
ISTITUTO NAZIONALE DI FISICA NUCLEARE

Sezione di Bari

 INFN/TC-02/17
11 Luglio 2002

SIMULATING A DATA GRID ENVIRONMENT

Marcello Castellano1,2, Giacomo Piscitelli1,2, Fabrizio Tarricone1

Domenico Di Bari2,3, Daniela Cozza3

1)Department of Electrical and Electronic Engineering, Polytechnic of Bari, Via Orabona 4,
70126 Bari, Italy

2)INFN-Sezione di Bari, Via Orabona 4, 70126 Bari, Italy
3)Dipartimento Interateneo di Fisica dell’Univ. di Bari, Via Orabona 4, 70126 Bari, Italy

Abstract
In this paper a Java-based, multi-thread toolset is proposed for data-intensive grid

simulations. The toolset is a Java package composed by class library, one for each grid entity
such as Computing Element, Storage Element, Scheduler, Replica Catalog, Information
Server and Users. Moreover a kit has been implemented to describe a wide-area network
infrastructure. The implemented Process Network model assumes each process equipped by
inner structure oriented to multi-tasking and time-sharing processing. The simulator
framework is based on multi-threads technology both to obtain a natural code description of
the model and to avoid bottleneck problems due to centralised structures. The toolset is also
adequate to allow the description of more general distributed system. The package has been
with successfully validated considering real configurations. It is also running to evaluate
scheduling algorithms for a simulated scenario in agreement with a scientific data-intensive
applications foreseen by a founded European data grid project.

PACS.: 07.05
Keywords: Computational Grids, DataGrid, Simulation, Distributed System

Published by SIS–Pubblicazioni
Laboratori Nazionali di Frascati

— 2 —

1 INTRODUCTION
A grid computing system is composed by entities belonging to the following types:

fabric, low level middleware, user level middleware, application. The type fabric concerns
with computers, clusters, network, scientific instruments, and their resource management
systems. Low and User level middleware regard the core services that a grid must provides
to reach the goal and tools for grid programming, respectively. Problem solving activity
using a grid defines the type application3).

 Designing components for grid based systems is particularly challenging: both the
software and hardware resources of the underlying system may exhibit heterogeneous
performance characteristics, resources may be shared by other users, and networks,
computers and data may exist in distinct administrative domains. Moreover, data-intensive,
high-performance computing applications require the efficient management and transfer of
terabytes or petabytes of information in wide-area, distributed computing environments.
Examples of data-intensive applications include experimental analyses and simulations in
several scientific disciplines, such as high-energy, climate modeling, earthquake engineering
and astronomy. In this paper a Java-based, multi-thread toolset is proposed for data-
intensive grid simulations. In section 2 is described the logical plane of the simulator with the
components. The implementation and the validation results are discussed in the last section.

2 MODELLING DATA GRID LOGICAL COMPONENTS
The grid based system is built by collaborative components each ones is an active entity

devoted to solve specific tasks. Processes Network (4) (5) strategy is taken into account to
design the grid. In this conceptual plane of description, the entities are represented by
concurrent processes that communicate each other by messages. Each consumer process
refers to a specific buffer to pick up the incoming messages that have been queued in the
time by producers processes. This is an asynchronous message passing mechanism that
avoid the producer wait for the receiver ready state. Each component shows an architecture
pipeline oriented to provide a multi-task environment. If a stage named A needs of
collaboration of another entity to reach its goal, it query such entity and push the request in
next stage B queue. At the external entity completion time the stage B resumes the
processing. In meantime the component can continue with processing of other requests. The
most of Grid components are time shared resources. To take into account a such behaviour,
the resources are modelled like servers with Processor Sharing (PS) service policy (6). In
other words, each request is served for a quantum, expired it the control is passed to service
next ready state pending request.

2 . 1 Storage Elements
Storage Element (SE) grid entity allows the uniform access to data. It is a time shared

component based on PS policy with in a not pipelined service. However the one-stage

— 3 —

component requires a pending input queue to retain more requests in hold state than (more
limited) available “at the same time” in the execution phase.

Fig. 1: Storage Element model.

The necessary time to execute one request depends on the nature of operation requested to
SE. If it is processing a reading request:

[MB/s] Reading Speed

[MB] Volume Data
[s] TimeExecution =

Indeed, the SE execution time for a write request is:

[MB/s] WritingSpeed

[MB] Volume Data
[s] TimeExecution =

2 . 2 Computing Elements
Computing Element (CE) grid entity executes the jobs. The execution of a job is arranged in
phases as follow:

1. query of a SE to obtain input data file;
2. execution;
3. writing of results on a SE.

The CE model is shown in Fig. 2 . The stage 1 queries the suitable SE for input data file.
The stage 2 waits for requested data from the SE. The stage 3 is designed for the execution
with PS policy in time sharing mode. The input stage S carries out functions of shunting of
messages: it sends execution request to stage 1 and forward the answers from SEs to stage
2.

Fig. 2: Computing Element model.

— 4 —

The CPU time to execute a job is evaluated as:

[MB] Volume Data
][SPECint95Power

s/MB][SPECint95 Weight Job
[s] Time CPU ××=

2 . 3 Information System
Grid Information System is a grid structured component composed by three entities:

Replica Catalog (RC), Information Server (IS) and Reporter. RC localises data files and the
replicated versions of the same files disseminated around the grid. IS takes care to supply
and to update information on physical resources (CEs and SEs) of Grid environment. The
Reporter periodically sends to ISs the updated information on physical resources. Both the
RC and the IS execute tasks in atomic way; The model is based on the simple First Come
First Served service policy queue system (6).

2 . 4 Scheduler
The Scheduler plans execution of jobs on Computational Grid. Phases of scheduling

request processing are:

1. RC query to obtain SEs list that hold a copy of input data file necessary to the
execution of the job;

2. IS query to obtain CEs list “near” to the SEs obtained in previous phase;
3. IS query to obtain information on CEs obtained in the previous phase;
4. choice of CE / SE couple which to demand the execution of the job.

Fig. 3: Scheduler model.

In Fig. 3 is reported the S stage that carries out shunts messages towards the suitable
stages.

— 5 —

2 . 5 Network
Each network segment uses a Time Division Multiplexing technique and a full duplex

mechanism to allows a bi-directional transmission. The segment model is based on a
couple of processes: one for the forward communication and the other one for the
communication in backward as shown in Fig. 4

Fig. 4: Network model.

The transmission time to delivery a message is here computed according to the follow
relation:

[MB/s] Throughput

[MB]Dimension Message
[s] Timen Trasmissio =

2 . 6 Users
The users grid component is assumed as a jobs source with an exponential inter-

arrival time distribution with rate _ and high variable job rate. The job is characterized by a
high computational weight and data-intensive applications. Users and job models have been
motivated by the computing model that describes the data-intensive networked analysis at
regional centres for high energy physics experiment at CERN (8). Table I shows the users
and job features.

Tab. I: Users and Job features.

CHARACTERISTICS MEASURED IN Typical values are

Request Rate [1/s] 11.57_10-6÷92.59_10-6

Jobs Weight [SI95·s/MB] 102.4 ÷ 512.0

Input Data Volume [MB] 1.049_103 ÷ 1.049_106

Output Data Volume [MB] 104.9 ÷ 104.9_103

— 6 —

3 IMPLEMENTATION AND VALIDATION RESULTS
The described model has been implemented with multi-thread technology. Every

modelling process is described in a thread equipped with a queue that receives pending
messages (8). In this way it is obtained a direct correspondence among real entities,
modelling processes and implementing threads. Moreover, centralised structures, like
scheduler and event lists, are not used. In fact every thread possesses a queue with
messages that others threads send it directly, and it accesses to own queue and assumes the
necessary behaviour. In this way it is simpler adapt the Simulator to a distributed simulation
environment, since various threads can be located on different nodes. The Simulator has
been developed in Java because it is a pure objected-oriented language, it allows natively the
realisation of multi-thread applications and pointers and memory are automatically managed
by the Java Virtual Machine (JVM). Java is a real and total portable language. In the
implementation of the model some of activities that entities complete, are really executed.
Others, like data read, data write, jobs execute, transmission on network, are simulated
rendering the implementing thread not available for necessary time to execution.

Validation phase, consists in determining how much is accurate the representation
that it supplies of the simulated system 0. In order to realise this phase, it is necessary to
dispose measures obtained on the real system to compare them with simulation results (10). A
systematic study to define a model for complex data and computing at the Centre European
for Research in Nuclear Physics has been done by MONARC Project (11). Moreover a real
testbed in the small for data-intensive distributed system has been realised by MONARC
members (12) with job and system characteristics shown in Tab. II. A simulation experiment
has been realized according to the system developed in MONARC project. Execution times
of 1, 2, 4, 8, 16, 32 concurrent identical jobs are been measured.

Tab. II: Job and System characteristics for testbed in the small.

Request Rate [1/s] 11.57_10-6 ÷ 92.59_10-6

Input Data Volume [MB] 36.89

Job Weight [SI95·s/MB] 6.629

CE Power [SI95] 17.4

SE Speed Reading [MB/s] 31

Network Ethernet

Measures obtained by testbed and those obtained through simulation with relative
and absolute errors are compared in Tab. III. A satisfactory mean relative error less than
10% can be pointed out.

— 7 —

Tab. III: Measured Execution Time vs Simulated Execution Time.

Concurrent
Jobs

Measured
Execution
Time
[s]

Simulated
Execution
Time
[s]

Relative
Error
[%]

Absolute
Error
[s]

1 22,08 18,29 17,19 3,80

2 23,43 20,95 10,58 2,48

4 30,63 32,25 5,30 1,62

8 42,40 43,18 1,83 0,78

16 77,50 83,75 8,06 6,25

32 151,59 166,72 9,98 15,13

Mean - - 8,82 5,01

4 CONCLUSION

This paper introduces the concepts, mechanisms and results of a Java-based, multi-
thread toolset for a data-intensive grid simulator. It makes possible a rapid virtual
prototyping by a natural description of a data-intensive grid based system. A good
agreement between testbed in the small and simulate results has been obtained. Nowadays
the toolset is running to evaluate scheduling algorithms for a simulated scenario in accord
with a scientific data-intensive applications foreseen by a founded European data grid
project.

— 8 —

5 REFERENCES

(1) I.Foster, J.Geisler, B.Nickless, W.Smith, S.Tuecke – Software Infrastructure
for the I-WAY High-Performance Distributed Computing Experiment –
Proc. 5th IEEE Symposium on High Performance Distributed Computing, 1997

(2) M.Baker, R.Buyya, D.Laforenza – The Grid: International Efforts in Global
Computing – International Conference on Advances in Infrastructure for Electronic
Business, Science and Education on the Internet, l’Aquila, ITALY, August 2000

(3) I.Foster, C.Kesselman – The Grid: Blueprint for a Future Computing
Infrastructure – Morgan Kaufmann Publishers, July 1998

(4) J.Banks – Introduction to Simulation – Proc. of the 2000 Winter Simulation
Conference, Orlando, Florida, USA, December 2000

(5) J.Davis, C.Hylands, B.Kienhuis, E.A.Lee, J.Liu, X.Liu, L.Muliadi,
S.Neuendorffer, J.Tsay, B.Vogel, Y.Xiong – Heterogeneous Concurrent
Modeling and Design in Java – Tech. Mem. UCB/ERL M01/12, EECS, Univ.
California, Berkeley, March 01

(6) K.Aida, A.Takefusa, H.Nakada, S.Matsuoka, S.Sekiguchi, U.Nagashima –
Performance Evaluation Model for Scheduling in Global Computing
Systems – The International Journal of High Performance Computing Applications,
vol. 14, n. 3, pp. 268-279, 2000

(7) L.Kleinrock – Queueing Systems – John Wiley & Sons, Inc. 1975
(8) MONARC Members – Models of Networked Analysis at Regional Centres for LHC

Experimens (MONARC) – Phase 2 Report – March 2000
(9) P.Metz, J.O’Brien, W.Weber – Message Queue Concept – An

Implementation Pattern for Concurrent Objects – Object-Oriented Modeling
of Embedded Realtime Systems, Herrsching, Ammersee, GERMANY, May 1999

(10) T.J.Schriber, D.T.Brunner – Inside Discrete-Event Simulation Software:
How it Works and Why it Matters – Proc. of the 2000 Winter Simulation
Conference, Orlando, Florida, USA, December 2000

(11) J.P.C.Kleijnen – Validation of Models: Statistical Techniques and Data Availability –
Proc. of the 1999 Winter Simulation Conference, Phoenix, Arizona, USA, December
1999

(12) I.C.Legrand – The MONARC Toolset for Simulating Large Network-Distributed
Processing Systems – Proc. of the 2000 Winter Simulation Conference, Orlando,
Florida, USA, Dicembre 2000

(13) Y.Morita – Validation of the MONARC Simulation Tools – Computing in
High Energy Phisics, Padova, ITALY, February 2000.

