
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Progetto INFN–GRID

 INFN/TC-02/16
21 Giugno 2002

INFN GRID
DATAGRID PROTOTYPE 1

F.Donno, L.Gaido, A.Ghiselli, M.Mazzucato, F.Prelz, M.Sgaravatto

INFN

Introduction
Computing and networking technology evolution leads to more powerful computers and

to high speed networks as low-cost commodity components. In parallel there is a growth of
large-scale computing needs with high number of users widely distributed. This scenario is
changing the way to think about-and use-computing resources. One of the most interesting and
challenging approaches is the “computational grid” concept. DataGrid (www.eu-datagrid.org)
is a European project (EDG) aiming to build a computational grid prototype on the basis of
requirements coming from users in the application fields of the High Energy Physics[1], Earth
Observations (EO) [2], and Bio-Informatics [3]. The first prototype of DataGrid is in place,
since December 2001, with the functionalities foreseen in the release 1 of the project. The
purpose of this document is to describe the most important characteristics of the grid proposal,
the services of the first prototype and some of the problems emerged from the experience of the
first steps of the project.

PACS.: 89.80

Published by SIS–Pubblicazioni
Laboratori Nazionali di Frascati

— 2 —

DataGrid project description

DataGrid scenario

The term “Grid” refers to both the technologies and the infrastructure that enable
coordinated resource sharing and problem solving in dynamic, multi-institutional virtual
organizations[4] such as the ones considered in the DataGrid project. Thousands of physicists
from hundreds of Institutes, laboratories and universities worldwide come together to design,
create, operate, and analyze the data of an experiment’s detector at CERN, the European high
energy physics laboratory. During the analysis phase, they pool their computing, storage, and
networking resources to create a “Data Grid” capable of analyzing petabytes of data. This is
an example of the operation of what is described as a Virtual Organization (VO) in the
DataGrid scenario. The EO (Earth Observation) collaborations and the international projects
of the Bio-Informatics communities highlight similar characteristics.

The dynamic nature of sharing relationships means that we require mechanisms for
discovering and characterizing the nature of the relationships that exist at a particular point in
time[4]. For example, a new participant joining a VO must be able to determine what
resources (s)he is able to access, the “quality” of these resources, and the policies that govern
access. This brings the need of specific VO services to specify users identifiers, grid access
policies, file catalogues etc.

One-time login based on Identity Certificates

On DataGrid, users of the Grid are not granted “accounts” in the usual sense of the
word. That is they do not have a login name and password via which they can log in to Grid
computers nodes (or Computer Elements CE). Rather, users own an X.509 Identity
Certificate issued by a “Certification Authority”(CA) which is trusted by the EU DataGrid
organization [5].

DataGrid security is based on Globus Security Infrastructure (GSI), which implements
the standard (RFC 2078/2743) Generic Security Service Application Program Interface (GSS-
API). This implementation is based on X.509 certificates and is developed on top of the
OpenSSL (www.openssl.org) library.

The GSS-API requires the ability to pass user authentication information to a remote
site so that further authenticated connections can be established (one-time login). The entity
that is empowered to act as the user at the remote site is called “proxy”.

The fresh “proxy” certificate has a short (default value of 1 day) expiration time and is
signed by the user. The user certificate is signed by a Certification Authority (CA) that is
trusted at the remote end. The remote end (usually at some service provider’s site) is able to
verify the proxy certificate by descending the certificate signature chain, and thus authenticate
the certificate signer. The signer’s identity is established by trusting the CA, that in DataGrid
belongs to the trusted CAs list (http://marianne.in2p3.fr/datagrid/ca/) .

The last remaining step is user authorization: the requesting user is granted access and
mapped to the appropriate resource provider identifiers by checking the proxy (or user)
certificate subject (X.500 Distinguished Name, or DN) and looking it up in a list (the so-called
gridmap file) that is maintained at the remote site. This list typically links a DN to a local

— 3 —

resource username, so that the requesting user can inherit all the rights of the local user. Many
DNs can be linked to the same local user.

The Certification Authorities, participating to the project, defined a set of rules that
each CA has to adopt in order to be trusted within a Grid. In each DataGrid computing and
storage resource there is the list of the trusted CAs.

VO server and automatic management of gridmap files

The user-certificate serves to “prove” a user identity (authentication); the authorization
to perform the requested task must then be specifically granted (authorization). This is done
on the basis of an appropriate database, listing the users of each VO. The present
implementation of this database (VO server and in the future a more sophisticated
Community Authorization Server) is based on LDAP (www.openldap.org). Each experiment
has a VO Group administrator which manages user authentication information (user certificate
subject extracted from the corresponding Authentication authority (CA)) to be used for
authentication and authorization in the Grid infrastructure. This information is then used to
build the users database (gridmap file) on computational resources (Computing Elements,
CEs) periodically. This is done using tools developed by the project (http://cvs.infn.it/cgi-
bin/cvsweb.cgi/Auth/VO/sbin). The server provides only the access policy, while the final
authentication is done by the CE gatekeeper.

Replica Catalogues

In distributed systems, data replication is a well-known and accepted technique for
optimizing data access and providing fault tolerance. This is achieved by storing multiple
copies of data at several locations. The topology and the latency of the network have an
important influence on the replication strategy to be used. In DataGrid, database files or
simply plain files have to be replicated to several sites. File transfer mechanisms like GridFTP
provide secure and efficient file replication. However, replica management not only deals with
data transfer but also with meta-data management like replica catalogues and consistency
management for file and metadata updates. In the Grid community, file replica catalogues are
currently under research and the Globus replica catalog is intended as a fundamental building
block in Data Grid systems. It addresses the common need to keep track of multiple physical
copies of a single logical file by maintaining a mapping from logical file names to physical
locations (www.globus.org/datagrid/replica-catalog.html). Presently, each VO has a Replica
Catalog that keeps a list of all the available files. It provides a centralized service with the
advantage of the absence of synchronization problems because all files are kept in one catalog
that is easy to administer. There are some disadvantages: it is not scalable, there is a potential
bottleneck due to WAN latency and high traffic, it is a single point of failure, and remote
organizations depend on central organization for administration. In collaboration with the
Globus team a new design & implementation for a distributed replica catalog system is under
development and the results will be available for the future releases of DataGrid [6].

— 4 —

The DataGrid Resources and the Grid Information Service

The Grid resources consist mainly of large computing farms, made up of commodity
PCs, and large disk storages, spread all over Europe. Their connections to the Grid is through
the National Research Networks (NRNs) interconnected via GEANT.

Computing farms are referred to as Computing Elements (CE) and disk storages as
Storage Elements (SE). SE identifies any disk storage with the ability to provide direct file
access and transfer via FTP, NFS or other protocols using the grid security mechanisms.

The access to the grid resources is based on the Globus Resource Access Management
(GRAM) service [7].

The architecture of the GRAM service is shown in this figure.

The Globus Resource Allocation Manager (GRAM) is responsible for operating a set of
resources under the same site-specific allocation policy; this is often done by a local resource
management system (such as LSF, PBS, Condor). Therefore a specific GRAM does not
correspond to a single host, but rather represents a service; for this reason it can provide
access to the nodes of a parallel computer, to a cluster of PCs, to a Condor pool. In the
Globus architecture the GRAM service is the standard interface to “local” resources: grid
tools and applications can express resource allocation and management requests in terms of a
standard interface, while individual sites are not forced to choose a specific resource
management tool.

In particular GRAM is responsible for:
- Processing RSL (Resource Specification Language) specifications representing resource

requests, by either creating the process(es) that satisfy the request, or by denying that
request;

- Enabling remote job monitoring and management;

— 5 —

- Periodically updating the GIS (Grid Information Service) information service with
information about the current status and characteristics of the resources that it
manages.

The GRAM reporter has been modified by DataGrid, as well as the Grid Information
Service schema, in order to provide the GIS service with the information required by the grid
scheduler, as described below.

Grid Information Service

The Information Service (IS) plays a fundamental role in the DataGrid environment,
since resource discovery and decision making is based upon the information service
infrastructure. Basically an information service is needed to collect and organize, in a coherent
manner, information about grid resources and status and make them available to the consumer
entities.

Hierarchical directory services are widely used for this kind of applications, due to their
well defined APIs and protocols. Anyway, the main issue with using the existing directory
services is that they are not designed to store dynamic information such as the status of
computing (or networking) resources. For this reason other mechanism are under test within
DataGrid [8].

DataGrid Release 1 is based on the Globus Grid Information Service, which provides an
infrastructure for storing and managing static and dynamic information about the status and
components of computational grids.

The Globus Grid Information Service is based on LDAP directory services. As pointed
out before, LDAP may not be the best choice for dynamic data storage, but provides a number
of useful features:

- A well defined data model and a standard and consolidated way to describe data.
- A standardized API (Application Programming Interface) to access data on the

directory servers.
- A distributed topological model that allows data distribution and delegation of access

policies among institutions.
A good flexibility in extending the set of data returned by each GRIS (Grid Resource

Information Service) in the GIS architecture is a definite requirement for a production grid
system. The GRIS currently uses trigger programs to fetch data from the system. Such data is
then cached for a configurable amount of time. The output of the trigger programs must be in
LDIF format and must respect the DataGrid schema. There are on-going efforts to make the
entire information modeling schema evolve.

Resources and services schema for a grid environment

The schema represents what makes data valuable to Grid tools and applications.
DataGrid defined and implemented its own CE and SE schemas, since Globus has defined a
CE schema that is not suitable for the DataGrid services and the SE was not yet included in
the GIS [9]. The DataGrid schema describes the CE as a Queue, since it is the most suitable
data structure to model a cluster of PCs locally managed by schedulers like PBS, LSF or
Condor, while Globus identifies a CE as a single host.

— 6 —

These schemas (of Globus and DataGrid) can be easily modified, and the process of
making the schema modifications consistent among various GIS’s infrastructures is ongoing in
the interest of various interoperability initiatives between the EU and the US. The future
common schema is going to describe computing resources in an homogeneous way and will
allow an easier application development between EU and US grids.

The definition and standardization of the information about computing resources is
largely work in progress and the upcoming grid development efforts will have to make sure to
feed back their proposals for extensions to the information schema into the standardization
process, for instance within the Global Grid Forum (www-unix.mcs.anl.gov/gridforum/gis).

Grid Scheduling and Workload Management Service

The most important focus of the project is the workload management of applications
dealing with large amount of data and the management of clusters with high number of
machines. The ambitious aims of the project (resource management, scheduling, co-allocation,
advance reservation, accounting, meta-data, high performance networking and network
awareness, etc.) can be successful if an effective collaboration with the existing computer
science projects and the integration of the various existing tools (Globus, Condor, etc.) will be
pursued.

Allocating and scheduling computing resources in a worldwide computational grid is still
an open and challenging problem, despite the effort of various computer science research
teams. The purpose of the Workload Management effort in the DataGrid project is to suitably
integrate existing tools, extend the research and provide the missing software, so that easy
access to grid scheduling and submission services for DataGrid application users and
developers is provided .

Scheduling on the Grid: which model?

The following considerations emerge from an analysis of the current state of the art[10].
The scheduler is one of the most critical components of the resource management systems,
since it has the responsibility of assigning resources to jobs in such a way that the application
requirements are met, and of ensuring that the resource usage limits granted to the user are not
exceeded. Although scheduling is a traditional area of computer science research, the particular
characteristics of the DataGrid project, and of the computational grids in general, make
traditional schedulers inappropriate.

As a matter of fact, while in traditional computing systems all the resources and jobs in
the system are under the direct control of the scheduler, Grid resources are geographically
distributed, heterogeneous in nature, owned by different individuals or organizations with
their own scheduling policies, have different access cost models with dynamically varying
loads and availability conditions. The lack of centralized ownership and control, together with
the presence of many competing users submitting jobs that can potentially be very different
from each other, make the scheduling task much harder than for traditional computing
systems.

— 7 —

All the existing Grid schedulers can be classified according to three factors, namely their
organization (that may be centralized, hierarchical, or distributed), their scheduling policy
(that may optimize either system or application performance), and the state estimation
technique they use to construct predictive models of application performance.

The centralized organization, as it is in Condor, is under the control of a single entity,
that receives and processes all the allocation requests coming from the Grid users. However,
while this approach has the advantage of providing the scheduler with a global system-wide
view of the status of submitted jobs and available resources, so that optimal scheduling
decisions are possible, it is poorly scalable and tolerant to failures, a centralized scheduler
represents a performance bottleneck and a single point of failure.

In a distributed organization, like in AppLeS [11], Ninf [12], and NetSolve [13], the
scheduling decisions are delegated to individual applications and resources. In particular, each
application is free to choose (according to suitable policies) the set of resources that better fit
its needs, and each resource is free to decide the schedule of the applications submitted to it.
In this approach there are no bottlenecks and single points of failure but, being the scheduling
decisions based on local knowledge only, resource allocation is in general sub-optimal.

Finally in the hierarchical approach, as adopted in Darwin [14] and Nimrod/G [15], the
scheduling responsibilities are distributed across a hierarchy of schedulers. Schedulers
belonging to the higher levels of the hierarchy make scheduling decisions concerning larger sets
of resources (e.g., the resources in a given continent), while lower-level schedulers are
responsible for smaller resource ensembles (e.g., the resources in a given state). Finally, at the
bottom level of the hierarchy are the schedulers that schedule individual resources. The
hierarchical approach tries to overcome the drawbacks of the centralized and the distributed
approach, while at the same time keeping their advantages.

The other important feature of a grid scheduler is the adopted scheduling policy. The
schedulers of Condor and Darwin adopt a system-oriented policy, aimed at optimizing system
performance metrics such as system throughput or resource utilization. However the need of
dealing with resource co-allocation and advance reservation requires the development of new
system-oriented scheduling policies. At the other end of the spectrum, we find systems like
AppLes, NetSolve, Nimrod/G, and Ninf, that adopt application-oriented scheduling policies.
Actually in DataGrid there is also a complementary need of scheduling techniques able to
maximize user performance. That is, the machines used to execute a given application should
be chosen in such a way that its performance is maximized, possibly disregarding the overall
system performance.

Moreover in order to obtain satisfactory performance, a scheduler must employ
predictive models to evaluate the performance of the application or of the system, and use this
information to determine the allocation that results in best performance. Condor, Darwin,
Nimrod/G, and Ninf adopt non-predictive schedulers. However, by assuming that the current
resource status will not change during the execution of applications may result in performance
much worse than expected because of the possible presence of contention effects on the
resources chosen for the execution of an application. AppLeS, NetSolve address this problem
by adopting predictive schedulers, however, while predictive techniques have the potential of

— 8 —

ensuring better application performance, they usually require a higher computational cost than
their non-predictive counterparts.

DataGrid Workload management model

By looking at the scheduling needs of typical users in the scientific communities that
take part in the DataGrid project, we observe that a suitable grid scheduler should exhibit
several properties not found in any of the currently available schedulers, and in particular:

Distributed organization. Given that several user communities (also called virtual
organizations) have to co-exist in DataGrid, it is reasonable to assume that each of them will
want to use a scheduler that better fits its particular needs (community scheduler). However,
when a number of independent schedulers are operating simultaneously, a lack of coordination
among their actions may result in conflicting and performance-hampering decisions. The need
of coordination among these peer, independent schedulers naturally calls for a distributed
organization.

- Predictive state estimation, in order to deliver adequate performance even in face of
dynamic variation of the resource status.

- Ability to interact with the resource information system. At the moment, all the
existing schedulers require that the user specifies the list of the machines that (s)he has
permission to use. However, a fully functional grid scheduler should be able to
autonomously find this information by interacting with the grid-wide information
service.

- Ability to optimize both system and application performance, depending on the needs
of DataGrid users. As a matter of fact, DataGrid users needing high-throughput for
batches of independent jobs (such as the HEP community) have to co-exist with users
requiring low response times for individual applications (e.g. the bio-medical
community). In this case, neither a system-oriented nor an application-oriented
scheduling policy would be sufficient.

- Submission reliability: Grids are characterized by an extreme resource volatility, that
is the set of available resource may dynamically change during the lifetime of an
application. The scheduler should be able to resubmit, without requiring the user
intervention, an application whose execution cannot continue as consequence of the
failure or unavailability of the machine(s) on which it is running.

- Allocation fairness. In a realistic system different users will have different priorities
that determine the amount of Grid resources allocated to their applications.

The workload management system (WMS) has been designed [16] having in mind the
above properties for a Grid scheduler. Several interactive WMS components provide the “grid
scheduling” service: the User Interface, The Resource Broker, the Job Submission Service, and
the Logging and Bookkeeping service. The WMS solution is designed to support two basic
designs of resource broker: a community scheduler running on a highly-available server and a
personal scheduler running on a user’s personal machine.

The Resource Broker (RB) is the core component of the WMS. Its main task is to find a
computing element that best matches the requirements and preferences of a submitted job,
considering also the current distribution of load on the grid. Once a suitable computing element
is found, the job is passed to the job submission service for the actual submission.

— 9 —

Additionally the resource broker allows cancelling a job and retrieving the output once a job
has been completed.

These tasks include interacting with the Replica Catalog (RC) to resolve Logical data set
names as well as to find a preliminary set of sites where the required data are stored,
performing job submission and cancellation by interacting with the Job Submission Service
(JSS), listing the more likely resources to execute a job at, and retrieving job outputs on behalf
of the clients.

The logging and bookkeeping service is responsible to store and manage logging and
bookkeeping information generated by the various components of the WMS. It collects
information about the scheduling system and about active jobs.

A user can submit jobs and retrieve their output through the User Interface. The
description of a job is expressed in the Job Description Language (JDL), which is based on the
classified advertisement scheme developed by the Condor project. This choice has been made
because:

It is a semi-structured data model: no specific schema is required
- Symmetry: all entities in the grid, in particular applications and computing resources

can be expressible in the same language.
- Simplicity for both syntax and semantics.

Data Management in DataGrid

The data management architecture [17] is focused on file replication services and the
main objectives include optimized data access, caching, file replication and file migration. The
most important tasks are:

- Management of a universal namespace for files (using replica catalogues)
- Secure and efficient data transfer between sites
- Synchronization of remote copies
- (Optimized) wide-area data access/caching
- Management of meta-data like indices and file meta-data
- Interface to mass storage systems

Data Management in DataGrid has to deal with heterogeneity of storage systems and thus
Storage Elements (SE). The interface to SE has to be unique regardless of the underlying
storage technology. SE is a basic storage resource in DataGrid and also define the smallest
granularity for a compound storage system. A Storage Element can either be a large disk pool or
a Mass Storage System (MSS) having its own internal disk pool. The current storage system
implementations include MSS like HPSS, Castor as well as distributed file systems like AFS
[18] or NFS (www.nfsv4.org). All these implementations can potentially co-exist and the
Storage Element subsystem has to hide the data access mechanisms (and their complexity)
specific to each storage system from middleware upper layers.

The building blocks of the DM architecture are: the Replica Manager, the Replica Catalog,
the File Copier and the Consistency Service.

The Replica Manager manages file transfers (replication) by using the File Copier service
and the replica catalogue information through the replica catalog service. The first

— 10 —

implementation is based on GDMP (Grid Data Mirroring Package) [19] which is a file
replication tool that implements most of the replica manager functionalities. The main tasks of
the replica manager are to securely and efficiently copy files between two Storage Elements and
update the replica catalogue when the copy process has successfully terminated.

The access to the replica files shall be optimized by using some performance information
such as the current network throughput and latency and the load on the Storage Elements. The
Replica Optimizer’s duty is to select the “best” replicas.

The File Copier (also called Data Mover) is an efficient and secure file transfer service that
has to be available on each Storage Element. Initially this service will be based on GridFTP
protocol [20].

The Consistency Service has to guarantee the synchronization of the file replicas when an
update occurs. This service is provided on top of the replica manager.

DataGrid Release1 description
The first prototype contains the basic functionalities that provide the users with an

environment allowing to define and submit jobs to the grid system. It also allows to find and
use the best grid resources, according to a set of requirements about the job specified by the
user and to the characteristics and status of the available resources (CPU power, memory size,
CPU load etc.). Bookkeeping and logging information are stored in an appropriate server and
are available to the user. The Grid services actually used in the DataGrid Release1 are:

UI User Interface Lightweight component for accessing to the workload
management system.

RB Resource Broker The core component of the workload management system,
able to find a resource matching the user’s requirements
(including data location).

LB Logging and Bookkeeping Repository for events occurring in the lifespan of a job.

JSS Job Submission Services It is the result of the integration of Condor-G and Globus
services to achieve reliable submission of jobs via the
Globus GRAM protocol.

II Information Index Caching information index (based on Globus MDS-2)
directly connected to the RB, to achieve control of the cache
times and to prevent blocking failures when accessing the
information space.

Replica Manager /GDMP To consistently copy (replicate) files from one Storage
Element to another and register replicas. A manual
replication tool (GDMP) has been released for prototype1

Replica Catalog It stores information about the physical files on all the Grid
Storage Elements. A centralized replica catalog has been
chosen for prototype1

BrokerInfo It allows access to information obtained and used in the
brokering process by a running job.

MDS (GRIS and
Info.Providers)

Grid Information System used by the Resource Broker. The
first implementation is based on the Globus MDS system,
with resource schema and information providers defined and
implemented by DataGrid.

Authen. and Author. services VO directory configuration and tools to periodically generate
authorization lists

Automatic Installation and
Configuration management

Large Scale Linux Configuration (LCFG) tool for very large
computing fabrics (CE)

— 11 —

The basic building blocks of the DataGrid resources are the Computing Elements and
the Storage Elements.

The first UI version allows the user interaction with the system by means of a classad-
based Job Description Language (JDL) and a command-driven user interface providing
commands to perform a certain set of basic operations. The main operations made possible by
the UI are:

- Submit of a job for execution on a remote Computing Element, including:
o automatic resource discovery and selection
o staging of the application and data (input sandbox)

- Selection of a list of suitable resources for a specific job
- Cancellation of one or more submitted jobs
- Retrieval of the output file(s) produced by a completed job (output sandbox)
- Retrieval and display of bookkeeping information about submitted jobs
- Retrieval and display of logging information about jobs.

As already mentioned, the user has to own a valid X.509 certificate issued by a
DataGrid trusted CA. Every time a command is executed, the system checks for the existence
and the expiration date of a user proxy certificate: if the proxy certificate does not exist or it is
expired a new one is automatically created by the UI using the GSI services.

In order to get access to the Testbed1 a user has first to sign the EDG Usage Guidelines
(https://marianne.in2p3.fr/datagrid/documentation/EDG-Usage-Guidelines.html) .

The following picture represents the relationships between the Release1 services.

— 12 —

Middleware integration and release1
The EDG services of the Release1 are provided by several software components

implemented by different EDG Work Packages developed on top of Grid basic services
provided by Globus and Condor.

All these software components are integrated in an adequate way to constitute specific
machine types called Grid Elements, the basic building blocks of the testbed.

These are:
- User Interface, the gateway for job submission to the grid testbed.
- Computing Element, which are the gateway to the grid farm nodes. A job dispatched to

a Computing Element is then passed to a local scheduler for its execution on the
controlled farm nodes.

- Worker Node, belonging to the computing farm attached to the various Computing
Elements.

- Storage Elements, providing services to store and locate data, to replicate them over
the grid and to publish information about data availability.

- Resource Broker, responsible to match job requirements and grid resources and to
schedule the job submission to the “best matching” computing element.

- Logging & Bookkeeping (LB) Element is responsible for keeping track of the history
of the job execution and provides monitoring and job management services.

Other structural services that are essential in the testbed are:

- Information Indices are sitting by the Resource Brokers to provide a cached and
decoupled view of the GIS information about the resource locations and the status of
the testbed.

- Replica Catalogues store the location of data in the testbed.

The figure below shows how the software coming from Work Packages and Globus,
Condor subcomponents merge together in the configuration of the grid elements described
above.

— 13 —

The Testbed1 Software Release

In order to guarantee consistency and correctness of operations of the testbed, it was
necessary to define an EDG release of the software and specific installation instructions for
the deployment on each sites. The strategy of enforcing a well defined software environment
to be deployed by all sites has been adopted. In particular a specific version of the Operating
System and related updates, together with external package dependencies, the Globus release
to be deployed, configuration and user environment procedures have been identified. The
nature of the various “Grid elements” allow for a more flexible definition of the testbed
topology and calls for well-defined distribution and installation procedures to guarantee
uniformity and consistency of the testbed over wide area.

This way of operating allows to easily extend the testbed including new sites, to push
new configurations and solutions to all sites, to reproduce and track down problems.

The definition of an EDG Release

The hardest task of the Integration Team [5], a working group in charge of integrating
the different pieces of software, has been to collect all the EDG software packages and
Globus, to study the functionality and interdependencies, the requirements for a correct
operation of the testbed and come up with a topology and precise installation and
configuration instructions for deployment. In order to achieve these goals it has been
necessary to construct a node-centric view of the testbed deployment specifying the profile of
each node type (grid elements).

Because of the requirements coming with the installation and distribution tools provided
for the farms, the EDG release has been packaged via Linux RPMs (Red Hat Package
Manager). In particular the Globus main subcomponents were packaged in separate RPMs
that could be installed and configured independently.

After identifying the main grid node types (grid elements), the EDG Integration Team
has defined, via an iterative process, the set of RPMs that provide the functionality of each of
the above elements. A list of software RPMs and configuration RPMs defines a grid element
in an EDG release. During this work, it was necessary to specify detailed configuration
instructions and requirements that allow these elements to interoperate.

Once the definition of the profile for a grid element has been optimized, a small test
suite has been used to verify that all the functionalities required were present and working.

For each of the grid elements an LCFG template provides [21]:

1. the RPM lists of the packages required for a specific element

2. a typical LCFG configuration that needs to be customized for a specific testbed site.

3. a specific set of instructions about configuring the grid element.

All the above constitutes the content of the edg-release package available in the CVS
repository of the DataGrid Release [22].

Before tagging a release, the installation and distribution procedures via LCFG are tested
on a small development testbed.

— 14 —

The Testbed1: deployment of Datagrid Release1

The first prototype of the EDG (European DataGrid) grid infrastructure (Testbed1) has
been deployed in December 2001 using the official - tagged- EDG software Release 1, based on
Globus 2 beta 21. The Testbed1 has been used for the validation of EDG software, performed
by the Validation Team.

The Testbed1 was initially made up by a limited amount of grid elements in 5 European
countries (CERN, FR, UK, IT, NL), but it is currently being extended to about 30 sites all over
Europe including also some other countries such as the Czech Republic, ES, PT, DE and the
Nordic Countries.

In the initial Testbed1 layout the “common” grid elements (User Interfaces, Computing
Elements, Worker Nodes and Storage Elements) have been installed and configured at each site
while the grid elements devoted to the central grid services (Resource Brokers, Information
Indexes and Logging and Bookkeeping servers) have been set up at CERN and INFN-CNAF
(IT). Some other dedicated servers (the Virtual Organization LDAP servers and the VO Replica
Catalogues) have been hosted at NIKHEF (NL) and INFN-CNAF.

The central repository hosts the EDG software (in rpm format) including the external
software it depends on. The local site manager gets the software to be installed from the central
repository. The automatic installation and configuration tool (LCFG) has been used to install the
grid element at each site. LCFG is very useful also when the grid elements have to be upgraded;
the site manager has only to modify the node’s LCFG profile and to issue the LCFG upgrade
command.

On Testbed1 the grid elements are shared by the different Virtual Organizations (the High
Energy Physics, Earth Observation and Biomedical communities). This setup allows a great
flexibility for Testbed1 usage. By means of the Virtual Organization dedicated servers (X509
Certificate LDAP servers and Replica Catalogues), authorization and data management issues
are addressed, while, at the run level, it is possible to find out on which CE the VO specific
software has been installed through the usage of simple environment variables in the JDL script.

In addition, the DataGrid Testbed1 flexibility allows for the definition of different grid
topologies (e.g. different grid domains with dedicated services for the different VOs) according
to the needs.

Validation of Release1

It is essential for the success of the project that the developed middleware satisfies the
user’s initial requirements. For this reason, a software validation phase performed by the user
communities using real applications in a large scale environment is crucial within the project.

After a successful validation phase the users will have to develop their applications
trying to profit by the EDG software.

— 15 —

The validation activity will be progressively done during the whole project lifetime, in
order to test each middleware release.

Short term use cases have been used at the beginning and real applications are going to
be used later on [23].

Conclusions
The first DataGrid prototype is in place in Europe as result of the collaboration of all the

actors of a distributed computing environment: resource owner, middleware developers,
scientific application programmers and scientific application users. The testing phase
demonstrated the power of the grid whose basic functionalities allow to select the most
appropriate CE-SE pair just specifying job characteristic and related input/output data in a high
level language. The preliminary Release1 validation phase, completed at the end of January
2002, provided a first evaluation of the services that will be taken in account for the next
releases, foreseen every 3 months. The EU DataGrid project successfully passed the first year
review (On March, 1st 2002), performed by external experts appointed by the European Union.
During the review, a demo over the testbed1 has been successfully performed using the
experiment applications.

The major project release, foreseen for September 2002, will introduce new important
services like support for dependent, parallel, and partitionable jobs, resource co-allocation,
advance reservation and accounting, as well as more efficient information and monitoring
services.

Acknowledgement

The author gratefully acknowledges all the members of the EDG collaboration. Special
thanks are due to F.Donno, L.Gaido, F.Prelz, M.Sgaravatto and H.Stockinger for their
contributions to the writing of the paper.

— 16 —

References
(all the document referenced with ‘DataGrid-…..’ can be found at:
http://eu-datagrid.web.cern.ch/eu-datagrid/deliverables/default.htm)
1. DataGrid User Requirements and Specifications for the DataGrid Project (WP8),

DataGrid-09-D9.1-0101-1_2
2. Requirements Specification. EO Requirements for Grid, DataGrid-09-D9.1-0101-1-2
3. Requirements for a Grid-aware Biology Applications DataGrid-10-D10.1-0102-3-8
4. I.Foster, C.Kesselman, S.Tuecke The Anatomy of the Grid: Enabling Scalable Virtual

Organization. International Jurnal of High Performance Computing Applications.2001
5. Evaluation of Testbed Operation, DataGrid-06-D6.4-0109-1-0
6. Data Management (WP2) Architecture Report DataGrid-02-D2.2-0103-1-2
7. K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and S. Tuecke.

A resource management architecture for metacomputing systems. In Proc. IPPS/SPDP
'98 Workshop on Job Scheduling Strategies for Parallel Processing, 1998.

8. Information and Monitoring (WP3) Architecture Report DataGrid-03-D3.2-0101-1-0
9. M.Sgaravatto ,WP1 Inputs to the DataGrid Grid Information Service Schema

Specification, Sept. 2001, http://grid.infn.it/workload-grid/documents.htm
10. WP1 report on current technology, DataGrid-01-TED-0102-1-0
11. F. Berman and R. Wolski. The AppLeS Project: A Status Report. In Proc. of the 8th NEC

Research Symposium, Berlin, Germany, May 1997.
12. H. Nakada, M. Sato, and S. Sekiguchi. Design and Implementation of Ninf: towards a

Global Computing Infrastructure. Future Generation Computing Systems, October 1999.
Special Issue on Metacomputing.

13. H. Casanova and J. Dongarra. NetSolve: A Network Server for Solving Computational
Science Problems. Intl. Journal of Supercomputing Applications and High Performance
Computing, 11(3), 1997.

14. P. Chandra, A. Fisher, and C. Kosak et~al. Darwin: Customizable Resource Management
for Value-Added Network Services. In Proc. of the 6th Int. Conf. on Network Protocols}.
IEEE,1988

15. R. Buyya, D. Abramson, and J. Giddy. Nimrod/G: An Architecture for a Resource
Management and Scheduling System in a Global Computational Grid. In Proc. of Int.
Conf. on High Performance Computing in Asia-Pacific Region, Beijing, China, 2000.
IEEE-CS Press.

16. Definition of Architecture, technical Plan and Evaluation Criteria for Scheduling, Resource
Management, Security and Job description DataGrid-01-D1.2-0112-0-3

17. Data Management (WP2) Architecture Report DataGrid-02-D2.2-0103-1-2
18. ASF home page: http://oss.software.ibm.com/developerworks/opensource/afs/
19. A. Samar, H. Stockinger. Grid Data Management Pilot (GDMP): A Tool for Wide Area

Replication, IASTED International Conference on Applied Informatics (AI2001),
Innsbruck, Austria, February 19-22, 2001. http://cmsdoc.cern.ch/cms/grid/

20. www.globus.org/datagrid/gridftp.html
21. www.lnl.infn.it/datagrid/wp4-install/testbed-report_2_v3/index.html
22. EDG software repository:

http://marianne.in2p3.fr/datagrid/testbed1/repositories/index.html
23. Testbed1 Assessment by HEP Applications, DataGrid-08-D8.2-0111-0-3

— 17 —

Glossary
AFS Andrew File System
API Application Programming Interface
ATF DataGrid Architecture Task Force
CA Certification Authority
CAS Community Authorisation Service
CE Computing Element; a Grid-enabled computing resource.
CERN Centre Europeen pour la Recherche Nucléaire
CERT X.509 Certificate
CNRS Centre National de la Recherche Scientifique
CORBA Common Object Request Broker Architecture
COTS Commercial Off-The-Shelf
CPU Central Processing Unit
CVS Concurrent Versioning System
DAQ Data Acquisition
DBMS Data Base Management System
DHCP Dynamic Host Configuration Protocol
DMA Direct Memory Access
EC European Commission
EDG European Data Grid; (official project name is “DataGrid”).
EO Earth Observation
ES Earth Science
ESD Event Summary Data; used in HEP: information required for detailed analysis and

high-level reconstruction.
ESRD Earth Science Requirement document
EU DataGrid European Data Grid Project
FSM Finite State Machine
FTP File Transfer Protocol
GDMP Grid Data Mirroring Package; a WP2 application.
GGF Global Grid Forum
GIF Graphics Interchange Format
GIS Grid Information Service; (e.g. IMS or Globus MDS).
Globus Project that aims at developing fundamental technologies needed to build

computational grids.
GMA Grid Monitoring Architecture; monitoring architecture defined by GGF.
GNU GNU's Not Unix
GRAM Grid Resource Allocation Management
GriFIS Grid Fabric Information Service
GS Grid Scheduler; service responsible for selecting which Grid resources to use for a

given job.
GSI Grid Security Infrastructure (Globus Security mechanism).
GUI Graphical User Interface
HEP High Energy Physics
HSM Hierarchical Storage Manager. HSM software allows infrequently accessed data to

be migrated to less expensive offline storage automatically.
HTML Hyper Text Markup Language
HTTP Hyper Text Transfer Protocol
HW Hardware

— 18 —

I/O Input/Output
IDL Interactive Data Language
IMS Information and Monitoring System; catalogue and distribute static and dynamic

data about the Grid.
IST Information Society Technologies
JDL Job Description Language; to describe Grid jobs.
JSS Job Submission Service
LB Logging and Bookkeeping
LCAS Local Centre Authorisation Service
LCG LHC Computing Grid
LCMAPS Local Credential MAPping Service
LDAP Lightweight Directory Access Protocol
LDIF LDAP Data Interchange Format
LFN Logical File Name; A globally unique name to identify a specific file which is

mapped by the RC onto one or more PFNs.
LHC Large Hadron Collider
LRMS Local Resource Management System; controls resources within a CE e.g. PBS or

LSF.
LSF Load Sharing Facility
MDS Globus Meta-computing Directory Service
MPI Message Passing Interface
MPI Standard API for exchanging messages between networked computers. Several

implementations of MPI are available on different platforms. MPICH is a freely
available, portable implementation of the MPI standard. A Globus-aware MPICH
implementation is proposed on Globus home page

MR Monitoring Repository
MSA Monitoring Sensor Agent
MSS Mass Storage System
MUI Monitoring User Interface
MySQL Widely distributed SQL open source implementation.
NFS Network File System
NIS Network Information System
NMA Node Management Agent
OS Operating System
PB PetaByte
PDS Payload Data Segment
PFN Physical File Name; URL of actual physical instance of an LFN.
PKI Public Key Infrastructure
PM Project Manager
PMB Project Management Board
PTB DataGrid Project Technical Board
QoS Quality of Service
RB Resource Broker
RC Replica Catalog; associates an LFN to one or more PFNs.
RCS Revision Control System
RD Research and Development
RDBMS Relational Database Management System
Replica A copy of a file that is managed by the Grid middleware.
Replica The combination of Replica Catalogue, Replica Manager, and all associated

— 19 —

Service components.
RM Replica Manager; provides several services related to replicas.
RMS Resource Management Subsystem
ROI Region of interest
RPC Remote Procedure Call
RPM Red Hat Package Manager
RSL Globus Resource Specification Language
RUP Rational Unified Process
SAN Storage Area Network.
SE Storage Element; a Grid-enabled storage system.
SI2000 SpecInt 2000 Benchmark
SP Software Package
SQL Standard Query Language for relational databases.
SR Software Repository
SSL Secure Sockets Layer
SW Software
TAG Event Selection Tag; used in HEP: used for fast event selection.
TeV Tera electron Volt
Testbed 0 DataGrid initial Glogus toolkit deployment
Testbed 1 First release of DataGrid Software - Year 1
Testbed 2 Second release of DataGrid Software - Year 2
Testbed 3 Third release of DataGrid Software - Year 3
TFN Transport File Name; URL to access a given file on a SE.
TFTP Trivial File Transfer Protocol
UI User Interface
URL Uniform Resource Locator
VO Virtual Organization; A set of individuals defined by certain sharing rules - e.g.

members of a collaboration.
VPN Virtual Private Network
WM Workload Management
WMS Workload Management System
WP Work Package
WP1 Grid Work Scheduling
WP2 Grid Data Management
WP3 Grid Monitoring Services
WP4 Fabric Management
WP5 Mass Storage Management
WP6 Integration Testbed and Demonstrators
WP7 Network Services
WP8 HEP Applications
WP9 Earth Observation Applications
WP10 Biology Applications
WP11 Dissemination
WP12 Project Management
WWW World Wide Web
XML eXtensible Markup Language

