M} \mathbf{A}_{\mathbf{S}}(t)$ is also defined and is measured in Bq mol⁻¹, or in most cases GBq µmol⁻¹; in this case **M** is the molar mass of labeled compound (kg mol⁻¹). Finally, a further useful parameter to specify the degree of isotopic dilution of a stated radionuclide, is the *isotopic dilution factor* **IDF**(t) which is a dimensionless quantity, defined by Eq. (3):

IDF(t) = mass of *isotopic carrier* on mass of RN = IDF° exp(λ t) = A_S(CF) [A_S(t)]⁻¹ (3)

This dimensionless quantity IDF(t) changes with time t (s) after the End Of radiochemical Processing (EOCP) of irradiated target. In many practical cases, the radionuclide of interest is diluted in a substantial amount of stable atoms of same element and in the same chemical form⁶⁻⁹. Thus the IDF(t) increases with time with a very simple law, following the Eq. (3), where the quantity **IDF^o** represents the IDF value at time zero, i.e. normally the EOCP.

In more complex cases, it is possible that the radionuclide of interest is mixed with other radioactive nuclides of the same element (isotopic impurities). In this last case the IDF(t) varies with time in a more complex way due to the different half-life of radionuclides concerned. In present paper we make the assumption that only one radionuclide of one element is present, that means having a radionuclidic purity of close to100 %, while the *isotopic carrier* is constituted by stable atoms only.

In order to reach this kind of radioisotopic purity (same Z), it is necessary in almost all cases optimizing carefully the irradiation conditions in both cyclotron and nuclear reactor.

2 EXPERIMENTAL

In recent years, in order to produce HSARNs use was made of the Cyclotron of Joint Research Center of JRC-Ispra (Varese) of European Community, EC and the research Nuclear Reactor of the University of Pavia w/o National Research Council, CNR (Pavia, Italy).

In TAB. 1 are reported the nuclear reactions adopted, optimal energy range adopted and experimental values of IDF at the EOCP, together the main side nuclear reaction concerned. For production of V, Mn and Tl radionuclides, targets of both natural and enriched isotopic composition have been used, the isotopic compositions are reported in TAB. 2.

All nuclear data were taken from Browne 1986¹⁰⁾ and Firestone 1998¹¹⁾. Some of our thin-target excitation function data, obtained in early times, are available in a recent IAEA compilation¹²⁾. The statistical analysis of counting was performed in accordance with Smith¹³⁾. Official IUPAC nomenclature and SI have been adopted^{14,15)}.

As examples: nuclear reaction cross-sections are expressed in m² particle⁻¹ (i.e. 1 b = 1 barn = 10^{-28} m²)¹⁵), while the production yield is given in MBq C⁻¹ (i.e. 1.0 MBq C⁻¹ = $3.6/37 \ \mu \text{Ci} \ \mu \text{A}^{-1} \text{ h}^{-1}$, where 1 Ci = $3.7 \ 10^{10} \text{ Bq}$)¹⁵). Nevertheless, to express both volumes and concentrations¹⁵), use was made of mL (millilitre) = 1 cm³.

Finally, in present paper the following terminology was adopted⁵⁻⁷): NCA for No Carrier Added, CA for Carrier Added, CF for Carrier Free and NCF for Nearly Carrier.

TAB. 1: Nuclear reaction used for production of V, Mn and Tl HSARNs in No Carrier Added, NCA form, at Milano and Ispra Cyclotron Laboratories and at TRIGA MARK II thermal research Reactor of Pavia. In the Table are reported optimal energy range (MeV), calculated theoretical $A_S(CF)$ (see text), experimental IDF° (see text),

target nuclide	nuclear reaction	produced radionuclide	t _{1/2}	E-γ (keV)	energy range (MeV)	A _S (CF) (GBq g ⁻¹)	IDF°
²⁷ Al	(p,X)	²⁴ Na	14.959 h	1368.6	45-15	323.0	nd
²⁷ Al	(p,αd)	²² Na	2.6019 a	1274.5	45-15	0.23	nd
⁴⁵ Sc	(p,n)	⁴⁵ Ti	184.8 min	511@	15-9	836.6	nd
⁴⁵ Sc	(α,n)	^{48}V	15.9735 d	983.5	23-11	6.3	170
^{nat} Ti	(p,n)	^{48}V	15.9735 d	983.5	26-9	6.3	7-60
natCr	(d,xn)	⁵² gMn	5.591 d	744.2	19#-9	16.6	nd
natCr	(p,xn)	⁵² gMn	5.591 d	744.2	21-7	16.6	3200
natCr	(p,xn)	$^{51}{ m Mn}$ $ ightarrow$	46.2 min	511@		2953	nd
natCr	(p,pxn)	⁵¹ Cr	27.702 d	320.1		3.4	CA
⁵⁵ Mn	(n,γ)	⁵⁶ Mn	2.5785 h	846.8	$\Phi=9\ 10^{16}$	803.0	6 10 ⁵
⁵⁹ Co	(p,αd)	⁵⁴ Mn	312.3 d	834.5	45-25	0.29	nd
¹²⁴ Te	(p,2n)	123I	13.27 h	158.97	28-17	71.0	NCF
^{nat} Hg	(p,xn)	²⁰¹ Tl	72.912 h	167.4	25-15	7.91	5
		²⁰² Tl	12.23 d	439.5	36-20	2.0	10
²⁰² Hg	(p,2n)	²⁰¹ Tl	72.912 h	167.4	19-13	7.91	5
		²⁰¹ Pb	9.33 h	331.2	27-19	61.8	100
natTl	(p,xn)	\downarrow					
		²⁰¹ Tl	72.912 h	167.4	27-19	7.91	10
		²⁰¹ Pb	9.33 h	331.2	27-19	61.8	100
²⁰³ Tl	(p,3n)	\downarrow					
		²⁰¹ Tl	73.1 h	167.4	27-19	7.91	10
natT1	(p,xn)	²⁰³ Pb	51.873 h	279.2	35-20	11.0	120

half-life of radionuclide produced 10,11 and main side reactions.

[@]positron annihilation radiation. [#] maximum energy available.

 Φ = neutron flux density (n m⁻² s⁻¹). nd

nd = non determined.

^{nat} = target of natural isotopic composition (see TAB. 2).

Target nuclide	%	%	%	%	%	%	%	%
naturalTi	⁴⁶ Ti	⁴⁷ Ti	⁴⁸ Ti	⁴⁹ Ti	⁵⁰ Ti			·
	8.0	7.3	73.8	5.5	5.4			
naturalSc	⁴⁵ Sc	mono-						
	100.00	isotopic						
naturalCr	⁵⁰ Cr	⁵² Cr	⁵³ Cr	⁵⁴ Cr				
	4.345	83.789	9.501	2.365				
()m	¹²⁰ Te	¹²² Te	¹²³ Te	¹²⁴ Te	¹²⁵ Te	¹²⁶ Te	¹²⁸ Te	¹³⁰ Te
naturarTe	0.096	2.603	0.908	4.816	7.139	18.95	31.69	33.80
an ni ala a deg	¹²⁰ Te	¹²² Te	¹²³ Te	¹²⁴ Te	¹²⁵ Te	¹²⁶ Te	¹²⁸ Te	¹³⁰ Te
enrichedTe	≈0	0.9	0.11	91.86	3.17	1.81	1.55	1.01
n storm ly y	¹⁹⁶ Hg	¹⁹⁸ Hg	¹⁹⁹ Hg	²⁰⁰ Hg	²⁰¹ Hg	²⁰² Hg	²⁰⁴ Hg	
naturaiHg	0.15	9.97	16.87	23.10	13.18	29.86	6.87	
enrichedHg	¹⁹⁶ Hg	¹⁹⁸ Hg	¹⁹⁹ Hg	²⁰⁰ Hg	²⁰¹ Hg	²⁰² Hg	²⁰⁴ Hg	
	≈0	≈0	≈0	0.1	1.3	98.6	≈0	
naturalT]	²⁰³ Tl	²⁰⁵ Tl						
	29.524	70.476						
enrichedTl	²⁰³ Tl	²⁰⁵ Tl						
	81	19						

TAB. 2: Isotopic composition of both natural and enriched targets used in present study for production of high A_S NCA radionuclides of vanadium, manganese and thallium^{10,11}).

In this paper we present the methods developed in our laboratories for production and uses of HSARNs of vanadium (⁴⁸V), manganese (^{52g}Mn, ⁵⁴Mn and ⁵⁶Mn) and thallium (²⁰¹Tl and ²⁰²Tl) in different oxidation states and chemical forms of toxicological and environmental relevance, for metallo-toxicological investigations envisaged.

Several experiments were carried out with multiple labelling techniques by simultaneous use of different HSARNs of same element in either different oxidation states or organometallic compounds, like: [^{52g}Mn]Mn(II), [⁵⁴Mn]Mn(VII), [⁵⁶Mn]Mn(II) and [²⁰¹Tl]Tl(I), [²⁰²Tl]Tl(III), dimethyl[²⁰²Tl]thallium(III) cation. Moreover several inorganic and coordination compounds of vanadium have been labelled with very high specific activity NCA ⁴⁸V (TAB. 3).

Some of these labelled compounds are reported in TAB. 3. All biological experiments on both cell cultures and laboratory animals were carried out in collaboration with JRC-Ispra (Varese) of European Commission, EC.

radionuclide	oxidation state	chemical form	IUPAC nomenclature ¹⁴⁾		
^{48}V	III	$[^{48}V]V^{3+}$	vanadium(III) cation		
^{48}V	IV	[⁴⁸ V]VO ²⁺	oxovanadium(IV) cation		
^{48}V	IV	[⁴⁸ V]porphyrin	vanado(IV)porphyrin		
^{48}V	V	[⁴⁸ V]VO ₂ ⁺	dioxovanadium(V) cation		
^{48}V	V	[⁴⁸ V]VO ₃ -	trioxovanadate(V) anion		
^{48}V	V	[⁴⁸ V]VO ₄ ³⁻	tetraoxovanadate(V) anion		
^{48}V	V	[⁴⁸ V]VS ₄ ³⁻	tetrathiovadanate(V) anion		
^{52g} Mn	II	$[52gMn]Mn^{2+}$	manganese(II) cation		
⁵⁴ Mn	II	[⁵⁴ Mn]MnO ₄ -	tetraoxomanganate(VII) anion		
⁵⁶ Mn	VII	[⁵⁶ Mn]Mn ²⁺	manganese(II) cation		
²⁰¹ Tl	Ι	[²⁰¹ Tl]Tl+	thallium(I) cation		
²⁰² Tl	III	[²⁰² Tl]TlCl ₄ -	tetrachlorothallate(III) anion		
²⁰² Tl	III	[²⁰² T1]T1C1 ₆ ³⁻	hexachlorothallate(III) anion		
²⁰² Tl	III	[[²⁰² Tl]Tl(CH ₃) ₂] ⁺	dimethylthallium cation		
²⁰² Tl	III	[²⁰² Tl]Tl(CH ₃) ₃	trimethylthallium		

TAB. 3: Chemical species labelled with very high specific activity ⁴⁸V, ^{52g,54,56}Mn and ^{201,202}Tl very high specific activity No Carrier Added, NCA, radiotracers.

2.1 Reagents and chemical equipment

Ultra-high purity water of Type I (ASTM and ISO 3696) was produced with a Millipore (USA) Milli-RO/Milli-Q equipment supplied with deionised water obtained from a mixed-bed twin ion-exchange column. A total oxidable carbon, TOC, value of 10 ppb was achieved. All equipment was made by Teflon-PFA (Nalgene, Nalge Co., UK), for operations at temperature up to 220 °C. At higher temperatures use was made of quartz-ware of nuclear grade (Supra-Sil). All the acids and organic chemicals (organic solvent, chelants) were analysed for metal impurities by graphite-furnace atomic absorption spectrometry, ET-AAS (LASA), inductively coupled plasma optical-emission spectrometry, ICP-ES (JRC-Ispra) and instrumental neutron activation analysis, INAA, by high-resolution gamma spectrometry (Pavia). Concentrated metal standard solutions (Sigma-Aldrich, BDH) were diluted as required for the standard additions and for method evaluation, by both ET-AAS, ICP-ES and INAA. Ultra-high purity metal targets were purchased from Goodfellow Metal (UK), J&M (UK) and Aldrich Chimica (Italy). All ion exchange resins used (AG1x8, AG50Wx8, Chelex100, 100-200 mesh, others) were of analytical grade purity (Bio-Rad, UK). Suitable portions of resins were

preconditioned by swelling in either high purity water, buffer or acidic solution and then filled into polypropylene columns (Bio-Rad Econo-colums, UK) and repeatedly washed, up to reach a constant pH value of the eluate.

2.2 Instrumentation

2.2.1 Nuclear activation runs were performed at the *compact cyclotron* of JRC-Ispra of EC (Scanditronix MC40, Sweden) and at the TRIGA MARK II (General Atomics, USA) *thermal nuclear reactor* of University and CNR Pavia. The accelerator (K=38) gains proton and alpha beams, with energy variable up to 38 MeV, as well as deuterons with energy up to 19 MeV. The nuclear reactor is a conventional 250 kW research reactor, with 30 % enriched ²³⁵U fuel rods. A thermal nuclear flux density varying from 10¹⁶ to 9 10¹⁶ n m⁻² s⁻¹ was used in different cases (INAA and isotope production)¹⁶). The epithermal component of neutron spectrum was experimentally measured by cadmium shielding and was less than 10 %.

2.2.2 High-resolution gamma spectrometry was performed, by using four (50 cm³) high-purity coaxial germanium HPGe detectors. The intrinsic efficiency was 15 % (EG&G ORTEC, USA), with a peak to Compton ratio of 30 to 1 at 1332.50 keV, FWHM 2.3 keV (60 Co point source). All detectors were connected with spectroscopy amplifiers (EG&G, mod. 572, 672) and A/D 2x4096 multi-channel analysers, MCAs (EG&G ORTEC, USA, mod. 918A, 919). The spectroscopy amplifiers were set to gain a channel/energy conversion factor 2 to 1. Gamma spectra in the energy range up to 2000 keV were acquired and analysed by Gamma Vision 5.2 for Windows s/w package (EG&G ORTEC, USA, mod. A66-B32). The efficiency data, obtained by decay corrected certified point source of 152 Eu, 41.1 kBq (overall uncertainty 2 %) (CIS, CEA, France), have been fitted by both Gamma Vision and S/W package TableCurve 1.10 for Windows (Jandel Scientific, AISN Software, Germany)¹⁷⁻¹⁹.

2.2.3 Beta spectrometry by liquid scintillation counting, LSC, was performed by a 1000 channel Liquid Scintillation Counter (Beckman, USA, mod. LS5000TD), with: three energy window capability, random coincidence monitor (RCM) and Horrocks Number (H[#]) quenching correction method. The quenching correction curves were experimentally determined by addition of increasing amount on CH_3NO_2 and CCl_4 to scintillation cocktails for aqueous solutions of high ionic strength Ultima-Gold, Ionic-Fluor and Pico-Aqua (Canberra-Packard, USA)^{19,20}.

2.2.4 Metal determinations were performed in order to verify chemical purity of labelled compounds, as well as determining experimental specific activity in No Carrier Added form, with ET-AAS (Varian, USA, mod. SpectrAA30, LASA), ICP-ES (Perkin Elmer mod. 5500, USA, JRC-Ispra), for most elements (ex: Pb, Tl, Cd, Ti, V, Cr, Fe, Pd, Zn, Cu, etc.). Moreover, for some particular metal (i.e: Os, Au, Ir, Ru, Sc, Sn) we used INAA, (TRIGA Mark II nuclear reactor Pavia), even if this technique could determine at least 35 trace elements simultaneously¹⁶. Some trace metal determinations (As, Se, Sb, Cu, Zn, Ga)

were performed by anodic and catodic stripping voltammetry (ASV, CSV) too. We used a polarograph/voltampermeter, with hanging Hg dropping electrode, HMDE (Metrohm Heriseau, Switzerland, mod. Polarecord E506, E608, 648). For many elements an intercomparison between the different analytical techniques was carrier out²¹⁻²⁶.

3 RESULTS AND DISCUSSION

3.1.1 High specific activity ⁴⁸V radiotracer production by ^{nat}Ti(p,xn) nuclear reactions:

Titanium of natural isotopic composition (TAB. 2) is suitable for production of highpurity ⁴⁸V ($t_{1/2} = 15.9735 \text{ d}$)^{10,11}) by (p,xn) nuclear reactions, due to the fact that all the other neutron-poor radionuclides of V are either very short-lived (from ⁴³V to ⁴⁷V) or long-lived like ⁴⁹V ($t_{1/2} = 330 \text{ d}$). Moreover this last radionuclide that is produced with low yield due to its long half-life and isotopic target composition, decays by EC and does not present any γ emission, being undetectable by γ -spectrometry^{10,11,17,18}). In fact, due to the isotopic composition of ^{nat}Ti, the nuclear reaction to optimise the ⁴⁸Ti(p,n), is in the lower proton energy region available (21 to 7 MeV). In this energy range a thick-target yield of 6.2 GBq C⁻¹ (600 µCi µA⁻¹ h⁻¹) is achieved. High purity (4N5) metal Ti sheets of natural isotopic composition, 1.1 mm thick (i.e 500 mg cm⁻²) and 10 mm in diameter were enclosed in ultrahigh purity (9N) Al foils, 16 and 10 µm thick (Goodfellow Metals, UK), in order to avoid possible cross-contaminations from cyclotron beam line.

After irradiation, the Ti targets were leached with diluted HNO_3 in order to decontaminate the Ti metal from ²⁴Na and ²²Na that are produced by activation and recoil from Al envelope, via (p,X) nuclear reaction (see TAB. 1). The presence of ²⁴Na must be avoided due to the very high energy of its gamma rays at 2754 and 1369 keV^{10,11}). In particular, these high-energy gammas could induce formation of single and double escape peaks in HPGe semiconductor detectors. ²²Na is produced with very low yield compared to ²⁴Na, nevertheless due to its very long half-life its presence is undesirable in metallotoxicological experiments. After a short irradiation of 4 hours, with a 10 µA beam current 0.9 GBq (24 mCi) of ⁴⁸V are obtained in the target at the End Of Bombardment, EOB.

Proton irradiation on Ti targets leads also to production of several Sc radionuclides by side (p, α xn) nuclear reactions: ⁴⁸Sc (t_{1/2} = 83.82 d) and ⁴⁷Sc (t_{1/2} = 3.35 d) in particular^{10,11}).

Summary of main features of vanadium chemistry in aqueous media

Vanadium(V) does exist as either mono-nuclear trivanadate(V), VO_3^- (metavanadate) or tetravanadate(V), VO_4^{3-} and other iso-polynuclear anionic species (polyvanadates) like $V_nO_{3n}^{n-}$, $[V_nO_{3n}(OH)]^{3-}$, $[VO_n(OH)_m(H_2O)]^{2-}$, which are present primarily in basic solution with stability decreasing with pH reduction^{29,30}. Under reducing conditions V(III) and V(II) species are also known^{29,30}.

We avoided this complex situation operating in mild oxidising acidic solution. The earlier radiochemical procedure that was developed for separation of NCA ⁴⁸V from both irradiated Ti target and Sc radionuclides was long and time consuming. It was based on a double chromatographic separation on anion exchange resin (Bio-Rad AG1x8, 100-200

mesh). Use was made of HF and mixtures of HCl and oxalic acids (H₂ox) of different concentrations as eluting agents. The method was based on the different behaviour of V(V) in acidic medium, as dioxovanadium(V) cation, VO_2^+ and V(IV), as either oxovanadium(IV), VO^{2+} (vanadyl cation) or oxovanadium(IV) aquacation, $[VO(H_2O)_5]^{2+}$ (aquavanadyl cation). The formation of a strong anionic complex of V(IV) with oxalic acid *cis*- $[VO(ox)_2]^{2-}$ in 0.1 M HCl / 0.1 M oxalic acid mixture is also concerned with the separation. This complex is decomposed and converted to $[VO(H_2O)_5]^{2+}$ aquacation increasing the concentration of HCl as eluent (0.4 M), without changing of V oxidation state (IV) that is the much more stable in acidic condition^{27,28}).

FIG. 1: Simplified scheme of earlier radiochemical separation of ⁴⁸V from irradiated Ti target and Sc radioactive by-products.

The oxidation state of vanadium was tested - in a higher concentration range - by using EPR spectrometry, due to the fact that V(V) is diamagnetic (d⁰ configuration), while V(IV) is paramagnetic (d¹ configuration)^{27,28)}. The overall radiochemical yield referred to ⁴⁸V was 85 %. No Sc radionuclides were detected in the ⁴⁸V final fraction by HPGe γ -spectrometry. The decontamination factor from irradiated Ti target was of the order of 5 10⁵ (i.e. 100 ng in total in 5 mL of final solution), measured by ICP-ES spectrometry.

The A_S of the tracer at the EOCP was determined by INAA, via ${}^{51}V(n,\gamma){}^{52}V$ nuclear reaction^{10,11}) and was larger than 900 MBq µg⁻¹. The complete mineralization of final solution from oxalic acid was verified by liquid scintillation counting, by spiking the solution with ${}^{14}C$ labelled [${}^{14}C$](COOH)₂. FIG. 1 shows the simplified scheme of Ti/V/Sc radiochemical separation described above.

3.1.2 High specific activity ⁴⁸V radiotracer production by ${}^{45}Sc(\alpha,n)$ nuclear reaction

In order to improve both speed and yield of radiochemical separation for preparation of very high A_S ⁴⁸V, a completely different nuclear route was chosen, based on α particle induced nuclear reactions on ⁴⁵Sc target, i.e. that is mono-isotopic (TAB. 2). The irradiations were carried out at α particle energy of 23 MeV, on an high purity (4N) metal Sc target, 0.2 mm thick (Alfa Chemicals, Italy).

FIG. 2: Simplified scheme of radiochemical separation of ${}^{48}V$ from α particle irradiated ${}^{45}Sc$ target. The yield of this nuclear reaction is about 46 times lower compared to that obtainable from ${}^{nat}Ti(p,xn)$ nuclear reactions.

The yield obtained with this method was of 0.14 GBq C⁻¹ (13 μ Ci μ A⁻¹ h⁻¹), compared to the yield of 6.2 GBq C⁻¹ (600 μ Ci μ A⁻¹ h⁻¹) of the Ti(p,xn) route. Nevertheless, despite the yield of a factor 46 lower in respect to the other, the advantages of a fast radiochemistry are remarkable. The radionuclides identified in the HPGe γ spectra after a few hour cooling, were ⁴⁸V, ^{44m}Sc (t_{1/2} = 2.44 d), ⁴⁶Sc (t_{1/2} = 83.82 d) and ⁴⁷Sc (t_{1/2} = 3.35 d)^{10,11}).

The method was based on oxidation of V(IV) to V(V) by H_2O_2 in nitric medium, followed by one step elution of vanadium(V) anion with solvent front with 0.1 M HNO₃ as eluent, from a cation exchange resin (Bio-Rad, AG50Wx8, 100-200 mesh, 7x40 mm), while Sc(III) cations are strongly adsorbed onto the resin bed. The radiochemical yield in respect to ⁴⁸V was 90 %. The A_S of ⁴⁸V determined by INAA via ⁵²V was of the order of 37 MBq µg⁻¹.

The decontamination factor from Sc target was about 10^6 and was determined by INAA via ${}^{45}Sc(n,\gamma){}^{46}Sc$ nuclear reaction (60 ng in 2 mL of final solution). 60 GBq (1.6 mCi) of ${}^{48}V$ have been produced at the EOCP, after a 24 hour irradiation with an α beam current of 6 μ A.

The very simple scheme of separation adopted is shown in FIG. 2. This second method presents the remarkable advantage that there is no production of any radionuclidic impurity of the long-lived and no- γ emitter ⁴⁹V^{10,11}).

FIG: 3: HPGe spectrum (in a.u.) of a radiochemical pure ⁴⁸V fraction at the EOCP. No other γ emissions are detectable, even if some long-lived ⁴⁹V is present in very minute amounts (see text). No peaks are detectable at energies higher than 1500 keV. ⁴⁸V decays also by positron emission, thus a strong annihilation peak at 511 keV is present.

No titanium radionuclides were detectable in HPGe spectra, as was confirmed and verified by *spiking* the solutions with ⁴⁵Ti (i.e. cyclotron produced via ⁴⁵Sc(p,n) reaction) and ⁴⁴Ti, purchased from Amersham (UK). This result was explained by the oxidation of titanium traces by H_2O_2 to the Vaska's Type hydroxoperoxotitanium(IV) aquacation $[Ti(O_2)(OH)(OH_2)]^+$, which is the dominant cationic species at pH < 1 in the nitric medium used for scandium target dissolution^{14,27,28}). In FIG. 3 is reported an HPGe spectrum of ⁴⁸V; in practice both methods adopted led to a very high radionuclidic purity radiotracer, even if in the case of ^{nat}Ti(p,xn) nuclear reaction a small amount on the no- γ emitter ⁴⁹V is always produced in small amounts.

Manganese-52g ($t_{1/2} = 5.591 \text{ d}$)^{10,11}) is a medium-lived radionuclide of Mn suitable for experiments envisaged. It can be obtained by activation of ^{nat}Cr target of natural isotopic composition, via both (p,xn) and (d,xn) nuclear reactions. In practice, during Cr activation the short-lived metastable level ^{52m}Mn is also produced ($t_{1/2} = 21 \text{ min}$)^{10,11}), which contributes *slightly* by decaying by Isomeric Transition de-excitation (1.75 %)^{10,11}) to the ground level ^{52g}Mn. After a detailed study on nuclear reaction cross-sections available in the literature^{25),}, we concluded that, as a consequence of Cr isotopic composition (TAB. 2), no advantaged would be obtained by using deuteron beams^{8,9}). Finally, in a classical AVF cyclotron the deuteron beam energy is the half compared to that of protons. The only advantage of using deuteron beams is that due to the higher stopping power of deuteron in materials compared to protons, a thinner Cr target could be irradiated to obtain the same energy loss corresponding to a lower amount of Cr and stable Mn carrier in the final radioactive preparation.

Moreover the ⁵²Cr(d,n) nuclear reaction leads to the long-lived radioisotopic impurity 53 Mn (t_{1/2} = 3.7 10⁶ a)^{10,11}), that is undesirable in any case.

The *thick-target yield family of curves* reported in FIG. 4 was obtained by analytical integration of thin-target excitation function of $^{nat}Cr(p,xn)^{52g}Mn$ nuclear reactions taken from the literature, as a function of both incident proton energy (MeV) and energy loss ΔE (MeV) into target itself^{8,9}.

FIG. 4: Thick-target yield in GBq C⁻¹ (1.0 MBq C⁻¹ \equiv 3.6/37 µCi µA⁻¹ h⁻¹) for production of ^{52g}Mn by proton-induced nuclear reactions on Cr target of natural isotopic composition.

The *family* of yield curves shown if FIG. 4 presents a well shaped locus of the maxima, corresponding to couples of values of incident proton energy E (MeV) on the Cr target and energy loss ΔE (MeV) into the target itself, which allows optimizing production yield minimizing at the same time the mass Cr target thickness (amount of irradiated material).

The irradiated Cr target was dissolved in conc. HCl, brought to dryness and re-dissolved in the minimum amount (a few mL) of 1 M HCl, containing 1000 ppm of Fe(III) as isodimorphous carrier for $Mn(IV)^{4,6,7,27}$. Mn(IV) was *co-precipitated* almost quantitatively with Fe(OH)₃ by addition of an excess of 2.5 M NaOH solution, previously saturated with Br₂.

The bulk of Cr(VI), that was internally labeled by 51 Cr obtained by side nuclear reactions (TAB. 1), remained in the supernatant and discharged. The Fe(OH)₃ iso-dimorphous carrier was centrifuged and re-dissolved in 6 M HCl. Fe(III) was extracted three times in diethyl ether, while 52g Mn remained almost quantitatively into the aqueous phase.

The decontamination of aqueous solution from Fe(III) by L/L extraction was not quantitative and some traces of Fe were found in the final solution. FIG. 5 shows the scheme of radiochemical separation.

FIG. 5: Scheme of radiochemical separation of No Carrier Added 52g Mn, from proton irradiated ^{nat}Cr target. Due to the addition of Fe(III) iso-dimorphous carrier^{4,6)} for co-precipitation of Mn(IV), the final solution contained 30 µg of Fe as impurity (see text).

FIG: 6: HPGe spectrum (in a.u.) of a radiochemically pure 52g Mn fraction at the EOCP. The asterisk corresponds to the γ emission at 834.5 keV of the only radionuclidic impurity present, which is the long-lived 54 Mn (0.3 %) (see text).

The radio-Mn containing the residual Cr was oxidized to Cr(VI) at 220 °C with conc. $HClO_4$ in a Teflon PFA beaker with graphite bottom (Nalgene, Nalge Co., UK) and passed through a disposable plastic column (Bio-Rad, UK) containing a Chelex 100 weak imminodiacetic cation exchange resin (Bio-Rad, UK, 100-200 mesh, 7x 30 mm) preconditioned at pH 6 with water. While anionic Cr(VI) was almost quantitatively eluted by water with the solvent front, Mn(IV) was quantitatively retained onto the resin bed. Finally, the NCA ^{52g}Mn has being eluted by 6 M HCl with a radiochemical yield close to 80 %.

The Mn carrier content was determined by ET-AAS obtaining a A_S of 1.7 MBq μg^{-1} corresponding to an IDF° of 3200. It was not possible using INAA for determination of Mn carrier, due to the large interference of ^{nat}Fe(n,p)⁵⁶Mn nuclear reaction on Fe. In fact the Fe content in the final solution (4 mL) was of the order of 30 μg , as determined by ET-AAS.

The decontamination factor from Cr target was not very high and of the order of 3 10⁴, as determined by both ET-AAS and INAA via ${}^{50}Mn(n,\gamma){}^{51}Cr$ nuclear reaction after complete decay of a 300 µL fraction of final solution.

The only radionuclidic impurity identified in the final solution of NCA ^{52g}Mn by high-

resolution HPGe spectrometry was ⁵⁴Mn, in a percentage of 0.3 % at the EOCP. The radio-Mn was present as Mn(II) cation, as verified by testing with anionic (AG1x8) and cationic (AG50Wx8) ion exchange resins (Bio-Rad disposable, 7x 20 mm resin bed). In FIG. 6 is shown a high-resolution HPGe spectrum of 52g Mn fraction after radiochemistry.

3.2.2 High specific activity ⁵⁶Mn radiotracer production by ⁵⁵Mn(n, γ) nuclear reactions

Manganese-56 presents a very short half-life ($t_{1/2} = 2.5785$ h)^{10,11}), thus its S_A(CA) obtained by neutron capture reaction on natural ⁵⁵Mn target that is mono-isotopic, is acceptable for metallo-toxicological studies, even if its IDF° at the EOCP is poor (TAB. 1).

The specific activity in Bq kg⁻¹ produced for radiative neutron-capture nuclear reactions (n, γ), is calculated theoretically by Eqs. (2, 4 and 5), under the acceptable assumption that no target material is consumed by transmutation during neutron irradiation^{4,29,30}):

$$A_{\rm S}(\tau,t) = f \left[N_{\rm Av} M^{-1} \right] \Phi \sigma \left[1 - \exp(-\lambda \tau) \right] \exp(-\lambda t)$$
(4)

$$\equiv f \left[A_{\rm S}({\rm CF}) \,\lambda^{-1} \right] \Phi \,\sigma \left[1 - \exp(-\lambda \,\tau) \right] \exp\left(-\lambda \,t\right) \tag{5}$$

where: σ (m² neutron⁻¹) is the *average* reaction cross-section, *M* (kg mol⁻¹) is the *atomic mass* of ⁵⁵Mn, *f* is the isotopic fraction of irradiated nuclide in the target material ($1 \ge f \ge 0$, f = 1.00 in case of ⁵⁵Mn), Φ (neutron m⁻² s⁻¹) is the *average* neutron flux density, τ (s) is the irradiation time under the assumption of a constant flux density, t (s) is the waiting (or cooling) time from the EOB and N_{Av} is the Avogadro's number with proper units.

Ultra-high purity (4N5) powdered metal ⁵⁵Mn targets of natural isotopic composition (100 mg), were irradiated for 8 hours in the central channel facility of TRIGA MARK II thermal research reactor of the University of Pavia, Italy, with a neutron flux density of 9 10^{16} n m⁻² s⁻¹. The targets were sealed in high-purity quartz vial (Supra-Sil), previously leached with boiling conc. HNO₃. After irradiation, the quartz vials were leached from external contamination with HNO₃ and then broken.

The Mn metal powder was dissolved in HNO_3 , then brought to dryness three times with conc. HCl and finally re-dissolved in diluted HCl and neutralized by NaOH solution. The experimental A_S of ⁵⁶Mn was determined by simple calculation, as the ratio between the activity produced and the amount of irradiated Mn powder, obtaining a good agreement with theoretical value. Any addition of carrier through chemicals or consumption of ⁵⁵Mn target during irradiation has been considered negligible in present case.

3.2.3 High specific activity ⁵⁴Mn radiotracer production by ⁵⁹Co($p,\alpha d$) nuclear reaction

During irradiation of ⁵⁹Co target (i.e. that is mono-isotopic) by proton beams for production of ⁵⁷Ni and ⁵⁶Ni radiotracers, through ⁵⁹Co(p,xn) nuclear reactions, ⁵⁴Mn ($t_{1/2} = 312.2 \text{ d}$)^{10,11}) is produced in a parasitic way via ⁵⁹Co(p,αd) nuclear reaction, even with very low yield due to its fairly low cross-section and long half-life.

In practice, we retained easier and cheaper purchasing this radionuclide on the market (Amersham, UK).

3.3.1 High specific activity ^{201,202}Tl radiotracer production by ^{nat}Hg(p,xn) nuclear reactions

By proton irradiation on Hg target of natural isotopic composition, a complex mixture of radionuclides of different half-life and decay mode is produced. Among these radionuclides, two present suitable characteristics for environmental and metallo-toxicological studies: 201 Tl ($t_{1/2} = 73.1$ and 202 Tl ($t_{1/2} = 12.23$ d), while 200 Tl ($t_{1/2} = 26.1$ h) and 199 Tl ($t_{1/2} = 7.42$ h) 10,11 that are also formed with high yield present an half-life too short for some experiments on laboratory animals. In fact the biological half-life of Tl(I) in living organisms is of the order of 10 days. The no- γ emitter and long-lived 204 Tl ($t_{1/2} = 3.78$ a) 10,11 is produced too, even with negligible yield. In practice, after a proper cooling time from the EOB, a mixture of 201 Tl and 202 Tl is obtained. This mixture of two radionuclides can be used in principle for metallo-toxicological experiments, under the condition that a high-resolution γ -spectrometric technique is adopted. Nevertheless, with an appropriate choice of both cooling time and irradiation conditions (i.e. proton energy E, energy loss ΔE into the Hg target, target enrichment), it is possible obtaining each of these radionuclides with a suitable degree of radionuclidic purity. The longer-lived 202 Tl can be obtained by simple cooling of all other short-lived radionuclides, after a proper choice of irradiation parameters.

Conversely, ²⁰¹Tl can be obtained with a suitable degree of radionuclidic purity by using a highly enriched ²⁰²Hg as target material (TAB. 2). The choice of this target was based mainly on a cost/benefit choice. In fact, the natural percentage of ²⁰²Hg is fairly high (29.86 %). The best radionuclidic purity obtainable by irradiating a 98.6 % enriched ²⁰²Hg target was 97 %. No advantages are gained by using a higher enrichment, because the only radionuclidic impurity present after a proper cooling time is ²⁰²Tl whose half-life is longer. The byproduction of ²⁰²Tl cannot be avoided, because it is obtained through ²⁰²Hg(p,n) nuclear reactions, whose cross-section tail in the high proton energy region cannot be avoided. An alternative method, that were not investigated, is the production of ²⁰¹Tl by ²⁰¹Tl(p,n) reaction on highly enriched ²⁰¹Hg that is very expensive.

Both natural and enriched Hg targets have been irradiated in a special water cooled target holder made of tantalum, with a thin tantalum window (25 μ m thick), and an "O" ring sealing. The system proved suitable for irradiation with proton beam currents up to 5 μ A, with a thick-target yield of 14 GBq C⁻¹ (1.4 mCi μ A⁻¹ h⁻¹) in the energy range from 19 to 13 MeV.

The radiochemical separation of Tl radionuclides from Hg target and Ta target holder was very easy and effective. Enriched Hg target was recovered quantitatively. Both Hg and Ta have been leached three times with very small amounts (1 mL) of 3 M HCl. The recovery of Tl was almost quantitative. In order to improve the radionuclidic purity of radio-Tl from possible metallic species coming from both Hg target and Ta holder a further purification step was inserted, based on oxidation of Tl(I) to Tl(III) by addition of drops of H₂O₂.

The Tl(III) chlorocomplexes (probably a mixture of tetrachloro and exachloro complexes) have been extracted twice in diethyl ether from 6 M HCl and then back-extracted in very diluted HCl. The overall radiochemical yield for radio-Tl was 90 %. No other γ emitters were identified in final solution by high-resolution HPGe spectrometry.

Tl(I) cation was obtained by bubbling SO_2 into solution, while Tl(III) was obtained by re-oxidation by Cl_2 saturated water. The radiochemical purity was tested by paper radio-

chromatography (Berthold Thin-Layer Scanner, Switzerland) in acetone/water medium, in phosphate buffer, with $R_f[TI(I)] = 0.0$, $R_f[TI(III)] = 0.96$. If no oxidizing agent is added, one more Tl(III) chemical form was detected with $R_f = 0.62$.

In order to measure the experimental value of A_s , use was made of ET-AAS and stripping voltammetry, obtaining a value of 800 MBq μg^{-1} for ²⁰¹Tl, and 200 MBq μg^{-1} for ²⁰²Tl, with IDF° of the order of 5-10. Moreover, in the case of Tl(III), a very sensitive (i.e: 1 ng) "radio-release" analytical technique was developed for determination of Tl carrier, based on the chemical Eq. (6):

$$[^{202}TI]TI(III) + 2 {}^{123}I^{-} = {}^{123}I_{2} + [^{202}TI]TI(I)$$
(6)

The very high A_S ¹²³I⁻ ($t_{1/2} = 13.2 \text{ h}$)^{10,11}) was oxidised to ¹²³I₂ that was extracted from the aqueous phase by a very small amount of CCl₄. To this purpose, NCA ¹²³I⁻ was produced by ¹²⁴Te(p,2n) nuclear reaction on highly enriched ¹²⁴Te target (TAB. 1).

A second effective radioanalytical test for A_S determination of [²⁰²Tl]Tl(III), was based on the oxidation of ⁴⁸VO²⁺ aquacation to V(V) anion. The effectiveness of the oxidation process was tested in a higher concentration range by use of EPR spectrometry.

FIG. 7: Simplified scheme of radiochemical separation of ^{201,202}Tl from proton irradiated ^{nat}Hg and ²⁰²Hg-enriched targets.

3.3.2 High specific activity ²⁰¹Tl production by ^{nat}Tl(p,xn)²⁰¹Pb \rightarrow ²⁰¹Tl nuclear route

Thallium-201 is the daughter radionuclide of 201 Pb ($t_{1/2} = 9.33$ h) 10,11), thus a very high purity 201 Tl was prepared with an alternative method based on proton cyclotron irradiation on both natural and 203 Tl enriched target, via the following nuclear reaction route (Eq. 7):

$$Tl(p,xn)^{201,203}Pb \rightarrow {}^{201}Tl (plus {}^{203}Tl stable)$$
(7)

At the EOB, the ²⁰¹Pb and ²⁰³Pb radionuclides were separated from the activated Tl target (*first radiochemical separation* Tl / ²⁰¹Pb). After 31.76 hour cooling time, the ²⁰¹Tl activity reaches a maximum^{29,30}, as shown in FIG. 8 (i.e. the *time of maximum charging* is calculated as: $[\ln 2/t_{1/2}(1) - \ln 2/t_{1/2}(2)]^{-1} \ln[t_{1/2}(2)/t_{1/2}(1)]$, where the $t_{1/2}(1)$ and $t_{1/2}(2)$ are the half-lives of ²⁰¹Pb and ²⁰¹Tl respectively) and a *second radiochemical separation* is carried out for separating ²⁰¹Tl from ²⁰¹Pb. Only ²⁰¹Tl is obtained, because the ²⁰³Pb, which is produced at the same time by ^{nat}Tl(p,n/3n) nuclear reactions, decays on stable ²⁰³Tl (TAB. 1).

The NCA ²⁰¹Tl obtained in this way presents a radionuclidic purity larger than 99 % at the EOB. The detailed radiochemical separation of ²⁰¹Tl from natural and enriched Tl target was published elsewhere³¹).

time after 1-st chemical separation TI / Pb-201

In order to obtain $[[^{202}T1]T1(CH_3)_2]^+$ species, use was made of the method of Gilman and Jones, rescaled to very low concentration³²⁾. An ethereal solution of suspended (but non visible) NCA $[^{202}T1]T1(I)$ chloride was mixed with LiCH₃ and CH₃I in same medium, under dry argon fluxing. The soluble $[^{202}T1]T1(CH_3)_2I$. The poorly soluble $[[^{202}T1]T1(CH_3)_2]I$ (adsorbed on vial wall) was solubilized to $[[^{202}T1]T1(CH_3)_2]^+$ cation by stirring the solution in a μ -vial with AgF and Ag(CH₃COO) for a few hours, obtaining similar results.

Experiments on laboratory animals showed a very similar behaviour between Tl(I) and $[[^{202}Tl]Tl(CH_3)_2]^+$ cations, while the biokinetics of inorganic Tl(III) species (probably anionic chlorocomplexes) proved quite different. The studied performed led to the conclusion that *in-vivo* metabolic methylation is an effective de-toxification mechanism for the Tl species.

3.4 Multiple labeling experiments with thallium and manganese chemical species

Whenever different HSARNs of the same element are available, it is possible to carry out *multiple labelling* experiments. In practice, different inorganic or organo-metallic forms of the same element of environmental or toxicological interest are labelled with different radionuclides and then administered at the same animal or cell culture. This procedure can be carried out with different aims: **a.** evaluation of *synergistic effect* of different chemical species of either the same or different elements. **b.** study of the *saturation mechanism* of chemical species in cell organelles and nuclei, as well as animal organs, tissues, body fluids and compartments. **c.** experimental measurement of the *adsorption* and *desorption rates* (internalisation and externalisation) and *repartition* of chemical species in cell cytosol, organelles and nuclei. **d.** accurate evaluation of *dose-effect* relationships of chemical species as a function of different biological and environmental conditions.

FIGS. 9 and 10 show the simplified schemes of multiple labelling experiments performed on cell cultures and laboratory animals with Mn and Tl radiotracers respectively.

FIG. 10: Metallo-toxicological studies were carried out by administration of different chemical forms of Tl(I) and Tl(III) labelled with ²⁰¹Tl and ²⁰²Tl, to laboratory animals.

4 CONCLUSIONS

Most elements are present in the echo-systems coming from natural sources, while others are introduced into the environment by human activities in increasing amounts. While toxicology of most elements at *high doses* is known since a long time, it is very relevant to assess the exposure of living organisms to different chemical forms of same element at *ultra-trace level*, that are rather unknown. The use of *medium energy cyclotron* and *thermal nuclear reactor* allows producing very high specific activity radionuclides, HSARNs, for environmental, toxicological, occupational studies about the long-term exposure to low doses (LLE) of ultra-trace elements present in the echo-systems. Specific activities A_S in the range of MBq μ g⁻¹ to GBq μ g⁻¹ are achievable; this means that the experiments can be carried out in the sub-nanogram concentration level, i.e. *nanochemistry*. Moreover, the HSARNs allow labelling of increasing amounts of different chemical forms of toxicological interest, with the possibility to obtain *dose vs. effect* relationships on both cell cultures and laboratory animals. A suitable choice of different radiotracers allows carrying out *multiple labelling* experiments.

Two different nuclear radiochemical methods for production of No Carrier Added ⁴⁸V were developed and presented. Nuclear radiochemical methods were developed to produce NCA ⁵²gMn and CA ⁵⁶Mn, while the long-lived ⁵⁴Mn, even if obtainable by cyclotron irradiation in a parasitic way, was purchased on the market. Different nuclear radiochemical methods were developed for production of ²⁰¹Tl and ²⁰²Tl, starting by different Hg and Tl metallic targets of natural and enriched isotopic composition.

High-resolution gamma spectrometry by HPGe detectors connected to MCA and beta spectrometry by liquid scintillation counting (LSC), allow determination of radionuclidic purity of the tracer, as well as determination of radiochemical yield of processing procedures of irradiated targets, allowing both qualitative and quantitative analysis of activated targets and radiochemistry fractions. Conversely, beta spectrometry by LSC is intrinsically characterised by low-resolution capability, due to continuous spectra of beta emitters, but presents a very high counting sensitivity. Elemental analysis techniques like ET-AAS, ICP-ES, INAA, CSV and ASV, combined with high-resolution γ -spectrometry by HPGe detectors and β -spectrometry by LSC, allowed experimental determination of NCA *specific activity*, A_S

as well as chemical purity of different radiotracers. Very low *isotopic dilution factors*, IDF were obtained for both V and Tl radiotracers, while in case of 52g Mn an IDF° of some thousands was achieved. In the case of 56 Mn, the radiotracer was obtained by neutron capture reaction in nuclear reactor. Thus, in this last case a CA radiotracer was obtained, even if its specific activity was sufficient for application envisaged due to the very short half-life of radionuclide itself. The accurate knowledge of nuclear reaction excitation functions for both radionuclide of interest and radioisotopic impurities is a fundamental tool for optimising radionuclide purity, yield and specific activity of radionuclide concerned^{8,12,33-37}).

5 ACKNOWLEDGEMENTS

Financial support from Italian INFN (V Group) and MIUR (40 %, 60 %) is gratefully acknowledged. The fruitful collaboration with Institute for Health and Consumer Protection, IHCP of JRC-Ispra, Varese, European Commission, CNR, Pavia and ENEA, Italy, is going on with significant scientific results, since the beginning of the '70-ties of '900.

6 REFERENCES

- (1) E. Sabbioni, L. Goetz, C. Birattari, M. Bonardi, Sci. Total Env., 17 (1981) 257-276.
- (2) M. Bonardi, Produzione di radioisotopi ad elevata attivita` specifica con il Ciclotrone AVF dell'Universita` di Milano, INFN/TC-82/15, SIS-Pubblicazioni, Frascati, Roma, Italy, 1982.
- (3) M. Bonardi, F. Groppi, C. Birattari, D. Arginelli, Ann. Chim., 92 (2001) 795-813.
- (4) An. N. Nesmeyanow, *Radiochemistry*, MIR Publishers, Moskow, Russia, 1974.
- (5) A. P. Wolf, T. J. Tewson, M. J. Welch, J. Nucl. Med., 22 (1981) 392-393.
- (6) M. Bonardi, F. Groppi, Masurio-99m, masurio-99g, renio-186g e renio-188g: radioelementi chimici isomorfi, ma con attivita' specifica e proprieta' chimico-fisiche differenti. Storia e produzione di radiotraccianti. Metodiche di produzione e controllo di qualita', **INFN/TC-01/04**, SIS-Pubblicazioni, Frascati, Roma, Italy, 2001.
- (7) M. Bonardi, F. Groppi, *Microchem. J.*, **73/1-2** (2002) 153-166.
- (8) M. L. Bonardi, Thin-target excitation functions: a powerful tool for optimizing yield, radionuclidic purity and specific activity of accelerator produced radionuclides, 14-th Radiochemical Conference, Marianske Lazne, Czeck Republic, Invited Lecture, April 2002, *Checkoslovak Journal of Physics*, In press.
- (9) M. Bonardi, C. Birattari, F. Groppi, E. Sabbioni, Appl. Radiat. Isot., 57/5 (2002) 617-635.
- (10) E. Brown, R. B. Firestone, *Table of Radioactive Isotopes*, V. Shirley ed., John Wiley and Sons, New York, USA, 1986. ISBN: 0-471-84909-X.
- (11) R. B. Firestone, C. M. Baglin, F. S. Y. Chu, *Table of Isotopes*, 8-th Ed., Update on CD-ROM, John Wiley and Sons, New York, USA, 1998. ISBN 0-471-29090-4.
- (12) TECDOC-1211. Charged-particle cross-section database for medical radioisotope production. IAEA, Vienna, Austria, May 2001. At: <u>http://www-nds.iaea.org/medical/</u>.
- (13) D. L. Smith, Probability, Statistics, and Data Uncertainties in Nuclear Science and Technology, OECD/NEA, ANS, Illinois, USA, 1991. ISBN: 0-89448-036-7.
- (14) G. J. Leigh, Ed., IUPAC, *Nomenclature of Inorganic Chemistry*, Blackwell Scientific Publisher, Oxford, UK, 1991. ISBN 0-632-02494-1.

- (15) I. Mills, T. Cvitas, K. Loman, N. Kallay, K. Kuchitsu, Eds., IUPAC, *Quantities, Units and Symbols in Physical Chemistry*, Blackwell Scientific Publisher, Oxford, UK, 1993. ISBN 0-632-03583-8.
- (16) M. Gallorini, E. Rizzio, C. Birattari, M. Bonardi, F. Groppi, *Biol. Trace El. Res.*, **71-72** (1999) 209-222.
- (17) G. Gilmore, J. D. Hemingway, *Practical Gamma-Ray Spectrometry*, John Wiley and Sons, New York, USA, 1995. ISBN 0-471-95150-1.
- (18) M. Bonardi, F. Groppi, C. Birattari, Appl. Radiat. Isot., 57/5 (2002) 647-655.
- (19) F. Groppi, C. Birattari, M. Bonardi, L. Gini, *Microchem. J.*, 73/1-2 (2002) 203-211.
- (20) G. T. Peng, *Liquid Scintillation and Cerenkov Counting*, in: D. I. Coomber Ed., *Radiochemical Methods of Analysis*, Plenum Press, New York, USA, 1975, pp.79-149.
- (21) M. Gallorini, C. Birattari, M. Bonardi, L. Magon, E. Sabbioni, J. Radioanal. Nucl. Chem., 160 (1992) 493-503.
- (22) L. Goetz, E. Sabbioni, E. Marafante, J. Edel-Rade, C. Birattari, M. Bonardi, J. Radioanal. Chem., 67 (1981) 183-192.
- (23) E. Sabbioni, M. Bonardi, Li Da-Kang, M. Gallorini, B. Wekerman, M. Castiglioni, J. *Radioanal. Nucl. Chem.*, **134** (1989) 199-208.
- (24) E. Sabbioni, M. Bonardi, M. Gallorini, R. Pietra, S. Fontaner, F. Groppi, J. Radioanal. Nucl. Chem., 160 (1992) 549-561.
- (25) M. Bonardi, M. Gallorini, F. Groppi, S. Saponaro, Microchem. J., 51 (1995) 278-286.
- (26) M. Gallorini, M. Bonardi, F. Groppi, S. Saponaro, J. Radioanal. Nucl. Chem., 193 (1995) 39-47.
- (27) F. A. Cotton, G. Wilkinson, *Chimica Inorganica*, traduzione italiana di: "Advanced Inorganic Chemistry", 1967, a cura di Bombi G. G., Bresadola S., Cattalini L., Peloso A. Casa Editrice Ambrosiana, Milano, Italy, 1968. pp. 819-829.
- (28) F. A. Cotton, G. Wilkinson, P.L. Gaus, *Basic Inorganic Chemistry*, John Wiley and Sons, New York, USA, 1995, pp. 554-556, ISBN 0-471-50532-3.
- (29) A. Vertes, I. Kiss, Nuclear Chemistry, In: Topics in Inorganic and General Chemistry, Monograph 22, R. J. H. Clark, Ed., Elsevier, Amsterdam, The Netherland, 1987.
- (30) K. H. Lieser, Nuclear and Radiochemistry: Fundamentals and Applications, 2-nd ed., John Wiley and Sons, New York, USA, 2001. ISBN 3-527-30317-0.
- (31) M. Bonardi, Radiochem. Radioanal. Letters, 42 (1980) 35-44.
- (32) H. Gilman, R.G. Jones, J. Chem. Phys., 19 (1951) 1427-1432.
- (33) M. Bonardi, The contribution to nuclear data for medical radioisotope production from the Milan Cyclotron Laboratory, IAEA Consultant's Meeting on "Nuclear Data Requirements for Medical Radioisotope Production, Tokyo, April 1987, Invited Lecture, INDC(NDS)-195/GZ, IAEA, Vienna, Austria, Jan 1988, pp. 98-112.
- (34) M. Bonardi, C. Birattari, M. Gallorini, F. Groppi, D. Arginelli, L. Gini, J. Radioanal. Nucl. Chem., 236 (1998) 159-164.
- (35) F. Groppi, M. Bonardi, C. Birattari, M. Gallorini, L. Gini, J. Radioanal. Nucl. Chem., **249** (2001) 289-293.
- (36) M. Bonardi, F. Groppi, C. Birattari, C. Mainardi, A. Ghioni, E. Menapace, K. Abbas, U. Holzwarth, M. F. Stroosnijder, *J. Radioanal. Nucl. Chem.*, **257** (1-3) (2003), In press.
- (37) M. Bonardi, C. Birattari, F. Groppi, L. Gini, A. Ghioni, H. S. Mainardi, M. Gallorini, E. Rizzio, E. Sabbioni, *Ann. Chim.*, **93** (2003), **In press.**