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Abstract

A new method for the measurement of Loss Factor for a RF cavity is presented. The method
consists of measuring the above quantity by means of  the detection both of the RF voltage
induced by an electron bunch in the device under test and the bunch charge. The device to be
ivestigated is a copper reentrant T-shaped cavity. The experimental results and their comparison
with analytical and numerical results are presented.
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1 INTRODUCTION
Improvement of beam cooling technique such as laser cooling allows the

achievement of very cold ion beams inside storage rings. Moreover with the appropriate
cooling force, ordered ion structures, the so-called Coulomb Crystals1) , can be obtained.
One of the most important requirements, that an ion ring devoted to such a purpose should
fulfill, is to avoid every kind of coherent instabilities that may cause beam losses2) . One of
these instabilities is related to beam-environment interaction by means of the Longitudinal
Coupling Impedance (LCI) and of the Loss Factor (LF) 3) . Therefore a precise knowledge
of such a quantity allows a more accurate estimation of instability growth rate and, in turn,
of the cooling rate needed.

Usually CI and LF measurements are performed in a laboratory using short current
pulses propagating on a wire inside the accelerator element under test (coaxial wire
method)4), but this method is questionable for two reasons: a) the electromagnetic
properties of an empty chamber differ from a chamber with a wire inside and b) coaxial
wire method is not straightforward to use for velocities β <1 as in the case of cooled ion
beams.

The main feature of our experiment is the indirect measurement of LF with an
electron beam whose energy varies in the range 18÷65 keV (0.37≤ β ≤ 0.69). The device
under test is an RF reentrant T-shaped copper cavity.

 In this article we will compare experimental results with those coming from a
theoretical formulation. In fact, an analytical method for the LF calculation has been
developed for any particle velocity and for some relevant accelerator structures5).

2 THE EXPERIMENTAL METHOD: A DESCRIPTION.
Let us consider a resonant RF cavity inserted on a vacuum chamber and excited by a

charged particle beam, passing through the cavity, whose current is supposed to be
frequency modulated. The energy lost by the beam due to the field induced by the beam
itself can be described in terms of the Loss Factor (LF) k :
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with Zr the real part of the longitudinal coupling impedance (see Appendix).
In the neighborhood a cavity resonant frequency ωn , the interval of integration is reduced
to a small region around the resonance, leading to the following formulation for k, as it is
shown in Appendix:
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where Rn is the cavity shunt resistance and Qn is the quality factor of the n-th mode.
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It can be shown (see Appendix) that, for a bunch of charge q and spectral density )(ωF ,
the LF is related to the energy stored in the n-th mode Wn after the bunch passage by
means of the relation:

22 )(FkqW nlnn ω=  (3)

For a Gaussian particle distribution we can write )/exp()(F nn 222σωω −=
where σ  is the rms temporal bunch width.

Let us consider now an external measurement line connected to the cavity. The
energy balance for the n-th mode gives us the following relation, valid for a mode slowly
decaying with respect to the beam transit time:
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where  τ = QLn/ωn is the decay time of the n-th mode, Pin the power dissipated inside
the cavity, Pext the power radiated in the measurement line. QLn is the “loaded quality
factor” which takes into account the power flowing towards the measurement line; it turns
out to be:
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The peak voltage URF induced in the measurement line with impedance R is

extRF RPU 2=  . Using now Eqs. (3) and (4) we get :
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where we have introduced the coupling coefficient αn  defined as   
in

ext
n P

P=α

The expression (5) shows a linear dependence between the RF voltage and the beam
charge.

It is very important to point out that this linear relationship holds as far as the time
bunch length keeps constant. If it is not the case, the Eq. (5) must be modified in order to
take into account bunch lengthening due to space charge forces and laser instability. If we
assume that space charge effects are a first-order correction with respect to the
“unperturbed” bunch duration σ0, we obtain:
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aq+σ=σ 0  (6)
where the angular coefficient a  takes into account the way in which bunch duration

is modified by the space charge.
Therefore, by substituting into Eq. (5), we get:
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This equation tells us that the dependence of the induced RF voltage on the charge q
can be described by means of two parts: a first one, linear, containing in the coefficient rn

the loss factor and so the “interaction” beam – cavity; a second one, exponential, due to
the effect of space charge on the bunch length and on the time spent in the cavity.

The LF can be extracted from  rn  as follows:
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The relations (7) and (8) gives us the base for the setting up of the experimental
measurement method.

The induced RF voltage in the cavity can be measured as function of the incoming
beam charge by varying its value. At the same time and separately the beam charge has to
be measured. In this way, an experimental relation between the two quantities can be then
found. By means of Eq.(7), the data (q,URF ) are interpolated varying the two parameters, rn

and a; the LF can be then calculated from the coefficient rn, (see Eq.(8)), once αn, and τn

have been measured. Therefore we get the loss factor for a given resonant mode frequency
and for a fixed beam energy.

Changing the beam energy, the couple of data  (q,URF ) are measured again as before
and a new value of LF can be found. The same has to be done to study the behavior of kn

as function of the frequency.

3 EXPERIMENTAL APPARATUS AND TECHNIQUE
From the above discussion it is clear that, as far as Eq. (7) holds, by measuring

several times, independently, the induced RF voltage in the cavity and the amount of beam
charge passing through the cavity, it is possible to interpolate the data and to extract the
required LF from the coefficient rn.

The experimental setup is shown in Fig.1:
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FIG. 1:The experimental setup for the longitudinal Loss Factor measurement.

A bunched electron beam is emitted by a GaAs photocathode excited by a frequency
doubled Nd:YLF laser. The measured rms pulse duration of photon bunch is
σ0photon = (70±10) ps. The photocathode is installed in a Pierce type electron gun. A voltage
applied between anode and cathode accelerates the bunch. By varying the anode-cathode
voltage it is possible to perform measurements for different values of the particle energy
and therefore of the velocity, β.

A Faraday Cup (FC), put at the end of the measurement line, is used to collect and
measure the bunch charge q passing through the cavity.

The beam transport to the device under test, DUT (RF cavity in our case) and then to
the FC is accomplished by using a magnetic lens system.

Varying the laser intensity by means of polaroid filters the photoemitted current
changes; in correspondence of this, beam charge intensity varies from (1.2±0.06)·107

electrons (minimum photoemitted current) to (4.2±0.21)·108 electrons (maximum
photoemitted current).  Following our assumption (Eq. 6), the rms “unperturbed” electron
bunch duration σ0 is equal to σ0photon

Since the proposed experimental technique is valid only around cavity resonances,
as a first step we must measure the cavity resonance frequencies and relative loaded
quality factors without beam flowing. For our experiment we chose two TM resonant
frequencies, whose measured values, corresponding loaded quality factors and relative
decay time are shown in Table 1.

TAB. 1: Loaded Q's, coupling factors and decay times for the two resonant frequencies
n fn[GHz] QLn αn τn [ns]
1 0.8567 1178 0.2 438
2 2.361 595 0.5 80
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The induced RF voltage in the cavity and the charge collected on the FC are
measured with two separated lines at the same time as shown in Fig.2. For this purpose
high voltage (HV) and laser triggers are synchronized by means of a pulse generator with
a repetition rate of 0.5 Hz.

FIG. 2: Scheme for the simultaneous determination of URF and UFC.

In order to properly reconstruct the RF signal from the cavity, we need to acquire its
entire frequency band. Looking at Table 1 it is clear that the filters usually installed inside
Spectrum Analyzer (maximum bandwidth of 3MHz) are not sufficient. For this reason we
had to properly customize a 2nd IF output on our Spectrum by inserting a 30 MHz
bandwidth filter. In this way we were able to acquire the entire RF signal inside the cavity
at the working frequencies. The output signal amplified by an RF amplifier is then read
out on a LE CROY oscilloscope.

The output signal  u’RF(t), measured on the oscilloscope, is:
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From this equation, URF can be obtained and introduced in Eq. (7).
The charge q can be calculated by measuring the voltage UFC induced on FC by the

electron bunch through the relation q = CFCUFC., where CFC = 667 pF is the capacitance of
the Faraday Cup.

The coupling αn appearing in Eq. (7) can be determined from the measurement of
the reflection coefficient ρn through the relation6)
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For both working frequencies, the reflection coefficients have been measured
according to the scheme shown in Fig.3. αn values are reported in Table 1.

FIG.3: Scheme for the reflection coefficient measurement

As final step we need to know the frequency response of the URF measurement line
without beam flowing according to the scheme shown in Fig.4, in order to take into
account cable attenuation and amplification.

FIG.4: Scheme of the frequency response measure line

The frequency response is given by:
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For each resonant frequency the “true” value of rn is related to the measured one by

means of  the relation 
)f(H

r
r

n

measured
ntrue

n = .

The measured values of H(fn) are shown in Table 2:

TAB. 2: Response of the q-URF measure line at the operating frequencies.

n fn [GHz] H(fn)

1 0.8567 2.068

2 2.361 1.312

4 EXPERIMENTAL RESULTS AND COMPARISON WITH THEORY
We have measured the values of q and URF (q) for different values of beam energies

and for two resonant frequencies. For each of the beam energies, the couples (q-URF (q))
have been interpolated according to the relation (7).

We can write Eq. (7) as:
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Provided x>0 and y>0, we can linearize the Eq. (11) with respect to the fitting
parameters obtaining:

γ+β+α== xx)x/yln(Y 2   (12)

Therefore, by fitting with least square method the couples (Y, x) according to Eq.
(12), we can obtain the best value for γ and then for rn.
 A comparison between experimental and theoretical data for each measured frequency is
shown in Fig. 5 and Fig. 6 as function of beam energy. The first theoretical curve is the
result of a simulation performed by using a modified version of the URMEL code. The
second is the result of the calculation of LF for our T-shaped lossy cavity with a new
formulation of Mode Matching Technique7). The error bars, calculated by means of error
propagation, are of 15% for the first frequency and 14% for the second one. In the
evaluation of these errors we have considered the dependence of kln  on αn, τn, rn and F(ωn)
as shown in Eq. (8).
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FIG.5: Loss factor as a function of bunch energy; comparison between theoretical and
experimental results at f=856.73 MHz.

FIG.6: Loss factor as a function of bunch energy; comparison between theoretical and
experimental results at f=2361 MHz.

5 CONCLUSIONS AND PERSPECTIVES
The experimental results and the theoretical evaluations turned out to be in good

agreement. As a consequence, the proposed measurement method is reliable and useful for
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possible future applications. In particular, under certain circumstances, it has been
confirmed that non-relativistic beams are favored in the case of coherent instabilities due
to beam-environment interaction. At the same time we have to point out that further
improvements are possible, especially with regard to measurement implementation. In
particular error bars can be reduced, in order to obtain more precise data. This can be
achieved by using shorter and more stable laser pulses. In fact, for a fixed frequency and
beam energy, in the case of laser intensity stability the effect of space charge forces can be
easily recognized8). The laser pulse duration stability reduces the error in the measurement
of F(ωn). Moreover, the shorter is the laser pulse duration, the wider is the region in which
a linear relation between URF and q is fulfilled. Consequently the estimate of rn will be
more accurate.

APPENDIX

THE LONGITUDINAL LOSS FACTOR.

The dynamics of a particle beam traveling inside an accelerator is affected by the
e.m. fields induced (wake fields) by the beam itself in the interaction with the vacuum
chamber. This interaction can be described by means of the wake functions (potentials) in
time domain or the longitudinal coupling impedance in frequency domain.
For a charged particle q1, traveling with constant velocity v (v =βc ) along the axis z of an
arbitrary shape vacuum chamber, the electromagnetic energy lost is given by

∫
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with  t=z1/v and  F the Lorentz force due the e.m. fields induced by the charge in the
presence of discontinuities.  The quantity U  takes into account both the energy lost in the
resistive walls and the energy from the diffracted fields.

Let us define the longitudinal loss factor (LLF)9) as the energy lost by the charge q1

per unit charge squared
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Consider now a second particle q, displaced apart from q1; its energy will change as
a consequence of the interaction with the e.m. fields produced by the first particle by an
amount
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where τ = t – z1/v is the time delay between the two particles.
We define the longitudinal wake function as it follows
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Let us notice that if β<1 and in the limit of zero distance between the two particles,
then

( )0zwk = (5A)

In the frequency domain let us define the longitudinal coupling impedance as the
Fourier transform of the longitudinal wake function

ττ=ω ∫
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For simplicity, we will consider only the case r1=r =0, thus omitting the radial
dependence. It is possible to relate k and Z(ω) in the following way

∫
+∞

ωω
π

=
0

1
d)(Zk r (7A)

Let us consider now a resonant cavity. In the neighborhood of a resonance frequency
ωn , the cavity behaves like a RLC parallel circuit for the particles; in this frame  the
longitudinal coupling impedance can be written as10)
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where Rn and Qn are the cavity shunt resistance and the unloaded quality factor of the
n-th resonant mode. Rn is defined (see circuit theory) as the ratio of the accelerating
voltage on the cavity axes to the power loss in the cavity walls.

If we are very close to the resonance ωn , by combining  Eqs. (7) and (8), it is
possible to write the longitudinal LF for the n-th mode as:
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Consider now, instead of a point charge exciting the cavity, a distribution of
particles i(t) such that

( )∫
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ττ= diq1 (10A)

For this distribution, the longitudinal wake function W(τ) is simply the convolution
product of w(τ) and i(τ)
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As a consequence the bunch loss factor K of this distribution is given by:
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In analogy with Eq. (2), we can express the energy lost by a charge distribution  i(τ) as:

KqU 2
1= (13A)

Therefore, recalling Eq. (12) and the definition of LCI we can write:
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Let us assume now a bunch with a spectral distribution I(ω) = q F(ω) which is
nearly constant around the resonance frequency ωn. In this case the e.m. energy lost in the
n-th mode can be expressed as a function of the loss factor, remembering Eq. (9).

22
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