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Abstract

Since 1978 superconducting coupled cavities have been proposed as sensitive detector of
gravitational waves. The interaction of the gravitational wave with the cavity walls, and the
resulting motion, induces the transition of some electromagnetic energy from an initially excited
cavity mode to an empty one. The energy transfer is maximum when the frequency of the wave
is equal to the frequency difference of the two cavity modes. In this paper the basic principles of
the detector are discussed. The interaction of a gravitational wave with the cavity walls is studied
in the proper refrence frame of the detector, and the coupling between two electromagnetic
normal modes induced by the wall motion is analyzed in detail. Noise sources are also
considered; in particular the noise coming from the brownian motion of the cavity walls is
analyzed. In the last section some ideas for the developement of a realistic detector of
gravitational waves are discussed; the outline of a possible detector design and its expected
sensitivity are also shown.
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1 Introduction

In a series of papers it was studied how the effects due to the interaction between the

gravitational and the electromagnetic fields could be used to detect gravitational waves

[1,2]. The proposed detector exploits the energy transfer induced by the gravitational

wave between two levels of an electromagnetic resonator, whose frequencies �� and ��

are both much larger than the angular frequency � of the g.w. and satisfy the resonance

conditon ��� � ��� � �. � In the scheme suggested by Bernard et al. the two levels are

obtained by coupling two identical high frequency cavities�; the angular frequency �� is

the frequency of the level symmetrical in the fields of the two cavities, and �� is that of

the antisymmetrical one. The frequency difference between the symmetric and the anti-

symmetric level is determined by the coupling, and can be adjusted by a careful resonator

design. Since the detector sensitivity is proportional to the square of the resonator quality

factor, superconducting cavities should be used for maximum sensitivity.

The power transfer between the levels of a resonator made up of two pill–box cavi-

ties, mounted end–to–end and coupled by a small circular aperture in their common end-

wall, was checked in a series of experiments by Melissinos et al., where the perturbation

of the resonator volume was induced by a piezoelectric crystal [3,4]. Recently the ex-

periment was repeated by our group with an improved experimental set–up; we obtained

a sensitivity to fractional deformations of the resonator length as small as Æ��� � �����

Hz���� [5].

In this paper we shall discuss the mechanism of the interaction of a gravitational

wave with a detector based on two coupled resonant cavities. In previous works this issue

was discussed using the concept of a dielectric tensor associated with the gravitational

wave [6]. The interaction was analyzed in the reference frame where the resonator walls

were at rest even in presence of a gravitational perturbation. We shall analyze the effect

in the proper reference frame attached to the detector and we shall therefore consider the

interaction between the wave and the field stored inside the resonator due to the coupling

of the g.w. with the mechanical structure of the detector [7].

The paper will be organized as follows: in section 2 the problem of finding the elec-

tromagnetic fields in a closed volume with time–varying boundary conditions is studied,

�The interaction between the g.w. and the detector is characterized by a transfer of energy and of angular
momentum. Since the elicity of the g.w., i.e. the angular momentum along the direction of propagation, is
�, it can induce a transition between the two levels provided their angular momenta differ by �; this can be
achived by putting the two cavities at right angle or by a suitable polarization of the electromagnetic field
inside the resonator.

�Throughout this paper, we shall call resonator the whole detector made up of two coupled cavities; e.g.
we shall speak about one resonator composed by two coupled spherical cavities.

2



and an approximate expression of the normal modes in a perturbed resonator is worked

out. In section 3 we shall analyze the interaction of a g.w. with the mechanical struc-

ture of the detector; we shall see that the transfer of energy between a mechanical and an

electromagnetic oscillation depends both on the electromagnetic field distribution inside

the resonator and on the resonator geometry and mechanical properties. In section 4 we

shall discuss some ideas for the developement of a realistic gravitational wave detector

based on spherical microwave cavities. Afterwords the coupled equations of motion for

the fields in a perturbed resonator are worked out and solved. In section 8 the issue of the

thermal noise of the detector’s walls is studied; other noise contribution are also consid-

ered. Finally, in the last section, the expected sensitivity of some detector configuration is

shown and discussed.

2 Electromagnetic field in a resonator with perturbed boundaries

To study the mechanism of the energy transfer between the two levels of an electromag-

netic resonator perturbed by a gravitational wave we shall follow classic electromagnetic

theory. We shall make use of the fact that any field configuration inside the resonator

can be expressed as the superposition of the electromagnetic normal modes of the given

resonator [8].

If no sources are present, the electromagnetic field in vacuum is determined by the

equations:
�� � �� � � (1)

�� � �� � � (2)

��� �� � ��
� ��

��
� � (3)

�� � �� � 	�
� ��

��
� � (4)

As can be easily verified, eqs. (1)–(4) are automatically satisfied if the fields satisfy the

wave equations:

�� �� � �


�
�� ��

���
� � (5)

�� �� � �


�
�� ��

���
� � (6)

with 
 � ���	��
����.

Let us assume that the field is contained in a resonator with perfectly conducting

walls. If we impose boundary conditions on the fields, the solution of the wave equations

(5)–(6) will have an infinite discrete set of normal–mode solutions orthogonal to one
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another and complete, in the sense that any arbitrary field in the resonator can be expressed

as a sum of these normal modes with suitable amplitudes. The amplitudes of each mode

can then be used to describe the field in the resonator.

By the familiar procedure of separation of variables we may assume a solution of

eqs. (5)–(6) of the form:

������ �� �
��
���

����� ������� (7)

and
������ �� �

��
���

����� ������� (8)

where we have defined:

����� � 	
	�

�
�

�� � ��� 
� (9)

and

����� � 	
��

�
�

�� � ��� 
� (10)

where the integrals are performed over the resonator volume.

We require that at the walls the tangential component of �� and the normal com-

ponent of �� vanish. With this assumption the functions ������� and ������� satisfy the

equations:

��
��� � ��� ��� (11)

��
��� � ��� ��� (12)

where �� � ���
 is the propagation constant associated with the ��� mode.

It can be proved that the normal modes ��� and ��� have orthogonality properties of

the form �
�

��� � ��� 
� � Æ�� (13)�
�

��� � ��� 
� � Æ�� (14)

For a cubical resonator the functions ������� and ������� are ��	���� � ��� and 
������ �
���. For other geometries they will be other complete sets of functions. The boundary

conditions and geometry determine the different modes which are distinguished by the

index �. In general three numbers are needed to specify a mode; � is an abbreviation for

this set of numbers.

Let us now expand the fields ��, �� in terms of the orthogonal functions ��� and
���; when we substitute these expansions in Maxwell’s equations and equate coefficients,

so as to get the differential equations satisfied by the various coefficients, we find that
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equations (1) and (2) are automatically satisfied. From equations (3) and (4) we find the

following equations for the expansion coefficients:


�����


�
� ������� � � ��


�

����� (15)


�����

�

� ������� � � (16)

We have taken into account the dissipation arising from the finite conductivity of

the walls introducing the electromagnetic quality factor [8]:


� �
����

��

�
� ��

� 
��
� ��

� 
�
�

��

��
(17)

�� is the material–dependent surface resistance of the walls, and the geometric factor ��

of the ��� mode is defined as:

�� � ����

�
� ��

� 
��
� ��

� 
�
(18)

As can readily be seen, equations (15)–(16) for the field expansion coefficients are de-

coupled: the modes are independent from one another and behave as simple damped

harmonic oscillators.

2.1 Perturbation of boundaries

Let us suppose that the resonator’s boundary is perturbed so that the eigenvalues and

eigenfunctions of the perturbed resonator differ but little from those of the original one.

The perturbation method allows to find the eigenvalues and eigenfunctions of the per-

turbed problem from the knowledge of the original ones. It basically consists in expanding

in power series of a perturbation parameter � the new modes and frequencies [9]:

�� �
����� � ������� � � ������� ������

�� �
����� � ������� � �������� ������ (19)

��� � �� � � �� ������

In the perturbed resonator we shall have:

������ �� �
��
���

������ �� �
����� (20)

and
������ �� �

��
���

������ ��
�
����� (21)
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with:
������ � 	

	�

�
� �

�� � �� �
� 
� (22)

and
������ � 	

��

�
� �

�� � �� �
� 
� (23)

where the integrals are now performed over the perturbed volume � �.

The perturbed modes will satisfy the following equations:

��� �� �
� � ��� �� �

� (24)

��� �� �
� � ��� �� �

� (25)

When the expansions (19) are inserted into the equations (24) we obtain a series of

equations determining the various terms of the expansion (19). In the first order approxi-

mation, the perturbed fields may be written:

� ������� �
��

���

���
������� (26)

�������� � ��



��� ������� �

��
���

���
������� (27)

� �� � ��



�� ��� (28)

where the sums have to be performed for � 
� �. The expansion coefficients have the

form [9]:

��� �
����

��� � ���
��� (29)

��� �
���

��� � ���
��� (30)

with

��� �
�
�

� ��� � ��� � ��� � ���� 
� (31)

where � � � � � � is the (algebraic) difference between the perturbed and the original

volume.�

The calculation of the coupling coefficient ��� depends on how the resonator is

deformed by an external force. For this reason in the next section we shall briefly review

the study of the mechanical behaviour of a body under the influence of an external force.

�The derivation of the eigenmodes and eigenvalues of the perturbed resonator has been made assuming
a static perturbation; in the following we shall assume that it is also correct for a perturbation which has a
rate of change much slower than the e.m. field characteristic frequency.
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3 Analysis of the mechanical response of the detector

The interaction of a gravitational wave with the mechanical structure of the detector can

be studied by means of classical, non–relativistic, linear elasticity theory [10,11]. If ������

denotes the displacement of the mass element at point ��, relative to the centre of mass of

the body in its unperturbed state, and ������ �� is the volume force density which acts on the

body, the displacement is the solution of the system of partial differential equations:

�
����

���
� ������ ��� ������� � ��� � ������ �� (32)

with suitable boundary and initial conditions. ����� is the mass density of the body and

� and � are the material’s elastic Lamé coefficients. In the following we shall adopt null

initial conditions:

������ �� �
���

��
���� �� � � (33)

The expansion theorem [12] states that the displacement of a system in response to

an applied force is equal to the superposition of the normal modes ������� of the system�:

������ �� �
��

���

������� ���� (34)

The normal modes ������� are the eigen–solutions to

������ � ��� ������� � ���� � ���
����� (35)

with boundary conditions; here ! is an index, or set of indices, labelling the mode of

frequency ��. The modes are normalized so that�
� 	


������� � ������������ 
� � "�Æ�� (36)

where "� is the reduced mass of the ! mode. For a homogeneous system "� � " ,

where " is the mass of the system.

 ���� is the generalized coordinate of the ! mode, obeying the dynamical equation

of motion:

� ���� �
��

#�

� ���� � ��
� ���� �

�����

"
(37)

where an empirical damping term, proportional to the system velocity, has been added;

����� is the generalized force, given by

����� �
�
� 	


������ �� � ������� 
� (38)

�In this section we shall label with greek indices the mechanical normal modes of the system, and with
latin indices the normal modes of the electromagnetic field stored inside the system.
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The solution of equation (37), satisfying the initial conditions (33), can be written

in term of a Green function integral as [13]:

 ���� �
�

"��

� �

�
����

�� ��	����� ��� ������ ��

$�

�� (39)

with $� � 
#���� is the amplitude decay time of the system.

In the frequency domain the asymptotic solution of equation (37) is easily found to

be:

 ���� �
������"

��
� � �� � % ����#�

(40)

Substituting into eq. (34), we find

������ �� �
��
���

�������������"

��
� � �� � % ����#�

(41)

It is clear from eq. (41), that if we are interested in the displacement in a narrow frequency

interval �� Æ�, only those modes for which �� � � (and �� 
� �), will give a significant

contribution.

3.1 Interaction of a g.w. with the mechanical structure of the detector

An incoming gravitational wave manifests itself as a tidal force density acting on the

mechanical structure of the detector. Given the expression of the gravitational force and

the mechanical properties of the detector, the resulting deformation can be calculated,

with the aid of the mathematical apparatus outlined in the previous section.

We are mainly interested in the evaluation of the coupling coefficient ��
���. Let us

note that, for small displacements, we can write the integral over the perturbed volume as

a surface integral in the form (see fig. 1):

��
��� �
�
�

� ��� � ��
 � ��� � ��
� 
� ��
�
� ��� � ��
 � ��� � ��
� ����� � 
�� (42)

where the integral in the r.h.s of eq. (42) is now performed over the unperturbed detector

boundary. It is worth noting that this integral can be expressed as a superposition of the

mechanical normal modes of the system. Using the expansion theorem (34) we can write:

��
��� �
�
�
� ��� � ��
 � ��� � ��
� ����� � 
�� �

��
���

 ����
�
�
� ��� � ��
 � ��� � ��
� ��� � 
�� �

��
���

 ����&
�
�
 (43)
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Figure 1: Schematic view of the deformed boundary. �� is the local displacement vector;

�� is a vector pointing in the direction of the outer normal of the original surface.

where we have defined the time–independent form factor &�
�
 as:�

&�
�
 �

�
�
� ��� � ��
 � ��� � ��
� ��� � 
�� (44)

If the external force couples strongly only to one mechanical mode of the detector (say

the �), we can write the simplified expression

��
��� �  ����&
�
�
 (45)

In summary, to have an effective coupling between the two electromagnetic modes

we need:

1. that the generalized coordinate  ���� is different from zero. If the system is initially

at rest, this is true if and only if the generalized force, is itself different from zero,

as is shown in eqs. (37) and (39);

2. that the spatial integral in eq. (44) is different from zero. In section 6 we shall

discuss how this depends on the symmetries of the electromagnetic field and of the

perturbed volume.

�We remind that the superscript � labels the mechanical normal mode, while the subscripts � and � label
the electromagnetic modes.
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4 Detector design

In order to build a realistic detector a suitable cavity shape has to be chosen. From quite

general arguments a detector based on two coupled spherical cavites looks very promising

(see fig. 2).

Figure 2: Artistic view of the coupled spherical cavities with the central tuning cell.

In order to approach the interesting frequency range for g.w. detection, the mode

splitting (i.e. the detection frequency) will be �� � �� � �� kHz. The internal radius of

the spherical cavity will be � � ��� mm, corresponding to a frequency of the TE��� mode

� � 
 GHz. The overall system mass and length will be " � � kg and ' � �(� m.

The choice of these frequencies for the resonator and mode splitting will be also useful

in order to test the feasibility of a detector working at � 
�� MHz and at a detection

frequency of � � KHz.

A tuning cell, or a superconducting bellow, will be inserted in the coupling tube

between the two cavities, allowing to tune the coupling strength (i.e. the detection fre-

quency) in a narrow range around the design value.

From the point of view of the electromagnetic design the spherical cell has the

highest geometrical factor, and so the highest quality factor, for a given surface resistance.

For the TE��� mode of a sphere the geometric factor � has a value � � ����, while for a

standard elliptical accelerating cavity the TM��� mode has a value of � � 
���. Looking

at the best reported values of quality factor of accelerating cavities, which typically are

in the range ����–����, we can extrapolate that the quality factor of the TE��� mode of a
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spherical cavity can exceed 
 � ����.

From the mechanical point of view it is well know that a sphere has the highest

interaction cross-section with a g.w. and that only a few mechanical modes of the sphere

do interact with a gravitational perturbation (the quadrupolar ones) [11]. The mechanical

design is highly simplified if the spherical geometry is used since the deformation of the

sphere is given by the superposition of just one or two normal modes of vibration and thus

can be easily modeled. In fact the proposed detector acts essentially as a standard g.w.

resonant bar detector: the gravitational perturbation interacts with the mechanical struc-

ture of the resonator, deforming it. The e.m. field stored inside the resonator is affected by

the time–varying boundary conditions and a small quantity of energy is transferred from

the initially excited e.m. mode to the initially empty one, provided the g.w. frequency

equals the frequency difference of the two modes. We emphasize that our detector is

sensitive to the polarization of the incoming gravitational signal: once the e.m. axis has

been chosen inside the resonator, a g.w with polarization axes in the direction of the field

axis will drive the energy transfer between the two modes of the cavity with maximum

efficiency.

Figure 3: Electric field magnitude of the TE��� mode. Note the alignment of the field axis.

Finally the spherical cells can be esily deformed in order to remove the unwanted

e.m. modes degeneracy and to induce the field polarization suitable for g.w. detection.

The interaction between the stored e.m. field and the time-varying boundary conditions is

not trivial and depends both on how the boundary is deformed by the external perturbation

and on the spatial distribution of the fields inside the resonator, as shown by the expres-
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sion of the coupling coefficient &�
�� (eq. (44)). It has been calculated that the optimal

field spatial distribution is with the field axis of the two cavities orthogonal to each other

(see fig. 3). Different spatial distributions (e.g. with the field axis along the resonators’

axis) give a smaller effect or no effect at all. A more detailed discussion of the coupling

coefficient calculation is done in section 6.

5 Field equations

We shall derive the equations of motion for the fields in the coupled system from a gen-

eral hamiltonian formalism [14]. The hamiltonian of the electromagnetic field inside a

resonator with perfectly conducting walls can be written, in terms of the fields ampli-

tudes:

� �
�




�
�

�
	� �� � �� � ��

�� � ��
�

� (46)

If we substitute eqs. (7)–(8) in eq. (46) and use the orthonormality condition, the hamil-

tonian for the field becomes:

� �
�




�
�

�
��� ���

�

�
(47)

If we define a generalized coordinate )� as:

)� �
��

��
(48)

and its conjugate momentum as:

*� � �� (49)

the hamiltonian can be written as:

� �
�




�
�

�
* �
� � ��

�)
�
�

�
(50)

which is identical to the hamiltonian of an infinite set of uncoupled harmonic oscilla-

tors. It can be easily verified that the field equations of motion can be derived from this

hamiltonian by:

��

�)�

� � �*� � ��
�)�

��

�*�
� �)� � *� (51)

which, in terms of the fields become:

��

�

� �����


��


�
� ���� (52)

which are identical to eqs. (15)–(16) if wall dissipation is neglected.
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5.1 Field equations for the perturbed system

In order to find the equations of motions for the fields in the perturbed resonator we shall

make use of the results obtained in the previous sections. Let us consider again an external

time–dependent perturbation, whose rate of change is much less than the rate of change

of the fields. The normal modes in the perturbed resonator are given by eqs. (19)–(31).

If we are looking for the fields in a frequency region where only two electromagnetic

modes give a significant contribution, the hamiltonian of the system, as a function of the

perturbed modes amplitudes (see eqs. (22) and (23), will be:

� �
�




�
���� � ���

� � ���� � ���
�

�
(53)

If we now substitute in the above expression the expansions (19) we obtain the hamilto-

nian written in terms of the unperturbed modes amplitudes:

� �
�




�
��� ���

� � ��� ���
� �

+��
"

�"��
� ��

�
�

 �



�
&�
����

� � &�
����

� � 
&�
������

�
�  � �� (54)

where the hamiltonian of a mechanical harmonic oscillator, coupled to an external, time–

dependent force, has been included.

From this hamiltonian the equations of motion for the fields can readily be obtained:


��


�
� ���� � � ��


�
�� (55)


��


�
� ���� � � ��


�
�� (56)


��

�

� ���� � ��� � �&�
���� � &�

����� (57)


��

�

� ���� � ��� � �&�
���� � &�

����� (58)


 �

�

� +�
"

� � ��

#�

 � (59)


+�

�

�"��
� � � �� � � ��

� (60)

where the dissipative terms have been added by hand and where the term � ��
� , which

describes the back–action effect of the fields on the walls is given by:

� ��
� �

�




�
&�
����

� � &�
����

�

�
� &������ (61)
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6 Coupling coefficient calculation

The explicit calculation of the coupling coefficient &�
�� is not trivial for an arbitrary defor-

mation of the resonator volume and in general can be done only by numerical methods.

First let us note a general property of the coupling coefficients. Let us consider the

resonant modes of the two coupled cavities. As previously noted we have the symmetric

and the antisymmetric mode; for the former the electric field �� and the magnetic field ��

in the first cavity are equal to the electric and magnetic field in the second cavity, while

for the latter �� and �� in the first cavity are equal respectively to � �� and � �� in the

second one. From this it follows that in the definition of &��, the integrand expression

� ��� � ���� ��� � ���� – where we remind that the subscript � indicates the symmetric mode

and 
 the antisymmetric mode – is odd over the whole detector volume. For this reason if

the volume perturbation, over which we perform the integration, is symmetric between the

two cavities, the coupling coefficient vanishes, because the contributions to the integral

coming from the two cavities, cancel each other. Otherwise, if the volume perturbation

is antisymmetric (when one cavity shrinks, the other expands) the two contributions are

added with the same sign, and the coupling coefficient is maximum. This general prop-

erty suggests that we must find a geometrical configuration of our detector such that the

volume deformation due to a g.w. is antisymmetric for the two cavities. This was pointed

out already in previous works, where the argument was based on the fact that, since the

g.w. carries an angular momentum equal to 
, the angular momenta of the fields of the

two modes should differ by 
. This can be achieved by putting the two cavities at right

angle or by a suitable polarization of the electromagnetic field inside the resonator.

These concepts were verified by both analytical and numerical calculations. Gen-

eral arguments suggested that for an ideal spherical hollow resonator, excited in the funda-

mental quadrupolar mechanical mode and in the TE��� electromagnetic mode, we should

have�:

&�
�� � &�

�� �
�
�

�
��� � ���

�
��� � 
�� � �(�

&�
�� �

�
�

�
��� � ���

�
��� � 
�� � � (62)

&�
�� �

�
�

�
��� � ���

�
��� � 
�� � �

More detailed calculations, made on a realistic model of the coupled spheres, in-

cluding the central coupling cell and the e.m. input and output ports, were made by

�We remind that for a TE e.m. mode we have vanishing electric field on the resonator’s surface; for this
reason the electric field plays no role in the coupling coefficient calculation.
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finite element methods. These calculations showed that &�
�� � &�

�� � ����, while

&�
�� � &�

�� � �(
.

7 Calculation of the detector’s signal

As already pointed out in the introduction, the proposed detector exploits the energy trans-

fer induced by the gravitational wave between two levels of an electromagnetic resonator,

whose frequencies �� and �� are both much larger than the angular frequency � of the

g.w. and satisfy the resonance conditon �� � �� � �. This is an example of a fre-

quency converter, i.e. a nonlinear device in which energy is transferred from a reference

frequency to a different frequency by an external pump signal. This can be viewed as a

three-bodies interaction (given by the field–wall interaction term in the hamiltonian (54))

which corresponds to annihilation of quanta at �� and �� and creation at �� (or vice

versa). For this reason we could argue that, since for a small perturbation����� and �����
will approximately be sinusoidal functions at frequency ��, while ����� and ����� will

oscillate at frequency ��, in the hamiltonian only the terms varying as ��� �� will give a

significant contribution to the interaction. The d–c terms will just give an average defor-

mation of the detector’s walls, determining a static frequency shift of the resonant modes,

while the rapidly fluctuating terms at �� � �� would practically average to zero.

We shall now calculate the field that is excited by the boundary pertubation in mode


, starting from an initial condition with mode � strongly excited in the resonator. To

simplify the analysis of the system of differential equations (55)–(60) we will neglect the

small perturbation, due to the external force, on the initially excited e.m. mode (mode

1), and will set �� � �� 
������� and �� � �� ��	�����, with constant amplitude ��.	

Furthermore we shall consider the coupling between two TE modes of a resonator: for

these modes we have vanishing electric field on the resonator surface. Switching to the

complex notation,
 we obtain:

� ��
� � �



&�
��������

�� (63)

Finally, to further simplify our calculations, we shall choose a resonator geometry and

e.m. field distribution so that &�
�� � &�

�� � �. We shall see in a following section that this

choice is always possible.

With this assumptions, and taking
� � 
� � 
, we can recast the coupled system

of equations in the following form:

��� �
��



��� � ��

��� � ���
� �&�

���� (64)

�Actually the amplitude of mode � is kept constant by an external rf power source.
�In the following it is understood that the physical fields are the real parts of the complex quantities.
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� � �
��

#�
� � � ��

� � �
��
"

� �




&�
��

"
����

� (65)

We apply the following substitutions:

����� � ����� ����, ����

 ���� � #��� ����,��� (66)

����� � - ��� ����,���

Eqs. (64)–(65) now become:

��� � . ��� � /�� � 
#

�#� 
 �#� �# � 0�� � -�" (67)

where ., /, 
, 
, � and 0 are constant coefficients defined by

. � 
, ��� � �� �
��



/ � ��

� � ��� � ��� � ,
��


 ��� � ��


 � ���
�&

�
����


 � 
,� �
��

#�

(68)

� � ��
� � �� � ,

���

#�

0 � ��




&�
����

"
(69)

We can now fourier transform eqs. (67) and solve them for �����. We find:

����� � �
1 
 - ����"

�/� �� � , .�� ��� �� � , 
��� 0

(70)

����� is then given by:

����� � � ����, ����
� �

��


 - ����" ����, ���

�/� �� � , .�� ��� �� � , 
��� 0


� (71)

For a plane g.w travelling along the 2 axis the force density, in the proper reference

frame attached to the detector, has the form:

����3� �� � ��



���3�

�
��.��3� �.��4�� ��.

�
�3� �.��4�� ���

�
(72)
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where .�
���, is the adimensional amplitude of the wave, and .�� � �.��, .
�
� � .��. The

generalized force, acting on the � mechanical mode, then has the form

�� � ��



�.��

�
� 	


������ 3� ����� 4� ���3� 
� �
�



�.��

�
� 	


������ 4 � ����� 3� ���3� 
� (73)

If .�
��� is given by:

.�

��� �

�
��� !��� ��� 5���
��� 5��� ���� !���

�
(74)

where !��� and 5��� are sinusoidal functions of frequency ���
1�, then �.�

 � ���.�


 , and

if we define the effective lengths of our detector as

'� �
�

"

�
� 	


������ 3� ����� 4����3� 
�

'� �
�

"

�
� 	


������ 4 � ����� 3� ���3� 
� (75)

we can write

����� �
�



"��

�
'�.

�
� � '�.

�
�

�
(76)

and

����� � ��





�� �'��
�
� � '��

�
��

/�� 0

Æ�� � �� (77)

or, making use of eq. (68)

����� �
�




��
�&

�
���� �'��

�
� � '��

�
���

� ����, �����
��
� � �� � , ���

��

� �
��
� � ��� � ��� � , ��
�����

�

�
� 
����������

��

(78)

The electric field amplitude the initially empty mode can be readily obtained from

eq. (56); the average energy stored in mode number 2 is given by: 6� � ���
������ �

���
������.

8 Noise issues

8.1 Mechanical thermal noise

Thermal noise is one of the fundamental limits in the measurement of small displace-

ments. In particular it is one of the dominant noise sources in resonant–mass detectors of

g.w. and a major reason that such detectors operate at cryogenic temperatures. Since our

detector exploits the coupling of the g.w. with the mechanical structure of the resonator,

we have to carefully study the thermal noise contribution to our output signal.
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We start again from eqs. (64)–(65) taking now the external force ����� as a stochas-

tic force with constant power spectrum ��� , given by [15]:

��� �
�"��7��

#�

(79)

Making the substitutions:

����� � ����� ����, ����

 ���� � #��� ����, ��� � ����� (80)

we obtain the following equations:

��� � . ��� � /�� � 
#

�#� 
 �# � �# � 0�� �
����

"
����, ��� � ����� (81)

where ., /, 
, 
, � and 0 are defined as in eq. (68) with the parameter � replaced by the

difference �� � ��.

The first equation in (81) can be solved for #���, and we are left with one equation

for the variable �����:

�
���


��
� �
� .�


���


��
� �/� � � .
�


���


��
� �
/� �.�


��


�
� �
0 � �/��� �



����

"
����, ��� � ����� (82)

For a linear system we can immediately write the spectral density of the amplitude

�� as [15]:

������ � �+������
	




"


�
��� (83)

with

+��� � ��� � , �. � 
��� � ��� / � 
.��� � , ��. � 
/�� � 
0 � �/ (84)

being the fourier transform of the linear system’s impulse response function.

From the above equations we readily find the spectral densities of ����� as:

������ � �+�� � ������ ���&
�
�����

� ���7��

"#�
(85)
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8.2 Other noise sources

8.2.1 Master oscillator phase noise

To operate our device we have to feed microwave power into one resonant mode (say

mode �), in order to detect the energy transfer between the full and the initially empty

mode driven by the external perturbation.

To feed power into our device we shall use a voltage controlled microwave oscil-

lator locked on mode �, at frequency ��. The master oscillator phase noise is filtered

through the resonator linewidth; the power spectral density has the following frequency

dependence [8]:

������ �
�5*�����
�

���
�� � ����� � ������
(86)

where *� is the power input level and 5 is the coupling coefficient of mode � to the

output load. From the above equation we can estimate the microwave power noise spectral

density at the detection frequency ��:

������� �
�5*�����
�

���
�� � ������ � �������
� 5

*�

��

	

��

�� � ��


�
(87)

This figure can be improved if the receiver discriminates the parity of the e.m. field

at frequency ��, i.e. if it is sensitive only to the power excited in mode number 
, rejecting

all contributions coming from mode number �. In this way mode � becomes decoupled

from the output load and 5 � �. The experimental set–up, based on the use of two magic–

tees which accomplishes this issue is discussed in detail in [5]. Of course the mode

discrimination cannot be ideal, and some power leaking from mode � to the detector’s

output will be present. Nevertheless our previous work has demonstrated that with a

careful tuning of the detection electronics we can obtain 5 � ����� [5].

8.2.2 Amplifier noise

The input Johnson noise of the first amplifier in the detection electronics has to be added

to the previous contributions to establish the overall noise spectral density. It can be

described by the frequency independent spectral density [15]:

��� � ��7 � ��
����� � ��7� (88)

where 8 is the noise figure of the amplifier (in dB) and 7 the operating temperature.

19



9 Detector sensitivity

The detector sensitivity is ultimately determined by the overall effect of the various noise

sources discussed in section 8 and, eventually, by several others. Of course, depending

on the characteristics of the system and on the experimental set–up, different noise surces

will become dominant.

We shall characterize the noise in our detector by a frequency dependent spectral

density �����, with dimension Hz��, defined as follows [16]: if a sinusoidal g.w. with

known phase 9, known frequency � and unknown r.m.s. amplitude
	

��, impinges on

the detector, and if we try to detect the wave by fourier analyzing the detector output with

a bandwidth �� , then the amplitude signal–to–noise ratio will be:

�

8
�

��
������������

(89)

We shall also define the minimum detectable wave amplitude (at 90% C.L.) for a periodic

source with known frequency and phase as:

������� � �(�

�
�����

-

����

(90)

with dimension Hz����. In the following calculations the average pattern function value

- � 
�� has been taken [17].

Let us focus our attention on the system mentioned in section 4 based on two spher-

ical niobium cavities working at �� � �� � 
 GHz with a stored energy in the initially

excited symmetric mode of 6� � �� J per cell. This is a small–scale system with an ef-

fective length of 0.1 m and a typical weigth of 5 kg. The lowest quadrupolar mechanical

mode is at �� � � kHz. In the following we shall consider an equivalent temperature of

the detection electronics 7� � �� K.

A possible design of the detector uses both the mechanical resonance of the struc-

ture, and the e.m. resonance. This can be accomplished if the detector is designed in

order to have the mechanical mode frequency equal to the e.m. modes frequency dif-

ference �� � �� � ��. In this frequency range, with reasonable values for the system

parameters, the dominant noise source will be the noise coming from the brownian mo-

tion of the detector walls. The expected sensitivity of the detector for �� � �� � �� � �

kHz is shown in figure 4. In figure 5 the separate contribution of the noise sources – dis-

cussed in section 8 – to the overall noise spectral density is shown. We point out that even

if in this case the dominant noise source is the walls thermal motion a lower 7� would

increase the detection bandwith, as shown in figure 6.
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Since our detector is based on a double resonant system (the mechanical resonator

and the electromagnetic resonator) it can be operated also for frequencies �� � �� 
� ��.

At frequencies �� � �� � � kHz the master oscillator phase noise will, in general, be

dominant (see sec. 8.2.1), while at frequencies �� � �� � �� kHz the noise coming from

the detection electronics will dominate (at least for 7� � �� K), as shown in figure 7.

The expected sensitivity of the detector for �� � �� � �� kHz is shown in figure 8.

In order to work at frequencies �� � �� � � kHz a large–scale system has to

be developed. A possible design could be based on two spherical cavities working at

�� � �� � ��� MHz, with �� � �� � � kHz. This system could have a stored energy

of 6� � ��� J per cell, an effective length of 0.4 m and a typical weigth of 300 kg. With

a rather optimistic (but not unrealistic) choice of system parameters one could obtain the

sensitivity shown in figure 9. We point out that in this figure an electronics equivalent

temperature of 7� � � K has been used; also in this case lowering 7� corresponds to an

increase of the detection bandwidth (see fig. 11).

The large–scale system could also be used at higher frequencies; in this case a good

sensitivity can be achieved in a narrow detection bandwidth (see fig. 12).

10 Conclusions

A first prototype of the detector has been built and successfully tested [5]. A detector

based on two coupled spherical cavities has been designed and preliminar mechanical

and electromagnetic tests are being made on normal conducting prototypes. The planned

timeline is as follows:

� In 2002 a bulk niobium detector (coupled spherical cavities, � � 
 GHz, ����� �

�� kHz, fixed coupling) will be built at CERN;

� In 2003 a variable coupling detector will be built and tested.

In the meantime several open problems must be addressed:

� The mechanical quality factor of the detector has to be maximized in order to sup-

press the noise coming from the brownian motion of the detector walls. Since

mechanical dissipations arise from materials intrinsic losses and from the coupling

of the system to the external environment, materials with low intrinsic losses must

be used for the construction of the detector and the design of a suitable suspension

system has to be done carefully.

� The requirement of an high mechanical quality factor has to be matched with the

requirement of high electromagnetic quality factor. This can be accomplished by
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the use of bulk niobium, which, at low temperatures, has low intrinsic losses both

mechanical and electromagnetic, or by the use of a niobium thin film deposited on a

high mechanical quality factor substrate. Both tecniques present in principle advan-

tages and drawbacks. Several prototypes of single–cell, seamles, copper spherical

cavities have been built at INFN–LNL by E. Palmieri and will be sputter–coated

and tested at CERN to check the quality of noibium films deposited on spherical

substrates.

� A cryogenic system with a cooling power of � � W at 7 � �(� K and * � � bar

has to be designed. The contribution of the cryogenic system to the noise has to be

studied carefully.

� The readout electronics has to be optimized. The use of a low noise transducer,

possibly based on the SQUID technology, has to be investigated.

If experimental results will be encouraging, by the end of 2003 a proposal for the

construction of a g.w detector, based on superconducting rf cavities could be considered.
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Figure 4: Calculated small–scale system sensitivity for a periodic source (�� � ����� �
� kHz, 
 � ����, #� � ���, 7 � �(� K, 7� � �� K).
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Figure 5: Separate contribution of various noise sources to small–scale system sensitivity
(�� � �� � �� � � kHz, 
 � ����, #� � ���, 7 � �(� K, 7� � �� K). As can be
seen in this case the sensitivity is determined by the brownian motion of the walls while
the deteciton bandwitdh is limited by the amplifier noise.
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Figure 6: Detection bandwidth vs. 7� for small–scale system (�� � �� � � kHz, 
 �
����, #� � ���, 7 � �(� K).
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Figure 7: Separate contribution of various noise sources to small–scale system sensitivity
(�� � � kHz, �� � �� � �� kHz, 
 � ����, #� � ���, 7 � �(� K, 7� � �� K). As
can readily be seen in this case the both the sensitivity and the detection bandwidth are
limited by the amplifier noise.
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Figure 8: Calculated small–scale system sensitivity for a periodic source (�� � � kHz,
�� � �� � �� kHz, 
 � ����, #� � ���, 7 � �(� K, 7� � �� K).
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Figure 9: Calculated large–scale system sensitivity for a periodic source (�� � ����� �
� kHz, 
 � ����, #� � ���, 7 � �(� K, 7� � � K).
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Figure 10: Separate contribution of various noise sources to large–scale system sensitivity
(�� � �� � �� � � kHz, 
 � ����, #� � ���, 7 � �(� K, 7� � � K). Note that here
the sensitivity is limited by the brownian noise while the detection bandwidth is set by the
master oscillator phase noise.
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Figure 11: Detection bandwidth vs. 7� for large–scale system (�� � �� � �� � � kHz,

 � ����, #� � ���, 7 � �(� K).
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Figure 12: Calculated large–scale system sensitivity for a periodic source (�� � � kHz,
�� � �� � �� kHz, 
 � ����, #� � ���, 7 � �(� K, 7� � � K).
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