
ISTITUTO NAZIONALE DI FISICA NUCLEARE

Sezione di Bari

 INFN/TC-02/18
11 Luglio 2002

SCHEDULING SYSTEM IN A GRID ENVIRONMENT

Marcello Castellano1,2, Giacomo Piscitelli1,2, Nicola Simeone1,2

Domenico Di Bari2,3, Daniela Cozza3

1)Department of Electrical and Electronic Engineering, Polytechnic of Bari, Via Orabona 4,
70126 Bari, Italy

2)INFN-Sezione di Bari, Via Orabona 4, 70126 Bari, Italy
3)Dipartimento Interateneo di Fisica dell’Univ. di Bari, Via Orabona 4, 70126 Bari, Italy

Abstract
In this paper, extensive results of simulation experiments are presented, evaluating the

scalability degree of batch and on-line mode scheduling techniques in a data-intensive grid
environment. On-line techniques reveal a slight decrease in performance when scalability
increases. Conversely batch techniques performance suffer for the local nature of the state
estimation technique. Experimental results are reported for the following scheduling
algorithms: Minimum Completion Time, Minimum Execution Time, Switching Algorithm,
Opportunistic Load Balance and batch scheduling algorithm: MinMin, MaxMin and
Sufferage.

A grid multi-thread toolset simulator has been used which is based on a java class
library. A simulated scenario in agreement with a number of forthcoming scientific data-
intensive applications foreseen by the European Data Grid Project has been taken into
account. A statistical model based workload-description is considered and the slowdown
metric is applied to evaluate the grid performance.

PACS.: 07.05
Keywords: Computational Grids, DataGrid, Scheduling, Distributed System

Published by SIS–Pubblicazioni
Laboratori Nazionali di Frascati

— 2 —

1 INTRODUCTION
The progress in network technology is enabling high-performance distributed

computing, in which computational and data resources in wide area network are logically
used to solve large-scale problems. The real and specific problem underlying the Grid
concept is the availability and sharing of resources in dynamic, multi-institutional virtual
organizations1). The computational Grid category denotes systems that have higher aggregate
computational capacity available for single applications than the capacity of any constituent
machine in the system. The data Grid category is for systems that provide an infrastructure
for synthesizing new information from data repositories such as digital libraries or data
warehouses that are distributed in a wide area network. Moreover data grids exhibit
specialized storage management and data access services2).

A Grid based system needs for heterogeneous resource management and wide-area
scalability. Many organizations based on network-distributed computing systems require a
flexible overall system configuration that enables site autonomy, multiple scheduling polices
and fault tolerance. A grid might extend from few resources to several ones. The problem
arises of potential performance degradation as grids size increases. As a consequence,
experience with two decades of parallel and distributed applications indicates that scheduling
is fundamental for performance. The overall aim is to efficiently and effectively schedule the
applications that need to utilize the available resources in the Metacomputing environment.

Designing high-performance scheduling systems for grids is particularly challenging:
both the software and hardware resources of the underlying system may exhibit
heterogeneous performance characteristics, resources may be shared by other users, and
networks, computers and data may exist in distinct administrative domains3).

Data-intensive, high-performance computing applications require the efficient
management and transfer of terabytes or petabytes of information in wide-area, distributed
computing environments. Examples of data-intensive applications include experimental
analyses and simulations in several scientific disciplines, such as high-energy, climate
modeling, earthquake engineering and astronomy. The data Grid initiatives, European
DataGrid Project4) and Globus5), are working on developing large-scale data organization,
catalog, management, and access technologies.

In this paper a study is presented on the scalability of a scheduling system in a data-
intensive Grid environment by a toolset grid simulator. In section 2 the reference data grid
system model is described. The design of the scheduling system is reported in section 3 with
online and offline scheduling techniques. Results and discussions are in the last section.

— 3 —

2 DATAGRID SYSTEM MODEL

In this work it is assumed that the Grid available to the user has the following
topology: it is a set of computing resources that are accessible to the user via high speed
network links and are hierarchically organized. This is not only a logical topology, but
attempt to take into account the future physical network topology of the Grid, according to
the eu-DataGrid specifications6). Each site contains a number of hosts, where a host can be
any computing platform, from a single-processor workstation to multi parallel processor
system, which is available for computation. Each site contains a certain number of mass
storage elements too. From now on, these are referred as Computing Elements (CE) and
Storage Elements (SE). The distribution of the computational power and data is modeled
upon the MONARC project guidelines: every site has a computational power equivalent to
those who are below it and all the data owned by a site are replicated on the site below it7).
The GRID provides a Scheduling Service, an Information Service which takes into account
both the status of the available resources and the dynamic information about the system load.
Moreover a Replica Management Service named Replica Catalogue is also considered, which
provides both the correspondences between logical file names and physical file names and
the location of replicated files.

FIG. 1: The Reference System model.

10user 4CE 2SE

20user 8CE 4SE

Information ServicesReplica Catalog services

Scheduler Services

5user 2CE 1SE

10user 4CE 2SE

5user 2CE 1SE 5user 2CE 1SE

5user 2CE 1SE

— 4 —

3 DESIGNIN A GRID SCHEDULER
In a grid environment, the scheduling is performed in two phases: Resource Discovery

and Mapping. The Resource Discovery comprises all the operations needed to collect
information about available resources; the Mapping comprises all the operations required to
map the requested jobs on the resource and to order their execution over time. In order to
design the grid scheduler some scheduling policies, an application model and a performance
model have been defined3).

3.1 Scheduling Policies
In this work, two types of scheduling are considered: on-line mode scheduling and

batch mode scheduling. The on-line algorithms are: the Minimum Completion Time, the
Minimum Execution Time, the Opportunistic Load Balance and the Switching Algorithm 8) 9).
The batch algorithms are: the MinMin, the MaxMin and the Sufferage10) 11). A backfilling
technique is considered too12). In the on-line mode scheduling, each task is scheduled
without considering the previous and following tasks. When the arrival rate is low, the CEs
may be ready to execute a task as soon as it arrives at the scheduler. Therefore, it may be
beneficial to use the scheduler in the on-line mode so that a task need not wait until the next
scheduling event to begin its execution. In the batch mode, the scheduler considers more
than one task per time. This allows making better decisions, because the scheduler disposes
of the resource requirement information for all the task. When the task arrival rate is high,
there will be a sufficient number of tasks to keep the machines busy in between the mapping
events, and while a mapping is being computed.

3.1.1 On-line Mode Techniques
The minimum completion time (MCT) heuristic assigns each task to the machine that

results in that task’s earliest completion time. This causes some tasks to be assigned to
machines that do not guarantee the requested minimum execution time. As a task arrives, all
the Computing Elements in the Grid are examined to determine the Computing Element that
assures the earliest completion time for the task.

The minimum execution time (MET) heuristic assigns each task to the Computing
Element that performs that task’s computation in the least amount of execution time (this
heuristic is also known as limited best assignment (LBA) and user directed assignment
(UDA). This policy, in contrast to MCT, does not consider machine ready times and it can
cause a severe imbalance in load across the machines. The advantages of this policy consist
in assigning each task to the machine that guarantees the least amount of execution time.

The switching algorithm (SA) is motivated by the following considerations. The MET
can potentially create load imbalance across machines by assigning many more tasks to some
machines than to others, whereas the MCT tries to balance the load by assigning tasks for
earliest completion time. If the tasks arrive in a random mix, it is possible to use the MET (at

— 5 —

the expense of load balance) until a given threshold and then use the MCT to smooth the load
across the machines. The SA heuristic uses the MCT and MET in a cyclic fashion depending
on the load distribution across the machines. The purpose is to have a heuristic with the
desirable properties of both the MCT and the MET. Let the maximum (latest) Queuing Time
over all machines in the suite be QTmax, and the minimum (earliest) Queuing Time be
QTmin. Then, the load balance index (LBI) across the machines is given by QTmin/QTmax.
The parameter LBI can have any value in the interval [0,1], if LBI is 1 then the load is
evenly balanced across the machines. If LBI is 0, then at least one machine has not yet been
assigned a task. Two threshold values, LBIlow and LBIhigh, for the ratio LBI are chosen.
Initially, the value of LBI is set to 0. The SA heuristic begins mapping tasks using the MCT
until the value of load balance index increases to at least LBIhigh. Then, the SA begins using
the MET to perform task mapping. This typically causes the load balance index to decrease.
When it decreases to LBIlow, the SA switches back to using the MCT for mapping the tasks
and the cycle continues.

The opportunistic load balancing (OLB) assigns a task to the machine that becomes
ready next, without considering the execution time of the task onto that CEs. If multiple
machines become ready at the same time, then one machine is arbitrarily chosen.

Backfill is a scheduling optimization which allows a scheduler to make better use of
available resources by running jobs out of order. The jobs are executed according to a
priority until a job which cannot be executed (there aren’t sufficient resources), arrives; at
this point the jobs go in a waiting queue and the new jobs are mapped only if they not delay
the starting time of the waiting jobs 9).

3.1.2 Batch Mode Techniques
Let’s pile a certain number or jobs and, after the Resource Discovery, let’s build a

matrix, called MapTable, containing a column for each task and a row for each CE available.
Let’s build a vector containing the QT of each CE too, let’s call it ceTable. Every cell of the
MapTable contains the Estimated Execution Time on that CE.

For each job the CE that gives the earliest Completion Time (CT=ET+QT) is
determined by scanning the related column of the MapTable. The job with the minimum CT,
among all job piled, is executed. Then the ceTable is updated, considering that the CE
chosen has to execute that job and the corresponding column of the MapTable, deleted. The
cycle is repeated until all the jobs are mapped.

The MaxMin is quite similar to MinMin. The MapTable is built in the same way but the
maximum CT, instead of the minimum, among all the minima is chosen.

The rationale behind Sufferage is that a job should be assigned to the CE that would
”suffer" the most if not assigned to that CE. For each task, its Sufferage value is defined as
the difference between its best MCT and its second-best MCT. Tasks with high Sufferage
values take precedence10).

— 6 —

3.2 Application Model
The requested jobs are independent each other, and every job is characterized by a

Computational Weight per Megabyte and by an input file. The workload is generated by the
use of a statistical model, instead of the use of a real trace based approach. Every User
generates a request with a limited exponential probability distribution inter arrival time. The
computational weight of the requested job is obtained by querying a table. This table could
be updated by the user himself or by the schedulers. In our modeled system it is a static table
and the computational weight has a limited exponential probability distribution. The bounds
of the probability distributions are a decreased version of the requirements of the HEP
applications.

3.3 Performance Model
The performance model describes the behavior of the job on the underlying system. In

particular, the resource discovery provides information about the job, see TAB. 1a, and the
suitable computing elements as shown in TAB. 1b.

Job’s Computational weight per Mb [SpecInt95*s/Mb]

Input File Size [Mb]

TAB. 1a: Information about the Job after the Resource Discovery

In order to evaluate the CE execution time, the Job Computational Weight and the CE
Average Computational Power have been determined using the parameters defined in TAB.
1a and TAB. 1b (see TAB. 2).

Job’s Computational Weight
JobID.ExecWeight *

InputLFN.FileSize
[SpecInt95*s]

CE’s Computational Power CE.AverageSI / (CE.TotJobs+1) [SpecInt95]
Execution Time JobID.CW / CE.SI [s]

TAB. 2: Performance Parameters estimation

Moreover it is supposed that the chosen Computing Element is always ‘close’ to the
Storage Element.

Average CE Computational Power [SpecInt95]

CE’s Running Jobs []

Average Traversal Time [ms]

TAB. 1b: Information about the CE after the Resource Discovery

— 7 —

4 EXPERIMENTAL RESULTS AND DISCUSSION
A multi-thread toolset simulator 13) 14) 15) has been used to produce numerical results

about the study on the scalability of the data-intensive grid scheduling system presented
above. Two sets of simulations have been performed, the first one using the less scalable
approach (centralized) as shown in fig. 2a and the last one with the more scalable approach
(distributed) as shown in FIG. 2b.

FIG. 2a: Centralized scheduling.

FIG. 2b: Distributed Scheduling.

The response time is the most suitable metric for open on_line systems. However this
metric is dependent on the long/short type jobs that can characterize the system load. To

10user 4CE 2SE

20user 8CE 4SE

InformationReplica Scheduler

5user 2CE 1SE

10user 4CE 2SE

5user 2CE 1SE
5user 2CE 1SE

5user 2CE 1SE

10user 4CE 2SE

20user 8CE 4SE

InformationReplica Scheduler

5user 2CE 1SE

10user 4CE 2SE

5user 2CE 1SE 5user 2CE 1SE

5user 2CE 1SE

Information

Replica

Scheduler

Information

Replica

Scheduler

— 8 —

avoid this condition, the slowdown metric, defined as runtime on a loaded system divided by
runtime on a dedicated system has been adopted 16).

Comparing the centralized vs distributed approach results shown in FIG.3, it is
possible to reveal that the on-line techniques slightly decrease in performance when
scalability increases, while the batch ones critically decrease due to the local nature of the
state estimation technique. TAB. 3 shows the results in a quantitative fashion.

The Backfill is the worst technique, because it is the only approach that needs a higher
and variable number of query per job to the Information Service. All the other techniques
cause the same traffic towards the Information System and in this case the performances
depend only on the used algorithms.

MCT 13%
MET 1%
SA 1%
OLB 0%
Backfill 67%
MinMin 104%
MaxMin 170%
Sufferage 85%

TAB. 3: Performance degradation when a distributed approach instead of a centralized
one is used.

— 9 —

FIG. 3a: - Comparisons of the on-line and batch mode scheduling using the centralized approach.

FIG. 3b: Comparisons of the on-line and batch mode scheduling using the distributed approach.

— 10 —

5 CONCLUSION
In this paper, extensive results of simulation experiments are presented, evaluating the

scalability degree of batch and on-line mode scheduling techniques in an online open system
data-intensive grid environment. The measures reveal for on-line techniques a slight decrease
in performance when scalability increases. Conversely batch techniques performance suffer
for the local nature of the state estimation technique. The comparison between on-line and
batch mode techniques reveals that this last don’t bear the presence of other schedulers.
Hence, the online techniques are more suitable for solutions based on distributed scheduling
systems rather than batch techniques.

6 REFERENCES

(1) I.Foster, C.Kesselman and S.Tuecke. The Anatomy of the Grid Enabling Scalable
Virtual Organizations, Intl J. Supercomputer Applications, 2001.

(2) K.Krauter,R.Buyya and M.Maheswaran. A Taxonomy and Survey of Grid Resource
Management Systems for Distributed Computing, Software Practice and
Experience,1-7, 2001.

(3) F. Berman. High-performance schedulers. In I. Foster and C. Kesselman, editors,
The Grid: Blueprint for a New Computing Infrastructure, pages 279-310. Morgan
Kaufmann, San Fransisco, CA, 1999.

(4) www.eu-datagrid.org .
(5) www.globus.org
(6) http://server11.infn.it/workload-grid/
(7) M. Campanella, L. Perini. The analysis model and the optimization of geographical

distribution of computing resources: a strong connection, MONARC note n. 1/98,
1998.

(8) R. Armstrong, D. Hensgen, and T. Kidd. The relative performance of various
mapping algorithms is independent of sizable variances in run-time predictions,
Proc. of the 7th IEEE Heterogeneous Computing Workshop (HCW ’98),” pp.
79–87, 1998.

(9) M.Maheswaran, S.Ali, H. J. Siegel, D. Hensgen and R. F. Freund. Dynamic
Mapping of a Class of Independent Tasks onto Heterogeneous Computing Systems,
in Journal of Parallel and Distributed Computing-Special Issue on Software Support
for Distributed Computing, v. 59,n.2,1999.

(10) H.Casanova, D.Zagorodnov and F.Berman. Heuristics for Scheduling Parameter
Sweep Applications in Grid Environments, Proceedings of the 9th Heterogeneous
Computing Workshop, 2000, pp349-363, Cancun Mexico.

(11) T.D.Braun, et al. A Comparison Study of Static Mapping Heuristics for a Class of
Meta-tasks on Heterogeneous Computing Systems, proceeding of the Eighth
Heterogeneous Computing Workshop, 12 April, 1999 San Juan, Puerto Rico.

— 11 —

(12) D.Jackson, Q.Snell and M. Clement. Core Algorithms of the Maui Scheduler,
Proceedings of the 7th Workshop on Job Scheduling Strategies for Parallel Processing,
Cambridge, 2001.

(13) M.Castellano, G.Piscitelli, N.DiBari and E.Nappi. A description of a toolset for
simulate a data grid , to be submitted to INFN as Technical Report, 2002.

(14) http://server11.infn.it/workload-grid/meetings/milano2.html
(15) http://server11.infn.it/archive-workload-eu-datagrid/att-0871/01-MinutesPrague.pdf
(16) D. Feitelson L. Rudolf, Metrics and Benchmarking for parallel Job Scheduling,

Proceedings of the 4th Workshop on Job Scheduling Strategies for Parallel
Processing, Orlando, 1998.

