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Abstract
Different low noise JFET processes that have shown outstanding dynamic and noise

performance at both room temperature and low temperatures have been selected. For most of
them we have been able to detect the presence of shallow individual traps at low temperature,
which create low frequency Generation-Recombination (G-R) noise. For one device type no
evidence of traps has been observed at the optimum temperature of operation (around 100!K).
It had a very small residual low frequency noise. This device has been cooled down to 14 K.
From below 100 K down to 14!K the noise was observed to increase due to G-R noise
originating from donor atoms (dopants) inside the channel. A very simple theoretical
interpretation confirms the nature of G-R noise from these very shallow trapping centers. We
also studied devices from a process optimized for room temperature operation and found
noise corresponding to the presence of a single deep level trap. Even for this circumstance the
theory was experimentally confirmed. The measurement approach used allowed us to achieve
a very high accuracy in the modeling of the measured G-R noise. The ratio of the density of
the atoms responsible for G-R noise above the doping concentration, NT/Nd, has been verified
with a sensitivity around 10-7.
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1 INTRODUCTION 

There is a large demand for devices to be operated at low temperature, having both 
small series noise at small frequency and low parallel noise. One class of applications, from 
which this work was started, is bolometers1), which are large impedance detectors2) that 
generate slow signals and are able to reach very high energy resolution3). 

A systematic study and selection of transistor properties has been made for the readout 
of bolometric detectors for two requirements: the first stage (located at cryogenic 
temperature) and the second stage (located at room temperature). Silicon JFETs have been 
investigated for both cases since they have superior low frequency and parallel noise 
performances. 

The study and interpretation of G-R noise is also important for applications where the 
devices operate in the presence of radiation4), 5) such as space applications or experiments that 
make use of particle accelerators.  

In this paper we present the results obtained in the selection of transistor processes 
optimized for cryogenic operation and transistor processes optimized for room temperature 
operation. Accurate investigation has been made with regards to the low frequency (LF) 
region of the noise spectra. Since the transistors selected showed very outstanding 
performances, a very accurate investigation was possible that confirmed the 
Generation-Recombination, G-R, nature of noise coming from individual traps. At very low 
temperatures the noise limit of silicon JFETs was proven to be due to G-R noise coming from 
the dopant atoms acting as traps. An analysis was developed for interpreting the measured 
data.  

Two different set-ups were used for temperature characterization. JFETs optimized for 
room temperature operation were measured inside an environmental chamber. The 
temperature was varied from -60 OC to +70 OC.  

To implement a setup for systematic transistor characterization at cryogenic 
temperatures, we have developed a special apparatus that is able to cool the transistors 
without the need of any pumping system. This was found necessary for precise 
characterization of the low frequency region of the noise spectra measured. The noise of the 
Device transistor Under Test (DUT) was readout by an amplifier with well-characterized low 
noise performance, that was possible to subtract from the overall noise measured. The 
collected data has been analyzed with fitting algorithm based on the χ-square technique.  

In the following section the analysis of the expected noise behavior is performed. Then 
the development of the cryogenic system and second amplifier stage will be addressed, 
including the selection of an input transistor with a negligible Generation-Recombination (G-
R) noise at low frequencies. In sections 4 to 7 the experimental results of the low temperature 
noise measurement of the selected transistors will be shown in detail.  
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Since the many symbols and parameters used in the text, we included Table 1 that is a 
reference/summary of all the mathematical definitions used. The reader should refer to this 
Table whenever parameters are not defined in the text. 

 
Table 1: List of symbol used in the paper. 

LIST OF SYMBOLS USED IN THE TEST 

a metallurgical channel thickness. 
ALOR noise amplitude coefficient of the G-R 

noise generated by a trap. 
CG input capacitance of a totally depleted 
JFET, =εa/LZ. 
cn, cp capture probability per unit time of an 

electron (hole) from a trapping center, 
cn(p)=σn(p)vth[el(ho). 

e electron charge, 1.6×10-19 C. 
en, ep emission probability per unit time of an 

electron (hole) from a trapping center. 
EC Energy of the conduction band (eV). 
Ed Energy of the donor center within the 

energy gap (eV). 
EF Quasi-Fermi Energy. 
ET Energy of the trapping centers within the 

energy gap (eV). 
fLOR –3 dB frequency for the Lorentzian trap. 
fd    Fermi factor for donors 

(=1/(1+exp(Ed-EFd)/KBT, EFd=quasi 
Fermi level for donors). 

fT Fermi factor for traps at energy ET 
(=1/(1+exp(ET-EFT)/KBT, EFT=quasi 
Fermi level for traps). 

G-R Generation and Recombination. 
gd degeneration factor for electrons on donor 

sites, gd=integer, ≥ 1. 
gT degeneration factor for electrons on 

trapping centers sites, gT=integer, ≥ 1. 
h   Planck constant, 6.626×10-34 Js. 
KB Boltzmann constant, 1.38×10-23 J/K. 
IDS drain to source current of a JFET. 
IDSS maximum drain to source current, 

obtained at VGS=0 V, of a JFET. 
L gate length. 
LF Low Frequency. 
mn electron reduced mass (Kg). 
me electron mass (Kg). 
mh hole mass (Kg). 
n  instantaneous concentration of free 

l i h d i b d 1/ 3

Nd concentration of donor atoms, 1/cm3. 
NT concentration of the trapping centers, 

1/cm3. 
NTv electron present in the conduction band 

in the volume V, NTv=NTV. 
NV number of available states in the valence 

band, [ ] 232
hB hTm2ππ2≈ . 

NVv number of available states in the valence 
band in the volume V, NVv=NVV. 

p instantaneous concentration of free holes in 
the valence band, 1/cm3. 

ppo holes concentration in the valence band in 
thermal equilibrium in the p region. 

p1 holes concentration obtained if the Fermi 
level is at the trap energy ET, 

( )[ ]







 −=

=−=

TK
EEexpvN

opTonTonTN1p

B
Tv  

po stationary concentration of free holes in 
the valence band, 

( )( )TKEEexpN BFVV −= . 
Rce rate of capture of electrons from the 

trapping centers, Rce=cn(NT-nT)n. 
Ree rate of emission of electrons from the 

trapping centers, Ree=ennT. 
Rch rate of capture of holes from the trapping 

centers, Rce=cp(NT-nT)p. 
Reh rate of emission of holes from the 

trapping centers, Reh=epnT. 
T absolute temperature. 
τ typical trap time constant, =1/2πfLOR. 
vth[el(ho) thermal velocity of electron (hole), 

n(h)Bth[el(ho)] mT3KV =  
Vbi built-in potential for a pn junction, 

( ) ( )2= iponoBbi npnlnqTKV . 

2
gndrv  gate noise due to G-R centers present 

in the depletion region. 
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electrons in the conduction band, 1/cm3. 
no stationary concentration of free electrons 

in the conduction band, 
( )( )TKEEexpN BCFC −= . 

nno electron concentration in the conduction 
band in thermal equilibrium in the n 
region. 

nov electron present in the conduction band in 
the volume V, nov=noV. 

nd electrons trapped at donor centers, nd≈Nd 
at room temperature. 

ndv electrons present in the conduction band 
in the volume V, ndv=ndV. 

nT instantaneous concentration of the 
electrons trapped at energy ET, 1/cm3. 

nTo stationary concentration of the electrons 
trapped at energy ET. 

nTov electrons trapped at ET in the volume V, 
nTov=nToV. 

n1 electron concentration obtained if the 
Fermi level were at the trap energy ET, 

( )[ ]





==

=−=
−

TBK
CETE

C

oToToT1

expN

nnnNn
. 

Na acceptor type concentration. 
NC number of available states in the 

conduction band, 

[ ] 232π22≈ hTmK nB . 
NCv number of available states in the 

conduction band in the volume V, 
NCv=NCV. 

 

2
nchv  gate noise due to G-R centers present 

in the channel region. 
VG voltage at the gate terminal of a JFET. 
VS voltage at the source terminal of a JFET. 
VD voltage at the drain terminal of a JFET. 
VP pinch-off voltage, ε= 2 2anqV noP . 
VT threshold voltage, VT=Vbi-VP. 
Z gate width. 
W gate thickness, position and bias 

dependent inside the channel.  
ε dielectric permittivity of silicon, εrεo=105.4 

pF/m. 
µ charge mobility. 
σ capture cross section, cm2. 
νe rate of emission of a charge carrier from a 

trapping center, νe=1/τe. 
νc rate of capture of a charge carrier from a 

trapping center, νc=1/τc. 

 

2 THE ANALYSIS OF LOW FREQUENCY NOISE COMING FROM DEEP AND 
SHALLOW TRAPS 

Low frequency (LF) noise coming from the trapping mechanism has been extensively 
studied. In this paper we will give an overview of the analysis of deep trapping center 
behavior and detail the theory for the factors affecting the shallow level centers, specifically 
the donor sites, at very low temperature. We have selected very low noise silicon JFET 
transistors to prove the theories experimentally. A very high accuracy has been reached 
thanks to the very low noise levels measured, around and below 1 nV/√Hz at both room 
temperature and low temperature, obtaining high sensitivity in the temperature dependence of 
the trapping centers. Although at very low temperature LF noise from dopant sites has a large 
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frequency corner, we will show that it is possible to detect it and we will prove its effects on 
the noise performance.  

It has to be considered that other mechanisms may generate LF noise6) that are not 
found to operate in the transistors we have selected. In addition, the G-R noise manifests itself 
with different frequency behaviors (typically f-1 slope), in some devices (typically MOS 
transistors). In those cases electrons can tunnel into the oxide that is located above the 
channel, remaining trapped for a time that depends on how deep the tunnelling path was7), 8). 
Extensive study has been done on the mechanism responsible of LF noise in MOS 
transistors9), 10), 11).  

Let us now discuss the origination of G-R noise. Let us suppose to be present inside a 
semiconductor slab, in which a current can flow, a concentration of at least one specie of 
atoms with energy levels within the band gap that are able to capture or emit electrons or 
holes. Each time a charge carrier is captured (or recombined) for an interval of time tT the 
current is diminished by one unit. The reverse is true when a charge carrier is emitted (or 
generated). If the process is randomly distributed a noise is thus created with a spectrum 
which is correlated to the typical time interval tT of this trapping or de-trapping process. If 
more recombination center sites exist having different time constants, tT, the shape of the 
noise spectrum will result as the superposition of each process.  

The behavior of the G-R process is interpreted with the principle of the ‘detailed 
balance’12) 13) 14), which states that at thermal equilibrium the net rate of capture of electrons 
(holes) must balance the net rate of generation of electrons (holes). After any external 
perturbation of this situation, the system relaxes again to the equilibrium condition. This 
happens with a time dependence that is related to the kind of G-R centers that are involved in 
the process.  

We are interested in how noise is generated from the stationary condition. Charge 
carriers can make transitions from/to the trapping centers after having been absorbed/released 
at random energy from/to the lattice, at temperature T, as described above. Although the 
detailed balance is maintained on the average since T is stationary, if a current is flowing into 
the device, instantaneous changes of its value will happen as a consequence of the random 
process of trapping/de-trapping of charges from the centers, filled around the stationary state, 
generating noise signals. In some situations the effect of the processes can be seen as a 
sequence of square pulses known as ‘Random Telegraph Signals’, RTS15) 16) 17). The RTS are 
the manifestation in the time domain of the G-R noise. As said above a trapping/de-trapping 
of a single charge results in current pulse. Let us try to quantify it. In an n-region of a 
semiconductor where a current is flowing we can write: 

2
BIAS

TOT
BIAS

L
VeN

L
VenAI µ=µ=  (1)

where A is the cross section, L the sample length and VBIAS the applied bias voltage. If a 
charge is freed from a trap the total number of charges NTOT will increase: NTOT→NTOT+1.  
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Consequently18) 

nAL
I

N
II

TOT
==∆ ; (2)

the current change due to a single charge is measurable if it is larger than the peak-to-peak 
noise. From the above equation this is verified when the charge concentration and/or the 
device are very small. An example of the above interpretation is shown in Figure 1. There the 
parallel noise of a small Heterojunction Bipolar Transistor at 4.2 K temperature is developed 
across 100 kΩ resistor and is amplified a factor of 10000 V/V. A few nA pulses are clearly 
visible above the noise floor. 

 
Figure 1: RTS noise developed across 100 KΩ resistor by the parallel noise of a SiGe 

Heterojunction Bipolar transistor at 4.2 K temperature. The noise has been amplified 
10000 V/V. 

The mathematical description of the G-R noise mechanism is simple when a single kind 
of G-R center dominates the process. When different types of G-R centers are present the 
overall effect can be calculated by the superimposition of the noise contribution of each 
center, once a certain degree of correlation is taken into account. The interpretation of the 
measurement is more complicated in this case, although for two or three trapping centers 
some evaluation can be made19), 20), 21).  

The mathematical model for the G-R noise is known22), 23), 24), 25). In this paper we will 
address the results in a simple form. At the same time emphasis will be on the G-R noise 
effect coming from the shallow donor centers at cryogenic temperatures.  
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2.1 General Theory of Generation Recombination Noise 

Let’s suppose that a single type of G-R center having a concentration NT (1/cm3) 
dominates the noise with an activation energy of ET eV above the valence band, taken as the 
reference level. The rate of change of the concentration nT of electrons present at the trapping 
centers after a small, arbitrary, excitation h(t) is given will satisfy the equation: 

( ) ( ) )t(hRRRR
dt

dn
ehcheece

T −−−−=  (3)

where Rce and Rch are the capture rate for the electrons and holes respectively, while Ree and 
Reh are the emission rate for electrons and holes. Rce is given by the product of the probability 
per unit time  and unit volume that an electron is captured, cn, the number of free trapping 
centers, NT-nT, and the number of electrons in the conduction band, n, Rce=cn(NT-nT)n. With a 
similar consideration Rch=cpnTp. Ree is instead given by the product of the probability per unit 
time that an electron is emitted from a trap, en, and the number of electrons trapped, nT, 
Ree=ennT. With a similar consideration Reh=ep(NT- nT). Equation (3) can then be rewritten:  

( ) ( ) )t(hneepcncNenc
dt

dn
TpnpnTpn

T −+++−+=  (4)

From eq.(4) a number of facts can be extracted. The perturbation h(t) is supposed to exist for 
a short interval of time, so we expect that at large time nT equals the initial, equilibrium, 
value, hence: ( ) 0dtdn T =∞ . At large times eq.(4) reduces to: 

[ ] [ ]TopToopTpTonToonTon
T nenpcNenenncNnc0

dt
dn −−+−−==

∞
 (5)

At thermal equilibrium the detailed balance applies and the emission of electrons must be 
equal to its inverse process, capture of electrons. The same consideration applies to holes14). 
This implies that both terms inside the squared parenthesis must be equal to zero. From this 
we can get the relation between en and cn, ep and cp: 

 pcp
nN

nce                 ncn
n

nNce 1po
ToT

To
pp1no

To

ToT
nn =

−
==−=  (6)

After any perturbation, an unbalance in the recombination rate will result that will try to 
restore the original situation. From eq.(6) we can rewrite eq.(4): 

[ ] ( ) ( )[ ] )t(hnppcnncNpcnc
dt

dn
T1p1nT1pn

T −+++−+=  (7)

In this differential equation the functions n, p and nT are not necessary independent. The cases 
of interest are considered in the following.  

2.1.1 G-R noise in a depletion region of a pn junction 

The first interesting case is when eq.(7) is applied to the depletion region of a pn 
junction. In this situation the concentration n and p reduce to negligible values. Any instant a 
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charge is generated from a trapping center, it is swept away in a very short time, equal to the 
transit time across the junction. Since the depletion region is almost depleted from free 
carriers, only generation processes are possible, as shown in Figure 2: electrons emitted from 
trapping centers into the conduction band and holes emitted in the valence band, that is 
electrons captured from the valence band.  

NT - nT

EC

EV

nT

=electron

NT - nT

EC

EV

nT NT - nT

EC

EV

nT

=electron=electron
 

Figure 2: The more probable electron and hole emission processes from a deep trapping 
center in the depletion region of a reverse biased pn junction. Black circles represent 

electrons. 

The resulting population nT is therefore independent from no and po and eq.(7) can be written: 

[ ] ( ) ( )[ ] )t(hnppcnncNpcnc
dt

dn
T1op1onT1pon

T −+++−+=  (8)

The concentrations no and po strongly depend on the applied voltage in the reverse region, the 
concentrations being negligible in the deep part of its extension. If we assume that the 
excitation h(t) is very short in comparison to the response time of the system we can 
approximate h(t)=hAδ(t), hA>0, and represent eq.(8) in the following way: 

[ ]
( ) ( )11

1 +++
=τδτ−−τ+=τ

ppcnnc
1        ),t(hnNpcnc

dt
dn

opon
ATTpon

T . (9)

In the expression above for nT the first term represents the stationary condition. The solution 
of the differential equation is:  

[ ] )t(
dt

d1(t)  ,  
0  t0
0  t1

1(t)       ),t(1)/texp(hNpcnc)t(n AT1ponT δ=




≤
>

=τ−−τ+= . (10)

There is the superimposition of two effects that determines the time constant τ: capture and 
emission of charge carriers. We expect that τ is dominated by the slower of the two processes. 
If eq.(3) is rewritten by supposing only the emission of electrons in both the conduction and 
valence bands, namely Rce=Reh=0, it is possible to come to an expression similar to eq.(9) but 
with a time constant, τe, given by: 

opn
e pcnc

1 
+

=τ
1

. (11) 
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An analogous consideration leads to the capture time constant τc of electrons from the valence 
and conduction bands, once the approximation Ree=Rch=0 is made: 

1+
=τ

pcnc
1 

pon
c . (12) 

The combination of the two effects leads to a time constant, τ, given by: 

ce

111 
τ

+
τ

=
τ

; (13) 

which coincides with what has been obtained in eq.(9). 
The equilibrium condition for nT should be given by the product of NT times the 

probability of having a charge trapped at the energy ET. If νe (νe=1/τe) and νc (νc=1/τc) are the 
emission and capture rates, respectively, the probability of finding a charge at the trap level is 
given by:  

ec

e
c

ec

c
c por                  p

τ+τ
τ=

ν+ν
ν= ; (14)

so we expect that: 

T
ec

e
T N)(n

τ+τ
τ

=∞ , (15)

which is what it is given in the first term of eq.(9).  
In evaluating eq. (10) no assumptions have been made in considering whether the 

trapping center is an acceptor or a donor. This means that it is impossible to determine the 
nature of the process responsible for the noise from a noise measurement.  

To implement a model useful for the noise evaluation we consider the response to a 
small perturbation away from the equilibrium condition. From eq.(10) this is given by the 
quantity ∆nT(t) given by: 

)(n)t(n)t(n TTT ∞−=∆ , (16) 

or: 

)t(1)/texp(h)t(n AT τ−−=∆ . (17) 

Noise is better studied in the frequency domain, so we consider the Fourier transform of the 
above relation: 

AT h
j1

)(n
ωτ+

τ−=ω∆ . (18) 

We can now identify the generic excitation hAδ(t) with a noise source. The variable ∆nT(ω) is 

the response of a linear system. If we input a noise source having a spectrum )(2
nh ω  to a 

linear system we get an output given by the product of the square of the modulus of the 
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system response to a δ(t)-like excitation and the input noise. From eq.(18) we can therefore 
write: 

)(2
nh2)(1

2
)(2

Tn ω
ωτ+

τ=ω∆ . (19)

In this case the noise source is the random, temperature dependent generation/recombination 
of charge carriers. This random process is independent of frequency and produces a white 

spectrum, 2
N

2
n h)(h =ω . The statistics that lead to its evaluation are described in subsection 

2.2.  
Eq. (19) shows that the response to a white noise source of a G-R process has a 

Lorentzian shape.  

2.1.2 G-R noise in a doped region 

In an n-doped region, or also in a forward biased junction away from the transition 
region, there is a correlation between the free electrons in the n region and the trapped or 
emitted carriers. Since a large number of carriers are present in the conduction band, the 
trapping levels are active with the process indicated in Figure 3: capture/emission from/to the 
conduction band. A similar argument is valid for the holes in the p region. 

NT - nT

EC

EV

nT

=electron

NT - nT

EC

EV

nT

=electron=electron  
Figure 3: Emission and capture processes from a shallow trapping center in a forward biased 

pn junction. Black circles represent electrons. 

When a single type of acceptor trap is dominant we have n=Nd-nd-nT≈ Nd-nT. Equation 
(7) becomes:  

( ) )t(hncnnNNcNnc
dt
dn

A
2

n1dTnd1n δ+−+−−= . (20) 

If the traps are donors n≈Nd+(NT-nT). An equation similar to eq. (20) is obtained by 
substituting Nd+NT  for Nd . Finally, if we consider the dopant atoms as donor traps 
themselves then n≈Nd-nd and again an equation similar to eq.(20) is obtained by making the 
substitution NT=Nd. 

So, regardless of the kind of traps, the differential equation that is obtained is of the 
form: 
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)t(hnCnBA
dt
dn

A
2 δ+−−= . (21) 

For the three cases considered above the coefficients A, B, and C are given in Table 2.  
 

Table 2: Coefficients for the differential eq.(21) for the 3 cases: acceptors, donors and 
n-donor doping centers. 

Trap type A B C 
Acceptor centers cnn1Nd cn(NT-Nd+n1) cn 
Donor centers cnn1(NT+Nd) cn(n1-Nd) cn 
Dopants cnn1Nd cnn1 cn 

 
The differential equation above has been solved in the past using two approximations: 

operation at room temperature22) or at very low temperature26). To extend the analysis over a 
wide temperature range we derived in Appendix A  the solution of eq.(21) for any condition. 
The result is: 

AC42B

CtAC42Bexp
Ah
1

AC42B

C

)t(1
C2

AC42BB)t(n

+
−














 +












+

+

+++−= . 
(22)

We are interested in small perturbations of the equilibrium condition. The equation above can 
therefore be approximated to: 

)t(tACBexph
C

ACBB)t(n A 1













 4+−+

2
4++−≈ 2

2
. (23)

The equilibrium condition and the recovery time constant of eq.(23), AC4B1 2 +=τ , are 
given in Table 3 for different kinds of traps. We can see that for deep acceptors and donors, 
the time constants are very small compared with those given in the depletion region. At very 
low temperatures dopant trap recovery is governed by a time constant that increases as the 
temperature decreases.  

In analogy with the considerations that led to eq.(19) of the previous subsection, applied 
now to the approximated linear response given in eq.(23), we can calculate ∆n(t)=n(t)-n(∞) in 
the frequency domain as: 

AC4B

1       h
j1

)(n
2cA

c

c

+
=τ

ωτ+
τ

−=ω∆ . (24)
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Thus the noise will be: 

)(2
nh2)c(1

2
c)(2n ω

ωτ+

τ=ω∆ . (25)

The noise shape is similar to the one obtained in eq.(19), except that the time constant is 
different. 

 
Table 3: Stationary condition and recovery time constant for eq.(23) for different trapping 

types in a forward biased pn junction. 

Trap type 
AC42B

1

+
=τ  n(∞) 

Acceptor centers ( )1nTNdNnc

1

++
≈  Nd-NT 

Donor centers ( )1nTN2dNnc

1

++
≈  Nd 

( )1non2nc

1

+
      T=300 K: Nd-ndo 

Donor dopants 
T→0 K:       

onnc

1
≈       T→0 K:    no 

 

2.2  Counting statistics 

Equation (19) and eq. (25), that has similar shape, give the fluctuation that we expect in 

the charge carrier population as a response to a random perturbation )(2
nh ω . Now we try to 

quantify )(2
nh ω . 

The integration of the fluctuating quantities over the whole frequency range results in 
the overall Root Mean Square, RMS, fluctuation 2∆ RMSn , once it is considered that 

2
N

2
n h)(h =ω , chosen monolateral: 

2
N

0

2
A2

2
RMS h

4
1df)(h

)(12
1n τ=⌡

⌠ ω
ωτ+
τ

π
=∆

∞

, (26) 

so: 

τ
∆=

2
RMS2

N
n4h , (27)
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and thus: 

2
RMS2

2 n
)(1

4)(n ∆
ωτ+
τ=ω∆ . (28)

2
RMSvn∆  has so far been evaluated following different approaches and approximation. For the 

statistical mathematical evaluation, we need to consider dimensionless quantities. We 
therefore consider the fluctuation of the total number of carriers contained within a volume V, 
nTv=nTV, NTv=NTV, etc. V may of course depend on position within the semiconductor.  

The simpler approach in determining 2
RMSvn∆  is to consider the G-R process governed 

by a binomial distribution that allows expressing ( ) Tv
2
RMSv pNp1∆n −= , p being the 

probability to find a charge trapped at the energy ET, equal to eq.(14) (20). A more accurate 
approach is based on thermodynamics27), 28), 29). Further, a statistical method based on an 
inductive evaluation has also been used30). Finally, a classical statistical approach has been 
given based on the Stirling formula31) and Lagrange multipliers, from which the classical 
Fermi distribution functions are obtained. We refer to this last approach for the determination 
of the fluctuation of the number of free carriers, since this way it is proven that G-R noise is 
generated by a fluctuation of the stationary state of the electron system. We will summarize it 
very briefly, referring to refs.19) and31) for further details. 

As it is well known, the Fermi distribution function describes the charge distribution of 
a system with many levels of energies Ei having each Niv available states, niv of which are 
filled, and Niv-niv are unfilled. Let ntotv denote the total number of charges present, electrons or 
holes. The Fermi distribution is obtained by finding the probability distribution of the charges 
among these levels, subject to the constraints that the total number of charges and available 
energy remains constant. The application of the Stirling approximation to the permutations 
within each level, and then the application of the Lagrange multipliers to the resulting 
distribution allow maximizing the probability of the system. It can be proved31) that the 
distribution of any of the variables ∆niv=niv-niov is normal at least around its stationary 
condition, as can be expected. The probability p(∆niv1, ∆niv2,⋅⋅⋅) of having the given 
combination ∆niv1, ∆niv2,⋅⋅⋅ results: 
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∆nexp),∆n ,np( . (29) 

where σi is the RMS fluctuation expected from a single variable, given by the binomial 
distribution: 

1
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


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


−

+=−=σ . (30) 

If many levels are present the probability of finding a given ∆niv, P(∆niv), irrespective of any 
other occupation combination, but with the constraint of the constant value of the total 
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number of charges present, after integration above any ∆nkv, with k≠i, can be shown to be 
approximated by: 


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
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i

2
iv

iv
2
nexp)n(P . (31)

Let us now consider a two level system composed of the conduction band, with Ncv states 
available, and a trap level, with NTv states available. The expression ntotv is the total number of 
electrons that can occupy the available states, ntotv<<Ncv. By definition, nv electrons from ntotv 
will be at Ncv, and nTv at NTv, such that: 
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. (32)

The application of the considerations made above to such a simple situation, allows reducing 
eq. (29) to: 

















σ

∆
−














σ

∆−÷∆∆ 2
n2

2
Tvn

exp2
n2

2
vnexp)Tvn ,vn(p

T

. (33)

From eq. (32) ∆nv=-∆nTv, so for the simple case of a two level system  P(∆nv) results: 
















∆
















σ
+

σ
−=∆ 2

v2
Tn

2
n

v n11
2
1exp)n(P  (34)

Or: 
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The term that contains Ncv has been neglected in the last result since the concentration used to 
dope JFET channels is always much smaller than the concentration of the available states in 
the conduction band.  

The boundary condition given in eq. (32) imposes a correlation between the number of 
electrons present in the conduction band and the number present at the trap levels. The degree 
of correlation is negligible when n is much greater than the trapping center concentration. 
This is not the case at low temperatures when the trapping centers are the dopant atoms 
themself.  
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When we consider a reverse junction, any charge created in the conduction band is 
swept away in a very short time, nv is therefore negligible, does not fluctuate and can be 
neglected in eq.(32). As a result 2

RMSvn∆  is contributed only by the variance of nTv. In an n-
region, or in a forward biased pn junction away from the transition region, the variance is 
dependent only on the trapping center concentration NT any time this concentration is much 
smaller than the doping concentration, NT << Nd, Nc, which is the typical situation, opposed 
to the one just described.  
For both these cases we therefore have the same mathematical representation: 

( )
Tv

TovTvTov2
RMSv N

nNnn −
=∆ . (36) 

The last case we consider is the one in which the noise comes from the dopants themselves 
acting as traps. For this case we put NT=Nd, and obtain: 
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+=
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. (37) 

The results above can be expressed in more detail if the probability of occupation of an 
energy level, fT, the Fermi-Dirac distribution function, is introduced: 

( )[ ]TKEEexp1
1f

BFT
T −+

=  (38)

EF is the quasi-Fermi level, which depends on position, bias, and charge type within the 
semiconductor. Only one level for the quasi-Fermi level for every charge type is found at the 
equilibrium condition. From eq. (38) we find that the Fermi level, under equilibrium 
conditions, or the quasi-Fermi level, under non-equilibrium conditions, is the energy where 
the probability of electron occupancy is 1/2. 

If gT is the degeneracy factor for the electrons at the energy level ET, we find that: 
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Or: 
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Finally, we have: 
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In addition to the obtained results above it has to be considered that 22
RMS

2
RMSv Vnn ∆=∆ . 

From eq. (41) we can see that the noise is proportional to the product fT(1-fT) which is a 
measure of how full a trapping level is. The equation’s result says that a trapping level too full 
or too empty generates a negligible amount of noise. The maximum noise occurs when the 
trapping level is half full. At room temperature and higher, the capturing process competes 
with the emission process; both have a similar probability of occurring only for the deeper 
traps located close to the middle of the band gap. The shallow trapping centers, close to the 
conduction band energy, always have enough thermal energy to jump to the conduction band: 
they are therefore empty at all times and do not contribute to the G-R noise. As soon as the 
temperature lowers the shallow levels are more likely to be filled, while the deeper centers 
become filled most of the time. Consequently, the more effective centers for noise generation 
become the ones with energy closer to the conduction band.  

An equivalent consideration can be made for the trapping center near the valence band.  
A scan in temperature is therefore a useful way to study the presence and the effect of 

the trapping centers within the band gap.  

2.3 G-R equivalent input noise in JFET 

2.3.1 Gate noise due to G-R centers present in the depletion region 

Let us now calculate the input-referred noise of a JFET due to the mechanisms 
described in the previous sub sections. We will start by calculating the noise generated in the 
depletion region of the JFET. Its effect can be regarded as a change in the gate voltage that 
arises from the fluctuation of the charge distribution present in the transition region. Given 
that only one kind of donor trap is present, the one-dimensional Poisson equation within the 
depletion region is: 

( )[ ] ( )[ ]( )W-x nNneE(x)         nNne
dx
dE

TTnoTTno −+
ε

=⇒−+
ε

= ; (42)

Here E(x) is the electric field and x has its origin at the gate, according to Figure 4. 
The depletion region width is W and E(x) nulls at the edges of the depletion region. The 

positive concentration of ionized atoms is nno, which is equal to Nd at ordinary temperatures. 
Let us consider the depletion region to be divided into sheets having thickness dx and volume 
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LZdx. The voltage drop across any sheet is: dv=-E(x)dx. This voltage may fluctuate at 
random due to fluctuations of nT. Its variance 222

ndr dvdvv −=δ , according to (42), is 
( 0nT =∆ ): 

( ) 222
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Figure 4: One dimensional model of a JFET in the saturation region. The width Z of the 

transistor is orthogonal to the paper. 

The above equation must be integrated across the whole depletion region, (0,W). In principle 
both fT and τ depend on position within (0,W). As a first approximation we can suppose τ and 
fT to be constant within an interval ∆WT around a position xT, and zero outside. At the 

position xT and within ∆WT the total gate noise, ∫
W

0

2
n

2
gndr vv δ= is: 
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In the above equation use has been made of eq. (41) and the depletion thickness has been 
approximated as constant across the channel. This last approximation is valid only in the 
saturation region. The terms TWTTW  ,f τ refer to the functions fT and τ evaluated within ∆WT. 
This approach has been used for the interpretation of the trap noise in MOS transistors due to 
shallow levels at low temperature32), 33). In33) the parameters ∆WT and xT have been introduced 
to justify the interpretation of some discrepancies in interpreting the interpolated data in34) at 
temperature close to 100 K. If we make use of eq.(A.10) and eq.(A.13) of Appendix B, where 
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the main equations governing JFET operation in the saturation region are derived, we easily 
arrive to the expression: 
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where CG is the input capacitance of the fully depleted JFET, CG=εLZ/a. 
The equation above is proportional to the ratio of the trapping center concentration to 

the donor concentration and on some other measurable coefficients. The temperature 
dependence of this equation is quite complicated, depending on many parameters: 

TWTTW  ,f τ and ∆WT and xT. 

A different, approximated, approach22) is to consider fT and τ constant across the whole 
depletion region. This is particularly true for deep traps since in those cases electrons have a 
large chance to be trapped, and the probability for an electron to be emitted from the trap 
center shows a small sensitivity to the bias voltage applied. As a consequence, a finite 
population of electrons occupy levels at the trap energy ET within the depletion region; hence 
the energy difference between ET and the quasi-Fermi level must remain constant in the 
depletion region, to allow the Fermi function fT to account for the finite population of trapped 
electrons. This is particularly true at large reverse bias, where this concept also becomes valid 
for more shallow levels, as in this case both no and po are negligible. From eqs. (11)-(15) and 
(40) we find: 
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From eq. (45), if both no and po are negligible or much smaller than n1 and p1 in the major part 
of the depletion region, fT becomes constant within the reverse region since n1 and p1 do not 
depend on bias, as can be derived from eq. (6):  
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With this simplified assumption 2
gndrv  reduces to22), 23), 24): 
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Again, by applying eq.(A.10) and eq.(A.13) of appendix B we obtain: 
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This equation can be rearranged to give a form similar to eq. (46): 
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The last result shows a direct dependence of the input-equivalent noise on the chosen working 
condition, IDS. As expected, the gate noise due to G-R centers present in the depletion region 
is bias dependent, and is minimized when the depletion region is at its minimum width, either 
at VG=0 V, or at large IDS. Nevertheless in almost all the standard working conditions adopted 
IDS is much smaller than 2VPgm so that the G-R noise coming from the depletion region can 
be considered bias independent. In eq.(51) the ratio of the concentration of the trapping 
centers to the concentration of the donor doping profile is proportional to measurable 
coefficients, once the terms containing the Fermi functions can be quantified, as will be 
shown in the following sub-sections. The noise is directly proportional to the concentration of 
trapping centers, as these are the only source of charge within the depletion region. 

Eq. (51) is not adequate to describe the G-R noise due to shallow levels. It was derived 
assuming fT and τ constant and equal to the value they assume in the deep depletion region 
where, in the Fermi function, eq. (47), no and po are completely negligible. In this situation fT 
can never be considered comparable with its maximum value, 0.5, since the term cpp1 cannot 
take values comparable to cnn1 for a shallow level (see eq. (48)) unless cp is unrealistically 
large. To address the inadequate approximation of eq. (51) for shallow levels and the 
unwieldy complexity of eq. (46) we have introduced a new approximation that takes care of 
both cases. Let’s perform the integral of eq. (44) to be integrated over the interval (0,W) and 
consider also the theorem of the weighted average for integrals which states that for a given 
product function f(x)g(x) to be integrated over (a,b), there exists a point c∈(a,b) such that 

∫∫ba b
a dx)x(g)c(fdx)x(g)x(f = , if g(x) does not change sign within the interval of integration. 

By substituting f(x)=fT(1-fT)τ/[1+(gT-1)fT]2/[1+(ωτ)2] and g(x)=(x-W)2 we get: 
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Or: 
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This equation does not provide much data from a mathematical point of view, since to 
evaluate it we must know the point c within (0,W) where the necessary quantities are 
calculated. Nevertheless it is very useful from an experimental point of view. From eq. (47) 
we see that for every kind of trap (shallow or deep) having energy level smaller than the 
dopant energy level, there exists a temperature and a position starting from the channel side of 
the depletion region, at x=W, going toward the gate side of the depletion region, at x=0, 
where no takes a value (see the list of symbols in Table 1) that allows fTc to be equal to 0.5. 
This is evident if we consider that at x=W, no is of the order of Nd>n1 for temperatures lower 
than the temperature at which the Fermi level within the channel is larger than ET, and at x=0 
no is negligible. Mathematically: 
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At the position and temperature at which EF equals ET the value of fTc approaches its 
maximum, resulting in the following sistuation (p0≈pc≈0): 
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A similar expression can be derived if p1>n1. 
In a temperature interval approaching its maximum fTc has a small dependence on 

temperature and on the time constant τc. A very robust way to investigate this condition is to 
plot eq. (53) when ωτc<<1, measured at different temperatures, with respect to the time 
constant τc. If the result is found linearly dependent on τc, this indicates that the Fermi 
function is close to 0.5. This can assure us that the G-R noise we are investigating is produced 
by a single G-R process. In addition, from eq. (53) it is possible also to extract information 
about the concentration of the trapping centers, once the other, static, measurable parameters 
are known.  

If the traps responsible for the noise under investigation are the conductivity dopants the 
condition of eq. (55) has a very small probability to be satisfied at very low temperature 
(eq.(54) when ET=Ed). Hence fTc for dopants can be considered negligible, like also the 
generated noise in the depletion region, for most of the temperatures of interest. 

Equations (46), (51) and (53) are valid only in the saturation region of transistor 
operation. The extension of their validity to the linear region is not considered here. In first 
approximation it can be derived by substituting VDS with |VGS|. 
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2.3.2 Gate noise due to G-R center present in the channel region 

In the channel region the noise is due to the fluctuation of the charge carriers in the 
conduction band. For this case the quasi-Fermi level is constant in the channel and coincides 
with the Fermi level because the bias does not change the energy profile: the current in the 
channel is due only to drift. This consideration is described by the following expression: 
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which is equivalent to a voltage noise on the gate of: 
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As it will be evident below, the traps in the channel have negligible effect compared to the 
corresponding traps in the depletion region, except for the very shallow ones at very low 
temperatures. We therefore concentrate on the donor levels. Using eqs. (41) and the 
definitions of Appendix B we get the following expression valid for dopant traps (an 
equivalent equation can be easily derived for a generic trap level): 
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Even for this situation we can give a compact form, equivalent to eq. (55). Let’s start to 
consider the Lorentzian time constant τc that, for donor dopants, can be expressed as (see 
Table 3): 
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Using again the results of Appendix B we arrive at the final expression for the channel noise: 
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The last term of eq.(60) can be approximated to one in almost all our measurements since the 
Lorentzian frequency corner is much larger than the instrumentation bandwidth limit 
(52 KHz). When measurable this noise looks like white noise even though the mechanism 
responsible for it is the G-R noise from dopants.  
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The channel noise is a measure of the Fermi function. Even for this case the expression for the 
gate voltage depends on the working point. Its contribution is minimal when the conducting 
channel is thin, at small drain current, or when VGS is close to VT. 

2.3.3 The overall G-R gate noise 

It must be pointed out that the total input noise is the sum of the two calculated 
contributions, the one coming from the depletion region and the one coming from the channel 
region: 
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Nevertheless since at every selected temperature only a restricted species of traps contribute 
to the G-R noise, in the above equation it is almost always verified that only one of the two 
mechanisms dominates. 

For instance, for a deep or shallow trap in the depletion region at the temperature where 
it shows its maximum effect, the resulting Lorentzian time constant is much larger than the 
one generated by the corresponding trap located in the channel region. From Table 3 and eq. 
(8), with no negligible in the depletion region, the ratio of the Lorentzian time constants of the 
channel and of the depletion region due to a donor trap is proportional to n1/Nd. This ratio is 
negligible as long as Nd>>n1, which happens for deep level traps. The two time constants 
should approache each other for shallow traps, or when Nd approaches n1, a condition 
accomplished at very low temperatures. Nevertheless eq.(55) is hardily satisfied at very low 
temperature and τc is very large since hole generation is a very rare process for shallow 
donors (electron capture from the conduction band is highly inhibited in the depletion region). 
The effect stems from the fact that the Fermi level in the depletion region is close to the trap 
energy level when the maximum noise effect is measured, while it is always closed to the 
dopant’s energy level in the channel. 

The evaluation above applies also to the study of G-R noise generated by the dopants 
themselves as explained in the previous sub section. In this case the dopant levels inside the 
depletion region are empty down to very low temperatures, where the freeze-out occurs, since 
the generation of holes from that energy level is very difficult. The term fTc(1-fTc) is therefore 
negligible in comparison to the competitive term inside the channel region. 

3 THE MEASUREMENT APPARATUS 

3.1 The environment for room temperature characterization 

JFET processes optimized for room temperature operation have been measured from 
-60 OC to +70 OC. This temperature range was found adequate for the study of the deep level 
traps responsible for the LF region of the noise spectra. A temperature chamber, VT7004 by 
Vötsch, was used for controlling the temperature of the device under test. Measurements have 
been made simply by putting the whole preamplifier inside a metallic box shielded with a 
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sheet 0.1 mm thick of SKUDOTECH35), a special metal alloy designed for having strong 
magnetic field rejecting properties. Shielding was necessary to avoid the interference coming 
from the fan coil present inside the temperature chamber. 

3.2 The cryogenic setup 

The cryogenic measurement setup has been especially designed to eliminate 
microphonics at low frequencies. For this reason the measurement system was designed 
without using mechanical pumps for cooling, stabilizing temperature or maintaining a vacuum 
environment around the DUT. 

The DUT is put at one end of a stainless steel tube of 10 mm diameter. Inside the tube 
are wires that connect the DUT and diagnostics to the room temperature second stage located 
at the other end of the tube. The DUT is surrounded by an aluminum cylinder, which is 
screwed on a stopper located a few cm above the DUT. Figure 5 shows a picture of the setup.  
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STOPPER

SYSTEM
CLOSED

SAMPLE
HOLDER

STOPPER

SYSTEM
CLOSED

 
Figure 5: Photograph of the cryogenic setup implemented for minimizing microphonic 

effects. 

The DUT is brought to a stable low temperature position by inserting the apparatus in a 
dewar partually filled with LN2 or LHe. The temperature is set by adjusting the distance of 
the DUT from the cold liquid surface inside the dewar. In this arrangement, the DUT is 
surrounded by a metal surface with a slightly lower temperature. This creates a cryo-pumping 
effect wherein the condensable components of the air inside the cylinder condense on the wall 
of the cylinder instead of on the DUT. Consequently ice cannot form on the DUT, and it is not 
necessary to create a vacuum inside the cylinder. Thus, no pumps are necessary to make 
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and/or maintain a vacuum. This principle of operation is opposite to that of many standard 
cryogenic instruments. In these situations the DUT is the coldest part of the system, so a 
vacuum is required for preventing any condensation of the gas on it. 

The presence of ice has to be avoided since it can deteriorate the noise performances. At 
LF, when measuring parallel noise or leakage currents, the presence of ice can add even more 
disturbances. On the other hand the absence of any pump or compressor for creating and 
maintaining the cryogenic temperature is by far the more important benefit to the LF noise 
measurements, as in this case microphonics and electromagnetic interferences induced by the 
vibration coming from motors motion is avoided. 

Since the power dissipated by the DUT and its associated bias circuitry is small 
(~10 mW), this temperature setting procedure has been shown to be very stable. Stability 
within a few tens of mK are readily obtained over periods of about one hour. Over the time 
intervals required for a measurement (typically 15 minutes) no significant temperature 
variation has been seen, as long as the dewar was not too empty or too full. 

3.3 The measurement configuration 

Characterizations of transistors have been made using two different set ups. In the first 
case JFETs were operated in a temperature range around room temperature. A pair of selected 
JFETs formed the differential input stage of the amplifier APRE in the schematic diagram of 
Figure 6.  
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Figure 6: Schematic diagram of the second stage preamplifier used for noise measurements. 

This amplifier is similar to the one described in36). The amplifier gain has a low frequency 
cutoff whose –3 dB point is 0.5 Hz. The flat band voltage gain is 1000 V/V. The amplifier 
output gain is further increased by a factor of 10 by the additional stage AEND. The 
contribution to the input noise of APRE coming from the circuit elements that follow the 
JFETs pair in APRE has been found negligible. The feedback contributes to the series noise 
mainly due to the thermal noise of the 33 Ω resistor, 0.74 nV/√Hz at 300 K. This can be 
subtracted out of the experimental measurements. The configuration of Figure 6 was chosen 
because it was also used as the second stage of amplification for the JFET located at 
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cryogenic temperature, as shown in Figure 7. This set up was found to be very insensitive to 
microphonism and uses the same configuration as the bolometer readout circuits. 
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Figure 7: Schematic diagram of the cold JFET readout. 

As shown in Figure 7 the signal of the JFET DUT, held at cryogenic temperature, feed 
into APRE. The only contribution to the noise coming from the second stage APRE is its 
series noise that, due to the configuration adopted, can be measured in a very accurate way 
and can be removed from the overall noise measured. The DUT located at cryogenic 
temperature is biased in the simplest possible way: common drain configuration, Figure 7. 
This configuration has many benefits. It is self-biased, so it is not necessary to adjust the 
electrical parameters when the temperature changes. The gain from the input gate and the 
source, at its output, is closed to one. Calibration of the gain is made by injecting a signal at 
the input gate. The transfer function obtained in this way is the same as that of the series gate 
noise. Once the transfer function has been measured, the input gate of the DUT is connected 
to ground with the 50 Ω resistor RIN, minimizing pick-up noise. The APRE is connected to 
the source of the cold JFET under test, with a link length of about 1 m. Since the source of the 
DUT is a low impedance node, microphonism is minimized. The biasing resistor at the DUT 
source, RS, is held at cryogenic temperature close to the DUT, to make its thermal noise 
contribution negligible. 

3.4 Measurement procedure 

For both kinds of configuration, an HP35670A spectrum analyzer is used to read the 
output of the system. For each temperature setting the procedure starts with the measurement 
of the transfer function, which is the ratio between the output voltage of the system and the 
injected input signal, white noise. The second step consists of removing the input signal and 
measuring the system noise. The floor noise of the apparatus is then subtracted from this 
measurement. For room temperature JFET characterization the floor noise consists of the 
thermal noise of the feedback resistors. For cold temperature JFET characterization the floor 
noise is that of the whole APRE. For both cases the result is divided by the transfer function, 
to refer the noise to the input. The noise has been measured in the frequency span 
1 Hz - 52 KHz, and it is represented in a log-log scale. The HP35670A measures the power 
spectrum using the Fast Fourier Transform, which is an algorithm that operates in the linear 
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scale time-frequency. To obtain precise mathematical analysis, it is necessary to have the 
same number of points per decade in frequency. To this aim we have performed one 
measurement for every frequency decade, and then concatenated the data. So each noise 
spectrum consists actually of 5 measurements: the first with the instrument bandwidth limited 
to 10 Hz, the second to 100 Hz, the third to 1 KHz, the fourth to 10 KHz and the last to the 
full span of 52 KHz. The same steps are performed with the measurement of the transfer 
function. In this way a very precise representation of the noise is obtained in the whole range 
of frequency investigated, easily allowing the study of the trap behavior with temperature. 

The described approach of measuring the noise spectra versus temperature37), 38), 39) is 
different from that used in many previous experiments34), 40), 41), 42), 43), 44), 45). In those cases the 
G-R noise was extracted from noise measurements performed in a narrow frequency span 
around a chosen measurement frequency, ωM, looking for a maximum with temperature. This 
approach has been found to be inaccurate at low temperature. Following this procedure the 
shape around the maximum as a function of temperature of the noise in eq. (53) is considered 
to be dominated mainly by the term τ/(1+(ωMτ)2), hence a maximum should be obtained when 
the measurement frequency, ωM, equals the Lorentzian frequency 1/τ. Actually, in eq. (53), 
the maximum should instead considered proportional to fT(1-fT)τ/(1+(ωMτ)2), a more 
complicated function of temperature, that does not necessary have a peak at ωM=1/τ. 

We measured the noise spectrum at a selected temperature, finding the Lorentzian 
frequency 1/τ from the roll off of the spectrum. This measurement is independent of the noise 
amplitude, and also independent from fT(1-fT). In addition, the amplitude of the flat part of the 
Lorentzian component of the noise, the region where ω<<1/τT, which we can now discern, is 
proportional to the product fTc(1-fTc)τc (see sub section 2.3.1). After making a temperature 
scan, we added a further analytical step by plotting the amplitudes of the measured flat part of 
the Lorentzian components as a function of the Lorentzian frequencies. For a robust 
interpretation of the noise, we look for the region where this curve is linearly dependent on τc. 
This condition is fulfilled close to the maximum of the function fTc(1-fTc), where the 
temperature dependence of it has the minimum sensitivity. Therefore, our approach allows us 
to get an additional degree of freedom. The two interesting parameters to be extracted are the 
trap cross-section, which is proportional to the Lorentzian frequency, and the trap density, 
which is proportional to the flat part of the Lorentzian noise contribution. In our procedure 
these two quantities are now two measurement parameters. 

4 THE EFFECTS OF DEEP LEVEL TRAPS ON THE NOISE 

The noise is dependent on the quasi-Fermi level. In this case the dominant noise source 
is localized in the depletion region (see eq.(51)) and the largest contribution to the noise is 
from those traps with an energy level close to the quasi-Fermi level, for which fT(1-fT)≈0.25. 
At room temperature this happens for traps with activation energy close to the middle of the 
band gap. To study the effect of G-R noise around room temperature we have selected two 
very low noise JFET processes: the dual 2SK146 from Toshiba and the dual SNJ3600 from 
Interfet. We have measured their noise in the temperature range –60 OC to 70 OC using the set 
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up described in sub section 3.1. Each of the JFETs was connected as the input device of the 
preamplifier of Figure 6. The whole preamplifier was then put inside the temperature 
chamber. The temperature was stepped by about 10 OC between the indicated limits. In 
Figure 8 the series noise over the full temperature range for each of the dual 2SK146 JFETs 
is shown in a 3D-plot, after the noise of the feedback resistor has been subtracted. Each JFET 
was operated at IDS=1 mA and VDS=1 V. The presence of a trap is evident whose G-R noise 
starts to be present in the measured spectra from about –40 OC. As the temperature increases 
the noise due to this trap decreases, while the frequency of the G-R process increases. At the 
larger temperatures the amplitude of this G-R noise disappears and the LF noise starts to 
increases again, probably due to the presence of another kind of trap. In Figure 8 a 
mathematical fit to each noise spectrum is superimposed. At the very beginning we tried to 
interpolate the noise spectra with a function given by the superposition of the effects coming 
from 5 traps: 
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Since there was evidence for a single dominant trap at frequency fLOR for these very low noise 
devices, the other first 4 G-R noise traps frequencies, fLOR_k, were not determined with 
enough precision, mainly because they were found located at frequencies well below 1 Hz, 
the lower limit of the collected spectra. In this situation the fit is sensitive to the terms 
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LOR_kLOR ffA for each frequencies fLOR_k. The superimposition of the contributions of 

these four smaller frequencies can therefore be easily accounted for by a single term: 
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As can be seen in Figure 8 the above interpolating function satisfactory accounts for the 
measured noise. To fit the spectra we have used the χ-square technique with the robust 
estimator46), which allows weighting the data to be interpolated with weights proportional to a 
power of the inverse of the value of the data itself. This fitting algorithm was applied to the 
noise power measured, although in the following figures only the square root of the noise will 
be shown. The interpolated parameters obtained for the 2SK146 JFET are summarized in 
Table 4.  

The same procedure has been adopted for the SNJ3600, operated at 5 mA of drain 
current and 1 V of VDS. The noise versus temperature data obtained for it, together to the fit 
results, are shown in the 3D-plot of Figure 9, while the extracted parameters are listed in 
Table 5. 
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Figure 8: 3D-plot of the noise spectra measured for the JFET 2SK146. To each noise 

spectrum the calculated fit is superimposed. 

 

Table 4: Parameters extracted to fit the spectra of Figure 8, the series noise of the 2SK146 
JFET, according to the function of eq.(63). 

Af 
[(nV)2/Hz(1-Esp) 

Esp 
 

Alor 
[(nV)2/Hz] 

flor 
[Hz] 

White 
[(nV)2/Hz] 

temperature 
[OC] 

1.021 0.500 13.339 1.359 0.356 -55 
1.822 0.647 16.771 1.980 0.312 -45 
2.281 0.622 17.730 3.211 0.332 -35 
2.798 0.633 18.043 4.474 0.347 -25 
10.776 0.969 7.931 13.087 0.378 -15 
3.335 0.573 4.579 28.517 0.345 -5 
1.159 0.733 2.856 53.286 0.397 5 
6.987 1.997 1.519 174.144 0.432 15 
2.775 1.179 0.674 324.622 0.478 25 
6.084 2.000 0.460 426.302 0.507 35 
15.691 1.913 0.276 1365.288 0.509 45 
6.815 1.444 10.873 1.858 0.602 53 
14.376 1.421 19.555 1.894 0.621 62 
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Figure 9: 3D-plot of the noise spectra measured for the JFET SNJ3600. To each noise 

spectrum the calculated fit is superimposed. 

 
Table 5: Parameters extracted to fit the spectra of Figure 9, the series noise of the SNJ3600 

JFET, according to the function of eq.(63). 
Af 

[(nV)2/Hz(1-Esp) 
Esp 

 
Alor 

[(nV)2/Hz] 
flor 

[Hz] 
white 

[(nV)2/Hz] 
temperature 

[OC] 
0.222 0.511 4.752 0.838 0.176 -60 
0.948 0.919 14.803 1.691 0.148 -40 
1.399 0.707 19.602 2.201 0.140 -30 
0.614 0.555 9.264 5.929 0.146 -20 
0.991 0.510 4.616 11.174 0.149 -10 
0.922 0.501 1.736 33.184 0.148 0 
0.617 0.501 0.656 88.680 0.175 10 
0.097 0.883 0.404 205.844 0.188 21 
0.943 1.981 0.129 566.026 0.196 32 
1.378 2.000 0.111 584.567 0.213 42 
0.337 0.500 1.269 0.806 0.216 52 
0.227 0.810 9.240 1.142 0.240 62 
0.773 0.665 13.232 1.213 0.248 72 
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From the parameters taken from Table 4 and Table 5 a number of facts can be deduced. 
Let us start by examining the frequency behavior of the Lorentzian traps. The associated time 
constant is given in eq.(9). If we assume that we are close to the maximum of the product 
fTc1(1-fTc) then: 
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If we make the approximation that one term in the denominator of τ dominates we face two 
situations. The first case is when n1>>p1: 
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On the other hand, when p1>>n1 we obtain: 
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We therefore expect the Lorentzian frequency to be proportional to the product of the 
square of the temperature and the exponential of the ratio of the energy of the trap, measured 
with respect to the appropriate band level and divided by the temperature. From this kind of 
measurement it is not possible to determine if the trap is a donor or an acceptor since for both 
cases the trap energy is measured with respect to the conduction band or the valence band 
edge, respectively, with the same final effect on the shape of the function. 

The temperature dependence of the Lorentzian frequencies, fLOR, with respect to the 
inverse of temperature is shown in the log-log plot of Figure 10 for both the JFETs.  
It is very interesting to observe that, although manufactured with different processes and by 
different companies, the temperature dependence of the G-R noise due to the observed traps 
in this temperature range is exactly the same. If we discard the Lorentzian frequencies 
obtained by fitting the data at the lower and higher temperatures, whose values are at the 
limits of sensitivity, all the parameters can be fitted by a single function that can be deduced 
by the above eq. (65) and (66). The fitting function used has been: 
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The fit is plotted in Figure 10, superimposed on the data. The temperatures range over which 
eq.(67) is applied is the one where the coefficients ALOR in eq. (62) are linearly dependant on 
1/fLOR. From eq. (53) it is seen that this property is satisfied by a Fermi-function which is flat 
in the considered temperature range, allowing us to get a better approximation of fLOR that, in 
turn, depends in some way on the Fermi-function itself. 
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As can be seen, the energy of the trap (fitting parameter b) is located about 0.50 eV 
above the valence band or below the conduction band. This energy is typically attributed to 
gold acceptors. From the fitting parameter a it is possible to extract the order of magnitude of 
the cross-section σ.  
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Figure 10: Log-log plot of the Lorentzian frequencies versus the inverse of the temperature 

for both the SNJ3600 (*) and the 2SK146 (O) JFETs. 

From eq.(65) and (66) we can rearrange the terms to obtain: 
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Equating eq.(68) to eq.(67) gives the result: 

222
)h(nm
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For the case in which the electron reduced mass is close to 0.5me, σ is about 10-14 cm2, using 
the fitting parameter a from Figure 10. For holes, which have reduced mass of about 2me, the 
cross-section is about 10-15 cm2. This is consistent with the values obtained by other studies22), 

47).  
We can also attempt to deduce the concentration of the traps responsible for this G-R 

noise. Starting from the expression for the G-R noise given in eq. (51), we can estimate the 
concentration of the trap as a function of only measured parameters and on the channel 
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doping profile. In eq. (51) the only parameter that it is difficult to know in the depletion 
region is the Fermi function. Let us suppose in advance that it is quite constant and equal to 
0.5 in the temperature range considered. If this were true, as described above, we would 
expect the amplitude of the Lorentzian noise to be linearly dependant on the Lorentzian time 
constant τ. In Figure 11 the plot of the Lorentzian amplitudes, ALOR, versus the inverse of 
Lorentzian frequencies is plotted for the 2SK146, after the parameters extracted at the lower 
and larger temperature have been excluded. From the figure it is possible to see that the 
behavior is almost linear and, therefore, the Fermi function can be assumed to be almost 
constant. From eq.(63) and eq.(51) we can approximate: 
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The coefficient indicated in the above equation is the mean value between the one that 
results from setting the degeneracy factor gT equal to 2 (donor traps) and setting gT equal to 4 
(acceptor traps). The ratio for the two cases is about 40 %. 

For the 2SK146 VP is about 1.1 V and the input capacitance (for the fully depleted 
condition) is close to 65 pF48). Using eq. (70) and the slope extracted from Figure 11 we 
calculate that the ratio NT/nno is about 4×10-7. If we consider that the typical doping 
concentration for a JFET channel is of the order of 1016 atoms/cm3, we can estimate the 
concentration of the G-R traps at 0.50 eV in the 2SK146 to be about 4×109 atoms/cm3.  

The same estimation has been made also for the SNJ3600 (see the fit of Figure 12). This 
device has VP of about 2 V and input an capacitance of about 500 pF48). Consequently the 
ratio NT/nno has the order of magnitude of about 10-6, or concentration NT of about 1010 
atoms/cm3 for the case that Nd is of the order of 1016 atoms/cm3. 

In Table 6 the extracted parameters for both the Silicon JFETs 2SK146 and SNJ3600 
are summarized. 

 
Table 6: Extracted parameters for the traps responsible of the G-R noise for the 2SK146 and 

SNJ3600. The terms a and b are the parameters extracted from the fitting function given 
in eq. (63). In the last column in parenthesis is the energy measured from the nearest 

band edge. The levels are donors except those indicated with the letter A. 

 VP/CG 
[V/pF] 

NT/Nd 
 

a of eq. (67) 
[Hz/K2] 

|b| of eq.(67) (trap 
energy) 

[eV] 

σ 
[cm2] 

Trap 
candidates 

2SK146 1.1/65 4×10-7 2.22×105 

SNJ3600 2/500 1×10-6 5.85×106 

0.53 1×10-14 

Mn (0.53), Cd 
(0.55), Au 
(0.54 A), Co 
(0.53A), Cu 
(0.53), Fe 
(0.51), O (0.51)
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Figure 11: Amplitude of the Lorentzians with respect to the Lorentzian time constant for the 

JFET 2SK146. 
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Figure 12: Amplitude of the Lorentzians with respect to the Lorentzian time constant for the 

JFET SNJ3600. 

5 THE EFFECTS OF SHALLOW LEVEL TRAPS ON THE NOISE 

The shallow level traps have the maximum effects on the G-R noise at lower 
temperatures than the deeper traps. Reducing the temperature reveals their presence. We have 
selected a very low noise Si JFET process especially designed for low temperature 
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operation49). We scanned the temperature in two ranges: from 80 K to about 150 K and from 
80 K down to 14 K. In this section we will shown the results for the first situation. We have 
measured different JFET transistor types from Moxtek. In Figure 13 the 3D-plot of the JFET 
MX16RC noise is shown measured in the temperature range from 95 K to 150 K.  

 
Figure 13: 3D-plot of the noise spectra measured for the JFET MX16. To each noise 

spectrum the calculated fit is superimposed. 

The presence of a trap is evident through its effect in the LF region of the spectra over the 
temperature range 95 K to 125 K. Another device type for which evidence of a shallow trap is 
visible is the MX17-OLD shown in Figure 14. This device has been labeled OLD to 
distinguish it from another device of the same type received later in our lab. The interesting 
fact is that for this latter sample it was possible to see the effect due to another kind of trap, as 
can be seen in Figure 15. In these three figures the fitting curves have been added, calculated 
using eq. (63). The extracted parameters are listed in Table 7, Table 8 and Table 9, 
respectively.  

We have also extracted the parameters of interest from the above measurements. In 
Figure 16 the coefficients ALOR of eq. (63) has been plotted as a function of the inverse of the 
Lorentzian frequencies. As can be seen, over the temperature range considered, a linear fit 
works well. In Figure 17 we plotted the Lorentzian frequencies versus the inverse of 
temperature. The fit has been calculated for the temperature range found in Figure 16.  

The summary of the parameters extracted from the measured noise is given in Table 10. 
These three JFETs have shown a moderately small noise. The concentration of the traps has 
been found to be very small compared to the donor concentration. The smaller traps 
concentration has been found for the MX17-NEW to be about 2×1010 atoms/cm3, once Nd has 
been assumed to be equal to 1016 atoms/cm3.  
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Table 7: Parameters extracted to fit the spectra of Figure 13, the series noise of the MX16RC 

JFET, according to the function of eq.(63). 
Af 

[(nV)2/Hz(1-Esp) 
Esp 

 
Alor 

[(nV)2/Hz] 
flor 

[Hz] 
white 

[(nV)2/Hz] 
temperature 

[OC] 
274.1893 0.724842 258.6505 249.9027 1.243669 95.6 
45.41338 0.500001 43.4201 757.4424 1.227896 102.9 
15.30944 0.500001 13.42449 2620.481 1.203175 107.4 
2.090446 1.997035 3.651591 3991.802 1.327045 112.9 
10.60232 1.591671 2.179279 1339.226 1.413924 116.6 
3.999812 1.99998 2.629386 2682.975 1.313125 124.9 
89.51484 1.485001 0.928339 4855.303 1.091414 151 

 

 
Figure 14: 3D-plot of the noise spectra measured for the JFET MX17-OLD. To each noise 

spectrum the calculated fit is superimposed. 

The cross-section calculations follows the same rule of the previous sub section, 
applying eq. (69). In Table 10 some possible candidates for the found traps are given. As can 
be seen, around 100 K the difference between the trap energy and the band edge is around 0.1 
eV. 

Another transistor of this series had even better performances. In Figure 18 the 3D-plot 
of the noise of the MX11CD is given for the temperature range 90 K to 140 K.  

As can be seen at the optimum temperature of operation for the LF noise, about 110 K, 
this transistor has a negligible LF noise. For the MX11CD it was not possible to find the 
presence of any kind of traps in this temperature range. Many other devices of the MX 
process have shown these very excellent characteristics50).  
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Another interesting property of the MX11CD is that its pinch-off voltage is close to 
5 V. This feature made this device attractive for testing at much lower temperature, as will be 
illustrated later. 
 

Table 8: Parameters extracted to fit the spectra of Figure 14, the series noise of the MX17-
OLD JFET, according to the function of eq.(63). 

Af 
[(nV)2/Hz(1-Esp) 

Esp 
 

Alor 
[(nV)2/Hz] 

flor 
[Hz] 

white 
[(nV)2/Hz] 

temperature 
[OC] 

20.51272 0.500018 76.41827 186.5633 2.445714 93.8 
16.44479 1.999997 38.03855 417.1653 1.61165 98.3 
11.88086 0.874069 17.2747 884.7388 1.381547 102 
10.63889 0.954338 5.232099 2459.016 1.030719 107.4 
18.14603 1.376838 2.742988 2051.961 0.971462 111.1 
15.99001 1.690116 1.135452 251.222 0.748086 116.6 
32.74225 1.196739 1.035825 809.3682 0.585964 122.1 
38.90181 1.762728 1.233236 458.2628 0.45369 125.8 
97.92307 1.701299 1.42891 415.5337 0.2542 136 
 

 
Figure 15: 3D-plot of the noise spectra measured for the JFET MX17-NEW. To each noise 

spectrum the calculated fit is superimposed. 

6 ELECTRIC FIELD EFFECTS AT LOW TEMPERATURES AND OPERATING 
CONDITIONS 

In all the previous sections we have neglected any possible field effect on the energy profile 
of the electrons inside the transistors, although the applied electric field does introduce a 
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small perturbation of the energy profile. Another effect to be considered, as the temperature is 
lowered, is electron freeze-out, or more accurately, carrier trapping at dopant sites. This effect 
can limit the performance of the transistor if some technological precautions are not taken. 

A JFET to be operated at low temperature needs an important requirement to be 
satisfied. From eq. (A.15) we see that the maximum current that can flow between drain and 
source is obtained when VGS=0 V, or: 

( )
P

TDS
noDS V

V
2
1

L
VZaneI −µ= . (71)

From above it is evident that for IDS to be positive VT needs to be less than 0 V. The threshold 
voltage VT can be deduced from eq. (A.11), repeated here: 

   
2

aneVVVV
2

no
biPbiT ε

−=−= . (72)

 
Table 9: Parameters extracted to fit the spectra of Figure 15, the series noise of the MX17-

NEW JFET, according to the function of eq.(63). 
Af 

[(nV)2/Hz(1-Esp) 
Esp 

 
Alor 

[(nV)2/Hz] 
flor 

[Hz] 
white 

[(nV)2/Hz] 
temperature 

[OC] 
208.0705 0.645816 355.1392 12.05176 6.919963 87.5 
104.6279 0.701971 19.40413 265.4406 2.413849 93.8 
110.5608 0.748147 10.39783 592.9234 1.866645 98.3 
58.60346 0.629663 4.253034 1256.507 0.907616 108.3 
74.02431 0.770751 2.307245 2943.952 0.852619 113.8 
69.85785 0.866003 1.530011 555.2914 0.667178 122.1 
58.75643 0.842512 0.946359 830.0459 0.45878 126.8 
37.96675 0.756611 0.874739 777.7676 0.356048 136 
75.37606 1.518874 1.489019 533.5621 0.426935 169.9 

 
It has to be remarked that people tend to identify the threshold voltage VT with the pinch off 
voltage VP. This is a good approximation at room temperature since the difference between 
the two absolute quantities is about 0.6 V, the built-in voltage of the band gap of Si at 300 K. 
At cryogenic temperatures this approximation is not valid anymore. There are two situations 
to consider. At temperatures above about 70 K the carrier concentration no can be 
approximated by the doping concentration Nd in almost all situations encountered with 
conventional JFETs(51). The temperature coefficient of VT therefore coincides with that of Vbi, 
or –2 mV/oC. At temperatures smaller than 70 K, no decreases in value and the temperature 
coefficient of VT becomes even more negative, leading VT to 0 V as the temperature lowers. 
For instance at 70 K Vbi is about 1 V, so we need VP ≥ 1 V, let’s say 1.2 V to have VT<0. To 
achieve this at room temperature it must be satisfied VT≤-0.6 V. This voltage is the minimum 
(in absolute value) threshold voltage that a JFET capable of working at 70 K should have at 
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room temperature. The pinch-off voltage, VP, should be even larger for the JFET to work at 
temperatures smaller than 70 K. 
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Figure 16: Coefficients ALOR of eq. (63) as a function of the Lorentzian frequencies for the 3 

JFETs MX16RC, MX17-OLD and MX17-NEW. 

 
Table 10: Extracted parameters for the traps responsible of the G-R noise of the 3 JFETs 

MX16RC, MX17-OLD and MX17-NEW. The terms a and b are the parameters 
extracted from the fitting function given in eq. (63). In the last column in parenthesis is 

the energy measured from the nearest band edge. The levels are donors except those 
indicated with the letter A. 

 VP/CG 
[V/pF] 

NT/Nd 
 

a of eq. (67) 
[Hz/K2] 

|b| of eq.(67) 
(trap energy) 

[eV] 

σ 
[cm2] 

Trap 
candidate 

MX16RC 2.5/44 8.3×10-5 2.22×105 0.1312 4.5×10-16 
Mg (0.11 A), 
Te (0.14), Fe 
(0.14) 

MX17-
OLD 4.7/22 5.2×10-6 5.85×106 0.1587 1.15×10-14 

O (0.16), Pb 
(0.17 A), Be 
(0.17A) 

MX17-
NEW 4.7/22 1.9×10-6 2.95×103 0.09297 5.5×10-18 Ga (0.072 A), 

Mg (0.11 A) 
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Figure 17: Lorentzian frequencies for the 3 JFETs MX16RC, MX17-OLD and MX17-NEW 

and the respective interpolating fits. 

As can be seen in eq. (72) the designer has two degrees of freedom for increasing the 
pinch off voltage VP: he can increase the doping concentration and/or increase the channel 
thickness a52). The adoption of a large thickness for a is the better choice, since it allows the 
designer to obtain large values of the transconductance over the input capacitance ratio. This 
because gm is proportional to a, while the input capacitance is inversely proportional to a. In 
addition, a large thickness allows the designer to employ a small dopant concentration, 
obtaining a large mobility at low temperatures, since there is lower scattering from the doping 
atoms53). Furthermore, a lower channel doping lowers the gate junction capacitance because 
the transition from n to p type is less abrupt. 

For instance, the MX11CD JFET from Moxtek has a channel thickness of 1.5 µm, from 
which we can estimate a doping concentration between 2 and 3 times 1015 atoms/cm3, 
considering that its pinch off voltage VP is between 3 V and 5 V at room temperature. The 
MX11CD has been found to be an excellent candidate for operation down to 14 K.  

When an electric field is applied a force is given to the electrons, even if they are 
trapped. This force increases their potential energy. Therefore, the energy (principally 
thermal) needed for the electrons to escape from the trap levels becomes smaller as the 
electric field is increased. This effect is known as Poole-Frenkel effect54). We can 
approximate the energy profile of a trapped electron with a potential well model. As soon as 
the electron escapes from the trapping centers, it is subject to an attractive force proportional 
to the square of the inverse of the distance from the well. The resulting profile is the 
continuous curve of Figure 19. If a local constant electric field is applied, the resulting energy 
profile is the dashed curve shown, or: 
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eEr- 
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e-U
2
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≈ . (73) 

The maximum of U coincides with the barrier lowering and is: 

eV  eE-UPF πε
≈∆ . (74) 

 
Figure 18: 3D-plot of the noise spectra measured for the JFET MX11CD. To each noise 

spectrum the calculated fit is superimposed. 

In the depletion region the electric field applied between the gate and the channel is 
proportional to the distance from the gate. Substituting eq. (42) into eq. (74) we get: 

side gate at the 0      xeV,  
Wxne-U no

PF =
π

−
ε

≈∆ . (75) 

It is very difficult to try to account for this contribution to the noise present in the depletion 
region, since the latter is a function of the depletion region depth and profile. We estimate 
here the maximum barrier lowering that is obtained at the gate side of the region, at x=0. Let’s 
put W=αa, with α a parameter close to 1. Using eq. (A.11) (ε≈12εo): 

eV Vne2 -U 4
32

Pno
3

PF
επ

α≥∆ . (76) 

In Table 11 this amount is shown for a few cases. We can see that for deep level traps the 
possible maximum effect is small and more or less comparable to the measurement error, 
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while for shallow traps the effect is not totally negligible. From these considerations it is 
evident that the energy extracted from the noise measurements is always subjected to a 
systematic error, the measured value being less than the actual one.  

Distance (r)
En

er
gy

Potential well 

Barrier lowering 

Applied el. field 

 
Figure 19: Energy profile of an electron close to a trapping center. The continuous curve is 

the case where the electron feels only the attractive force of the trap, the dashed curve is 
the energy profile that results when an electric field (dotted curve) is applied. 

The Poole-Frenkel is able to account also for the reason Si-MOS transistors are able to 
work down to 4.2 K, in spite of carrier freeze-out55). By applying eq. (74) to the gate oxide of 
a MOS transistor we find that the potential energy just at the channel surface, below the oxide 
is: 

eV  
oxided

GVe-PFU
πε

≈∆ . (77)

The application of only 1 V across a thickness of 200 nm of gate oxide, doxide, generates at the 
channel surface an energy ∆UPF of about 48 meV, enough to free electrons from donors in 
silicon. 

 
Table 11: Maximum effect of the Poole-Frenkel phenomenon or trap energy reduction 

in the depletion region, as a function of the Pinch-off voltage and doping concentration, 
according to eq. (76) (parameter α=1). 

VP 
[V] 

Nd 
[1016 atoms/cm3] 

∆U (Poole-Frenkel) 
[meV] 

1 -48 1 0.1 -27 
1 -72 5 0.1 -40 
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The more evident contribution of the Poole-Frenkel can be seen in studying the G-R 
noise given by dopants inside the channel of a Si-JFET at low temperatures. In this case it is 
possible to make a precise estimation, since the Fermi level inside the channel is not affected 
by the applied field. This is because the channel is neutral and the current is due to drift. The 
electric field is therefore constant and ∆UPF is given by: 

eV  
L

Ve-U DS
PF πε

≈∆ . (78)

For a gate length L of 1 µm the expected energy drop is about 22 meV when the applied 
voltage across the channel is 1 V, while for 2 µm of gate length the expected lowering is 
15.5 meV. This effect is extremely small, but must be compared with the energy of the 
dopants typically used in Si, which is 45 meV below Ed.  

We do not consider in this paper the application of electric fields larger than the one 
considered above, which would lead to complete free-up of charge. This operating range was 
outside our experimental requirements. This subject deserves further study in a future paper. 

7 DONOR DOPANTS AS A SOURCE OF G-R NOISE 

Every type of trapping center, donor or acceptor, is a source of noise. Whether this 
noise is large or not depends on the time constant of the process, which is tied to the Fermi 
level and to the Fermi function. This rule applies also to dopants inside the channel of the 
transistor. Since their energy level is close to the conduction band the time constant of the 
trapping/de-trapping process is very short at ordinary temperatures: in other words, the donor 
dopants are ionized. Therefore, G-R noise from dopant atoms is not measurable at room 
temperature. The time constant associated with this type of trap remains small, down to less 
than 50 K. The noise effect is measurable due to the exponential increases of its amplitude as 
the temperature drops (eq.(60)). For this reason for a long time it was believed that this 
‘anomalous’ noise increase was due to high electric field or hot-electron effects56), 57). Only 
after the work of Van der Ziel32), was the source of this noise understood.  

G-R noise around and below 10 K has already been investigated with Si-MOS 
transistors58), 59) which, as seen above, are able to work in this temperature range. 
Nevertheless, in MOSFETs the electrons in the channel have an energy profile different than 
in JFETs. For this reason, we tried to investigate the behavior of a Si-JFET at these very low 
temperatures of operation. As seen in section 6 we found a candidate for this experiment in 
the MX11CD JFET transistor from Moxtek, which has a large pinch-off voltage coming from 
the large thickness of its conducting channel.  

The only method used so far for investigating G-R noise from dopants was to measure 
the time constant of the process. We will show below that this is not necessary if an accurate 
mathematical model is adopted for this purpose. Our model is based on the very simple 
expression given in eq. (60), where the trapping time constant is shown to depend mainly on 
the Fermi level within the channel. From that equation it is evident that a knowledge of the 
Fermi level dependence on temperature allows us to obtain a good fit of the measured data. In 
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Appendix C the Fermi energy is calculated down to low temperatures. Let’s start to consider 
what happens at temperatures above about 40 K. Here the classical approximated expression 
of eq. (A.24) applies. In eq. (60) fd is very small and we can at first approximate the noise to: 
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Since the statistical fluctuation is proportional to the number of charges, the noise is smaller 
for small dopant concentrations Nd. This can be seen in the 3D-plot of Figure 20, where the 
noise for the JFET MX11CD is plotted from below 100 K down to 14 K. The noise at 14 K 
was close to 400 nV/√Hz due to G-R noise from dopants. This noise in the MX11CD comes 
from a concentration Nd of a few times 1015 atoms/cm3. Even if eq.(79) were considered valid 
down to 14 K, the reduction to the nV/√Hz level of this noise would require an unrealistic 
concentration of about 1010 atoms/cm3. 

The approximate eq. (79) is not able to account for the noise at temperatures lower than 
about 50 K since below this temperature levels the Fermi function fd can not be considered to 
be much smaller than one. To fully account for the measured noise the original eq. (60) has 
been used and in the Fermi function fd the Fermi energy was that derived in eq. (A.22). The 
expression (A.22) for the Fermi energy has been obtained assuming that acceptors are 
generally present inside the channel at a very small concentration. At ordinary temperatures 
their compensation effect is totally negligible, but when freeze-out occurs they become filled 
with electrons from dopants and cannot be neglected in the calculations.  

The parameters extracted from the spectra of Figure 20, fitted with eq.(63), are listed in 
Table 12. The very interesting fact can be seen that the Lorentzian frequencies are all found at 
higher frequencies than the upper measurement range of our instrument, except the one 
measured at 14 K, which was larger than 30 KHz. 

The coefficients ALOR of the G-R noise of Table 12 has then been fitted with a function 
derived from eq. (60) and eq. (A.22): 

[ ] [ ]2
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The fitting parameters that we used were the amplitude ADOP, the effective dopant 
energy level PFd

'
d UEE ∆+= , the dopant concentration Nd, and the acceptor concentration 

Na. In the above equation the term √T comes from cn, the capture probability rate (see the list 
of symbols in Table 1). In eq. (60) the term dependent on the gate-to-source voltage and the 
pinch-off voltage has been considered constant because of the small temperature dependence 
of VP in comparison to the other terms. The accuracy of the fitting function with respect to the 
measured data has been excellent, as can be seen for the continuous curve of Figure 21. The 
extracted parameters are an amplitude ADOP of about 65000 (nV)2√K/Hz, a donor 
concentration of about 0.3×1016 atoms/cm3, a donor energy of meV 23EE c

'
d −=− , and a 

concentration of acceptors of 2×1013 atoms/cm3. 
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Figure 20: The 3D-plot of the noise spectra measured for the JFET MX11CD in the 

temperature range 15 K to 100 K. To each noise spectrum the fit is superimposed. 

The Poole-Frenkel effect plays an important role in the G-R noise from dopants. In the 
MX11CD channel the dopants are atoms of phosphorus, which have an ionization energy 
about 45 meV below the conduction band (measured at room temperature). In the above 
discussion we estimated PFU∆ to be about -23 meV. The MX11CD is a JFET with a gate 
length between 1.5 µm and 2 µm. From eq. (78) we expect a barrier lowering between -15 
meV and -18 meV, which is quite close to the above extrapolation. 

 
Table 12: Parameters extracted to fit the spectra of Figure 20, the series noise of the 

MX11CD JFET, according to the function of eq.(63). 
Af 

[(nV)2/Hz(1-Esp) 
Esp 

 
Alor 

[(nV)2/Hz] 
flor 

[Hz] 
white 

[(nV)2/Hz] 
temperature 

[OC] 
732560.3 1.220989 155520.3 ≥ 33439.16 NA 14.5 
161181.7 0.586029 44367.2 >>52k NA 23 
31592.02 0.524504 4785.273 >>52k NA 33.8 
9680.883 0.531088 1494.245 >>52k NA 41.4 
397.5389 0.500001 202.4744 >>52k NA 60 
629.2456 0.520008 74.71638 >>52k NA 66.7 
149.1847 0.567194 27.04342 >>52k NA 77.1 
69.02723 0.53179 8.55076 >>52k NA 88 
5.374359 0.500352 3.671213 >>52k NA 101.9 
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In Figure 21 (continuous curve) the fitting of the measured data is very good if a non-
negligible acceptor compensation is considered. In the figure it is also plotted the case in 
which the compensation is assumed totally negligible (dashed curve). At the smaller 
temperatures the effect of the acceptor atoms is clearly seen.  

From eqs. (60) and (80) we derive (cn=σvth): 
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The MX11CD was operated at 1 mA of drain current and 1 V of drain to source voltage. The 
quantity VGS-VT is estimated to be between 0.5 V and 1 V at 14 K, while the capacitance CGS 
is about 6 pF. From the above equation we can calculate σ to be between 5×10-16 cm2 and 
1.15×10-16 cm2. In Figure 20 we have observed that for the lower temperature investigated the 
Lorentzian frequency is close to 33 KHz. From eq. (59) and the estimated value for σ and the 
other parameters of interest, fLOR can be extrapolated to be between 25 KHz and 53 KHz, very 
close to the measured value. A plot of the Lorentzian frequencies versus temperature is shown 
in Figure 22, where VGS-VT is the average between the above-indicated values, or 0.75 V. As 
can be seen at 14 K, there is a good agreement with the measured value. It can be seen that 
above about 100 K the Lorentzian frequencies become very large, as expected. Below this 
temperature the Lorentzian frequencies are under 200 MHz. We are planning to perform an 
experiment where the frequency range for the measurements for the noise will be sufficient 
for this temperature interval, in order to prove further the theoretical interpretation we have 
discussed.  

The obtained result proves that Si-JFET transistors cannot be used in low noise 
applications under 100 K, due to the strong effect of G-R noise from dopant atom sites. 

8 CONCLUSIONS 

Extensive measurements on the G-R noise of Si-JFET transistors from 14 K up to room 
temperature has been made on JFETs designed for low noise. It has been shown that around 
room temperature the main effect comes from deep level traps located in half way between 
the valence and conduction bands. At the optimum temperature of operation for Si-JFETs, 
between 100 K and 150 K, the energy of the traps responsible for G-R noise is around 0.1 eV 
from the band edges. By introducing a mathematical approximation, it was also possible to 
estimate the concentration of the G-R noise centers. For the very low noise processes that we 
measured we were able to reach a sensitivity of about 10-7 in the ratio between the trapping 
centers concentration and the dopant concentrations, NT/Nd. 

We were also able to measure the G-R noise coming from dopant atoms themselves 
inside the channel. To this aim, we re-developed the formulation for the noise and for the 
Fermi energy. We were then able to show that to obtain a good accuracy of the measured data 
the effect of the possible presence of a compensated concentration of acceptors cannot be 
neglected at very low temperatures. We demonstrated that for applications that need low noise 
at very low temperatures the Si-JFET cannot be used at temperatures below about 100 K. 
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Figure 21: Measured noise amplitude versus 1/T (*) for the MX11CD from 14 K to 100 

K. The continuous curve is the fit of the noise according to eq. (80), while the dashed curve 
does not include the presence of compensated acceptors. 
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Figure 22: Lorentzian frequencies versus temperature for the G-R noise from dopant atoms, 

after the parameters extracted from the data in Figure 21. 

9 APPENDIX A: PROOF OF EQ. (22) 

In this appendix we solve eq.(20). This differential equation is easily solved if it is 
transformed to the form:  
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To this aim we find a solution n(t) that satisfy: n(t)=α+y(t), with y(∞)=0 and the equilibrium 
condition α such that α>0. This is easily accomplished if α satisfies:  

AC4B   here         w,
C2

B 2 +=γγ+−=α . (A.2)

With the above substitution eq.(20) reduces to: 

)t(h)t(Cy)t(y
dt

)t(dy
A

2 δ+−γ−= ; (A.3)

which is of the form (A.1). It is convenient to seek for a solution of the form: y(t)=f(t)1(t), 
where f(t) is required to be continuous at t=0. With this condition eq.(A.3) becomes: 

)t(h)t(1)t(Cf)t(1)t(f)t(1
dt

)t(df)t()0(f A
2 δ+−γ−=+δ ; (A.4)

in the above equation use has been made of the properties d1(t)/dt=δ(t), and f(t)δ(t)=f(0)δ(t).  
Now we put z(t)=1/f(t) and divide both terms of eq.(A.4) by -f(t)2: 

)t()0(zh)t(1C)t(1)t(z)t(1
dt

)t(dz)t()0(z 2
A δ−+γ=+δ− . (A.5)

The terms proportional to 1(t) form a differential eq. that is easily solved when z(t) is of the 
form: 

21 )texp()t(z β+γβ= . (A.6)

The function z(t) given above is able to satisfies the whole eq.(A.5) when: 

γ
−γ








γ

+= C)texp(C
h
1)t(z
A

. (A.7)
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The condition n(t)=α+y(t) together with the relation given in eq.(A.2) and the above eq.(A.8) 
is proof of eq.(22) of the text. 

10 APPENDIX B: REVIEW OF THE MAIN EQUATIONS GOVERNING JFET 
OPERATION 

The operation of the JFET in the saturation region is easily obtained starting from the 
Poisson equation given in eq.(42), which is valid for an abrupt junction where p>>n. The 
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boundary conditions are that at the gate, x=0, the voltage is equal to VG, while VS should be 
the potential at the conducting channel boundary, x=W. In this respect it is assumed that the 
voltage at the drain, VD, is close to VS and the depletion region has a constant width W (see 
Figure 4). The solution of the Poisson eq. is therefore: 
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−= . (A.9)

The built-in voltage Vbi is added to account for the fact that at zero bias the depletion region 
has a minimum width, due to the need to balance the diffusion current at the junction. From 
eq.(A.9): 
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The channel is completely pinched off when W=a, or, assuming VS=0 for convenience, when: 
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The pinch-off voltage, VP, is an important parameter for low temperature operation. 
From the equation above we can see that JFET does not work anyway if the threshold voltage, 
VT, is greater than zero. This happens at a certain cryogenic temperature since Vbi increases 
and VP decreases at low temperature. One-way to lower as much as possible the limiting 
temperature of operation is to choose large value for a, the gate thickness52). 

The current in the channel follows from Ohm’s law: 
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Finally the last parameter of interest is the transconductance gm: 
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The last two equations can be given a more compact form that is valid whenever the channel 
current IDS is much smaller than IDSS, the current expected at VGS=0 V. For this case eq.(A.13) 
can be expanded around VG=VT giving: 
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Consequently, the transconductance, gm, can be expressed as: 
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or: 
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11 APPENDIX C: THE FERMI LEVEL IN A SEMICONDUCTOR 

In an n-type semiconductor there is always a certain degree of compensation due to the 
presence of acceptors. The effects of these dopants can be very small and totally negligible at 
ordinary temperatures. At cryogenic temperatures this is not the case and electrons tend to fill, 
or freeze out, at both the n-type and the p-type dopant atoms. So the actual concentration of 
electrons in the conduction band satisfies the condition n+Na-(T)=(Nd-nd), where Na-(T) 
represents the concentration of acceptor centers that are not filled, Na-(300)≈0 while 
Na-(0)≈Na. This compensation effect is negligible at ordinary temperatures, but it is effective 
under about 40 K60). This has been taken into account in deriving the fitting of the noise 
measurements at the lower temperatures. 

Eq.(39) for the case of dopants must be written: 
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while fd from eq.(38) is: 
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By considering that Nd=nd+n’ and that 

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Namely: 
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Eq.(A.21) is a second order equation in the variable x. Considering that we are interested in a 
solution with x>0, after a few mathematical manipulations the expression for the Fermi level 
becomes: 
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In eq. (A.22) there is a dependence on temperature of z that complicates the final expression. 
To simplify it is convenient to consider Na-(T)=Na for temperatures lower than about 40 K and 
Na-(T)=0 above that range. For T>40 K eq. (A.22) simplifies to: 
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In addition, in the case that Nd is sufficiently small (4gd/y≈0) from above we can obtain the 
classical expression: 
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