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Abstract

We shall illustrate a parametric amplifier, made of two coupled RF cavities, whose non-
linear element is given by the Stern-Gerlach interaction between a polarized beam and a TE RF
cavity, tuned in a suitable way. An experimental verification is suggested to be carried out at the
South Hall Ring of MIT-Bates.
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1 Introduction

The Stern-Gerlach interaction, between a moving magnetized particle and a RF elec-

tromagnetic field, can be detected by making us of two cavities coupled[1] as a parametric

amplifier. Here we intend to illustrate the proposed method quite in detail.
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Figure 1: Coupled lumped circuits.

This device is assimilated[2][3] to a system made of two coupled lumped LC cir-

cuits (see Fig. 1), where currents flowing in the same wise correspond to cavities in their

symmetric mode, while counter-flowing currents are congruous with the antisymmetric

mode.

The two RF cavities are coupled through a static element such a hole in the common

wall, a wave guide, etc., while the actually time varying items will be just these cavities,

via the variation of their tune(s) due to the Stern-Gerlach induced energy exchange.

Therefore, the coupling capacitor C in the analogous lumped system has to be con-

stant, while the two capacitors will vary in time as

C(t) = C0(1 + δejΩt) (1)

The circuit equations are

L
d2q1
dt2

+
q1

C0(1 + δejΩt)
− q2 − q1

C
= 0 (2)

L
d2q2
dt2

+
q2

C0(1 + δejΩt)
+
q2 − q1
C

= 0 (3)

where q1 and q2 are the electric charges flowing in the two circuits nd

Ω = ω2 − ω1 (4)

is the difference between the two frequencies
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ω1 =

√
1

LC0
=

1√
LC11

and ω2 =

√
1

LC0
+

2

LC
=

1√
LC22

(5)

characterizing each circuit.

Before proceeding in integrating these equations, the energy stored in the two nor-

mal modes, i.e. co-flowing and counter-flowing currents, will be evaluated[2] under the

very sensible hypothesis of momentarily neglecting the term δ, which is indeed very small.

Moreover, we define as mode amplitudes

{
a1 = 1

2

√
L(I1 + jω1C11V1) � A1e

jω1t

a2 = 1
2

√
L(I2 + jω2C22V2) � A2e

jω2t
(6)

where
I1 =

d

dt
(q1 + q2), I2 =

d

dt
(q2 − q1), V1 =

(q1 + q2)

C
, V2 = (q2 − q1)

(
1

C
+

2

C0

)

In this approach, twice the modulus squared of the amplitudes (6) represents the

stored energy; in fact

2|a1|2 = 2a1a
∗
1 =

1

2
LI2

1 +
1

2
Lω2

1C11V
2
1 =

1

2
LI2

1 +
1

2
C11V

2
1 = U1 (7)

and the same result can be found for U2.

2 Energy Considerations

At this stage we find the energy transferred from a mode to the other one, also taking

the dissipation into account. In order to achieve this, it is convenient to make use of the

most general relations[2] governing the coupling between modes:

{
da1

dt
= jω1a1 + c12e

jΩta2
da2

dt
= jω2a2 + c21e

jΩta1
(8)

where

{
c12 = −j ω1

4
∆C√

C11C22

c21 = j ω2

4
∆C√

C11C22

(9)

are the coupling coefficients and

∆C = C0δ (10)

is deduced from eq. (1). Besides, bearing in mind the rightmost side of eq. (6), eq. (8)

can be written as
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{
dA1

dt
� c12A2

dA2

dt
� c21A1

(11)

An energy transfer from the mode 1 to the mode 2, in a realistic dissipative regime,

can be described by introducing the dissipative time constant

Γ =
ω1

2Q1
=
ω2

2Q2
(12)

where

Q1 = ω1
U1

P1
and Q2 = ω2

U2

P2
(13)

are the usual quality factors in their most general definition as a quantity proportional to

the ratio between the stored energy and the dissipated power. Then, the second equation

appearing in (11) must be modified into

dA2

dt
= c21A1 − ΓA2 (14)

whose integral is

A2(t) =
c21A1

Γ
(1 − e−Γt) = (A2)M(1 − e−Γt) (15)

having assessed A1(0) �= 0 and A2(0) = 0 as initial conditions. This equation gives us

information about the time needed to reach the steady state condition, i.e. the balance

between the energy transferred from mode 1 to mode 2 and the energy dissipated in mode

2. Setting as f a certain fraction of (A2)M, the time required for attaining this value is

t∗ =
1

Γ
ln

(
1

1 − f
)

=
6.908

Γ
(for f = 0.999) (16)

Bearing in mind eqs. (12) and (16), at the operating frequency of 3 GHz we can

gather in Table 1 the loading times for either a room temperature copper cavity or a su-

perconducting cavity.

Table 1: Mode loading-times

Cavity Copper SC
Q2 3 × 104 109

1
Γ

3.18 × 10−6 s 0.106 s
t∗ 22 µs 0.73 s
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A quick glance at the last rows indicates that the SC solution would imply quite

a longer time before the signal in mode 2 reaches the full intensity. On the other hand,

making use of eqs. (9), (12) and (15) the maximum energy results to be

(U2)M � 2|(A2)M|2 = 2
|c21|2|(A1)M|2

Γ2
=

|c21|2(U1)M

Γ2
= Q2

2

(∆C)2

4C11C22

(U1)M (17)

i.e. quite a huge gain! Therefore a compromise should be found between the need of hav-

ing a fast answer from the instrumentation, linearly depending on Q2, and the advantage

of a big amplification of a possibly very weak signal, which is proportional to the square

of the quality factor.

3 Further Solutions

For a better understanding, it is convenient to integrate eqs. (2) and (3) with the best

approximation possible; then, in order to do that, we add and subtract these equations,

obtaining:
d2

dt2
(q1 + q2) +

ω2
1

C0(1 + δejΩt)
(q1 + q2) = 0

d2

dt2
(q2 − q1) +

ω2
1

C0(1 + δejΩt)
(q2 − q1) + 2ω2

1(q2 − q1) = 0

or, setting

G = q1 + q2 and F = q1 − q2, (18)

d2G

dt2
+

ω2
1

C0(1 + δejΩt)
G = 0 (19)

d2F

dt2
+

ω2
1

C0(1 + δejΩt)
F + 2ω2

1F = 0 (20)

where ω1 has already been defined in eq. (5) and

ωC =
1√
LC

(21)

As the coupling is weak, we may write

G � Aejω(1+αejΩt)t = Aef(t) (22)

F � Bejω(1+αejΩt)t = Bef(t) (23)
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Inserting e.g. eq. (22) into eq. (19) and making up our mind on the following derivatives

d2G

dt2
= A

[
d2f

dt2
+

(
df

dt

)2
]

ef(t)

df

dt
= jω(1 + αejΩt) − ωΩα(e2jΩt)t(

df

dt

)2

= −ω2(1 + αejΩt)2 + ω2Ω2α2(e2jΩt)t2 − 2jω2Ωα(1 + αejΩt)ejΩt

d2f

dt2
= −ωΩα(1 + αejΩt)ejΩt

we obtain:

(−2ωΩα−jωΩ2α)ejΩt−ω2−2ω2αejΩt−ω2α2e2jΩt+ω2Ω2α2t2e2jΩt−2ω2ΩαtejΩt−2jω2Ωα2te2jΩt+ω2
1−ω2

1δejΩt = 0

Neglecting all terms like Ωα, Ω2α, α2, Ω2α2, Ωα2, we find

−ω2 − 2ω2αejΩt + ω2
1 − ω2

1δe
jΩt = 0

or
ω � ω1[1 − (α +

1

2
δ)e

jΩt
] (24)

Therefore, bearing in mind eq. (24), eq. (22) becomes

G � Aejω1(1−( 1
2
δ)ejΩt)t (25)

having neglected the term α 1
2
δ too. We can now state that the solution consists of a wave

of frequency ω1 modulated by a signal characterized by a frequency Ω and an amplitude

depending on the value of the coupling term δ, as can be easily understood by slightly

modifying eq. (25) into

G � Aejω1+jβω1t cos Ωt (26)

with β = −1
2
δ.

As shown in the theory[4] of exponential modulation, the spectral density of a wave

modulated with a nonlinear signal can be analysed through an expansion of Bessel func-

tions Jn(β); namely

G(t) = A
n=∞∑

n=−∞
Jn(β) cos(ω1 + nΩ) (27)

or, since |β| � 1,

G(t) � A [J−1(β) cos(ω1 − Ω)t+ J0(β) cosω1t+ J1(β) cos(ω1 + Ω)t] (28)

implying the existence of two side-bands of frequencies ω1 − Ω and ω1 + Ω about the

main frequency ω1.
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4 The MIT-Bates Case

Nonlinear couplings, such as the one so far considered, can be profitably treated by the

Manley-Rowe[5] relations. In our case, where the accessible frequencies are three only,

i.e. ω1, ω2 and Ω, these relations reduce to

{
P1

ω1
− PΩ

Ω
= 0

P2

ω2
+ PΩ

Ω
= 0

(29)

where P1, P2 and PΩ are the powers corresponding to the frequencies ω1, ω2 and Ω re-

spectively.

Recalling[1] that the expression of the Stern-Gerlach induced energy exchange is

δU � 2NPµ∗B0γ
2 (30)

where N is the number of particle s crossing the cavity 1, for instance, P is the beam

polarization, µ∗ is the particle magnetic moment, B0 is the RF magnetic field and γ is the

particle Lorentz factor. Let us make the following set of hypotheses:

1. all the N particles are concentrated in a single bunch revolving with an angular

frequency ωrev = 2π
τrev

;

2. the two RF cavities are fed with two very close each other: i.e. ω1 � ω2;

3. the fundamental choice Ω = ωrev is made.

Therefore, from the 1st hypothesis we can deduce that

PΩ =
δU

τrev
(31)

while eq. (29) yields

P2 = −ω2

Ω
PΩ = −ωRF

ωrev
PΩ = −τrev

τRF
PΩ = − δU

τRF
(32)

or, bearing in mind eq. (30),

P2 = |P2| � 2NP
µ∗B0

τRF
γ2 (33)

having disregarded the sign − since we can choose at leisure the direction of the beam

polarization. Considering the experimental test to be carried out at the MIT-Bates[6]

electron ring, we keep in mind few but useful data only, i.e.
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µ∗ = 9.27 × 10−27 TJ−1

γ � 103

τRF = 0.35 ns
τrev = 0.634 ns

(34)

Then, referring to Table 1, we obtain:

Nturns =
t∗

τrev
=
{

35 (copper cavity)
106 (SC cavity)

(35)

As far as N and B0 are concerned, we shall consider first

N = 8.1 × 1010 and B0 = 0.1 T (36)

which are quite over optimistic, since it would be pretty difficult to squeeze the whole

electron beam in a single bunch and such a value of the RF magnetic field can be, perhaps,

too big. Hence we make a rather pessimistic choice, lowering B0 by a factor of 100 and

devising a single bucket filled by a reduced number of electrons

n = N/(harmonic number) =
8.1 × 1010

1812
= 4.47 × 107 and B0 = 10−3 T (37)

Therefore we obtain either

P2

P
= 429 watt or

P2

P
= 2.37mwatt (38)

meaning that, even in the worst example, feasible measures can be performed.

5 Intuitive Resume of the Measure.

We have already seen some maths regarding our system, now we are resuming the

experiment in a simple way from the parametric point of view.

The coupled cavities can be reduced to two oscillators (modes) of angular frequen-

cies ω1 =
√

1
LC0

and ω2 =
√

1
LC0

+ 2
LC

which correspond to cavities ringing with the

same angular phase (ω1) and with a phase separation equal to π (ω2). In the first mode

the energy U1 is stored and is kept constant by a feedback system which ensures that the

fields can work in the correct way while, in the beginning, the second mode is empty.

Now we can consider the bunch crossing the cavity as a non-linear element, in

particular a non-linear capacitor driven by the beam. If we consider the frequency domain,

we should aspect that particles excite the capacitor with the main frequency equal to the

revolution frequency. Then, for the Manley-Rowe theorem the non-linear element will

supply[3] power at frequencies ωr = ω1 + rωrev with r integer.
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It is useful to stress that the bunch interaction with the cavity is due both to the

Stern-Gerlach force and to the electric field, but our choice of fields in the cavity makes

the magnetic contribution much bigger than the electric one.

ω

tuned to ω

2

1

C(t)

tuned to

Figure 2: Circuit describing the parametric conversion.

What stated can become clearer looking at Fig. 2, where the beam is “seen” from

the cavity as a perturbation C(t) and ω2 is the idler frequency from which we collect the

signal via parametric conversion. The frequency ω2 has to be equal to ωr = ω1 +ωrev and

from this relation we can deduce the best value for the coupling between the cavities: in

fact

ωrev = ω2 − ω1 =

√
1

LC0

+
2

LC
−
√

1

LC0

(39)

In practice, we may think of tuning the cavity crossed by the beam, conceived as a

single bunch, with a frequency ν1 = ω1/2π = 2.8560 GHz and the other cavity with a

frequency ν2 = ω2/2π = 2.8576GHz, having thus ν2 − ν1 = νrev = 1.576MHz, which

is just the revolution frequency of the South Hall Ring at MIT-Bates.
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