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Abstract

The energy and spatial resolutions of a large volume liquid scintillator detector
with a spherical symmetry are discussed in detail. An event reconstruction technique
using charge and time data from the PMTs is analysed in order to obtain optimal
detector resolutions. The relations for the numerical estimations of the energy and
spatial resolutions are obtained and verified with the CTF detector data.



The list of the notations and abbreviations used in the

article:

NPM total number of the PMTs of the detector;

Q total charge registered by the detector;

µ0 =
Q

NPM
mean charge registered by the one PMT of the detector;

µi the mean charge registered by the i-th PMT of the detector;

si =
µi

µ0
sensitivity of the i-th PMT;

v1 = (
σµ1

µ1
)2 relative variance of the single photoelectron spectrum;

f(−→r ) geometrical function of the detector that relates the charge registered by a
PMT for the source at position with coordinates −→r to the charge, registered
by the same PMT for the same source positioned at the detector’s center.
Coordinates −→r are the source coordinates in the PMT coordinate system;

fs(
−→r ) geometrical factor of the detector that relates the charge registered by a de-

tector for the source at position with coordinates −→r to the charge, registered
by the detector for the same source positioned at the detector’s center. Coor-
dinates −→r are the source coordinates in the detector coordinate system;

PMT- photoelectron multiplier tube;

CTF- counting test facility of the Borexino detector;

SER- single electron response (charge spectrum corresponding to a single photoelec-
tron);

p.e.- photoelectron.
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1 Introduction

The energy resolution of the scintillator detector has been studied during the early years
of the scintillation detectors development. A good review of the scintillation technique can
be found in [1]. The spatial and energy resolutions of recently constructed large volume
liquid scintillator detectors is being studied with Monte-Carlo simulations (see i.e. [2]).
In the present article some relations are obtained that provide numerical estimations of
the energy and spatial resolution of a large volume liquid scintillator detector with a
spherical symmetry. The data of the CTF detector [3] are used to check the validity
of the estimations. Some predictions for the resolution of the Borexino detector [2] are
presented as well.

Let us give a reminder of some fundamental relations from PMT operation theory.
The relative variance of a PMT charge response can be written using the relative variance
of the single photoelectron response v1 = (

σµ1

µ1
)2 of the PMT, and the mean number of

photoelectrons (p.e.) µ registered in a scintillation event (see i.e. [1])

v ≡
(
σµ
µ

)2

=
1 + v1
µ

. (1)

Here the normal distribution of the amount of light emitted in a scintillation event is
assumed.

The physical meaning of equation (1) is straightforward. If v1 → 0 (as for a delta-
function response of a PMT) then the relative variance of a PMT response is that of a
Poisson distribution ( 1

µ
) of the registered number of p.e. This relation gives a fundamental

limit for the PMT energy resolution. So the only way to improve the PMT energy
resolution is to make the SER more “sharp”. The PMT energy resolution is frequently
characterised in literature by the so called peak-to-valley ratio, but this value can’t be
used for direct numerical estimations. Indeed, one can consider two PMTs with the same
peak-to-valley ratio but with a different distribution of high amplitude events in the “tail”
of SER. These PMTs will have different single p.e. relative variances and hence different
energy resolutions, but one can’t realize it from the peak-to-valley ratio.

More detailed considerations of the practical scintillation counter lead to different
equations for the PMT signal relative variance, such as ([1]):

v = v(p) +
1 + v1
µ

. (2)

Here the parameter v(p) takes into account all the possible ways the photon can
arrive at the PMT photocathode, and all the possible fluctuations in the process of its
registration.
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2 Energy resolution

2.1 The energy resolution for a monoenergetic point-like source
at the detector’s center

Let us consider a monoenergetic point-like source at a detector’s center. The total signal
of the detector is the convolution of the signals from the PMTs; this means the total
signal variation is the sum of the variations of the PMTs:

σ2
Q0

=
NPM∑
i

σ2
µi
=

NPM∑
i

µi(1 + v1i
) = Q0 · (1 + 1

NPM

NPM∑
i

siv1i
) = Q0 · (1 + vDet

1 (0)) , (3)

where:

vDet
1 (0) =

1

NPM

NPM∑
i

siv1i
. (4)

The mean value of the total charge Q0 is the sum of the mean signals from the PMTs:

Q0 =
NPM∑
i

µi .

So the energy resolution for the source at the detector’s center is:

R(Q, 0) ≡
√√√√σ2

Q0

Q2
0

=

√√√√1 + vDet
1 (0)

Q0

. (5)

One can see that the detector’s energy resolution behaves in the same way as for the
energy resolution of a single PMT (1), with the parameter v1 replaced by the average
parameter vDet

1 (0) that also takes into account the different relative sensitivities of the
PMTs.

2.2 The energy resolution for a monoenergetic point-like source

not at the detector’s center

Let us consider now a source at an arbitrary position in the detector. The mean charge
registered by the i − th PMT can be recalculated from the known registered charge for
the same source at the detector’s center:

µi(
−→ri ) = µ0i

· f(−→ri ) = µ0 · si · f(−→ri ) . (6)

Here −→ri are the source coordinates in the i-th PMT coordinate system and si is the
relative sensitivity of the i-th PMT. Because of the detector’s spherical symmetry it is
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Figure 1: The coordinate system: the event occurs at the point with coordinates (r,Θ) in
the coordinate system of the chosen PMT (X-axis of the coordinates system passes from
the detector’s center to the PMT). Because of the detector’s spherical symmetry the event
in the i-th PMT coordinate system is characterized by another couple of polar coordinates
{r,Θi}. Since the spatial coordinates of all the PMTs in the detector are fixed, then the
position of the source in the coordinates system of any PMT can be easily calculated.

i-th PMT

r ir

convenient to use a geometrical function f(−→r ) in the coordinate system related to the
PMT (the X-axis passes from the detector’s center to the PMT as shown in fig.1). The
geometrical function depends only on the distance from the source to the detector’s center
r and the azimuthal angle Θ (where angle the Θ is calculated from the X-axis passing
from the detector’s center to the PMT):

f(−→r ) = f(r,Θ) . (7)

The independence of the geometrical function from the source energy is assumed in
(6).

As before, the total signal of the detector is the convolution of the PMT signals. Hence
the mean value Q(−→r ) of the total signal is the sum of the mean values for all the PMTs,
and the variance σ2

Q(
−→r ) is the sum of the variances for all the PMTs :

Q(−→r ) =
NPM∑
i

µi(
−→ri ) =

NPM∑
i

µ0 · si · f(−→ri ) = Q0
1

NPM

NPM∑
i

si · f(−→ri ) = Q0 · fs(−→r ) , (8)

σ2
Q(
−→r ) =

NPM∑
i

σ2
µi
(−→ri ) =

NPM∑
i

µi(
−→ri )(1 + v1i

) =

= Q0 · fs(−→r ) +Q0
1

NPM

NPM∑
i

si · f(−→ri ) · v1i
) , (9)
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where:

−→r are the coordinates of the source in the detector’s coordinate system;

−→r i are the coordinates of the source in the i-th PMT coordinate system;

Q0 is the total charge registered by the detector for the same source positioned
at the detector’s center;

fs(−→r ) is a geometrical function of the detector that relates the charge registered by a
detector for the source at position with coordinates −→r to the charge, registered
for the same source positioned at the detector’s center. Coordinates −→r are
the source coordinates in the detector coordinate system.

The factor fs(−→r ) is related to the geometrical function f(−→r ) defined by (6) in the following
way:

fs(
−→r ) ≡ 1

NPM

NPM∑
i

si · f(−→ri ) � 1

2

∫ π

0
f(r,Θ) sin(Θ) dθ . (10)

Here an approximate equality is used to underline the approximate nature of the
passing from the summation over PMTs to the integration of the continuous function.
The ideal spherical symmetry of the detector is assumed here, which is not precisely
the case because of the different sensitivities of the PMTs and the nonuniform PMT
distribution over the spherical surface. The modeling of the CTF detector shows that up
to r = 50− 60 cm the equality is satisfied within the precision of calculations. At bigger
r the deviation doesn’t exceed 1− 2% percent, and the deviation depends on the source
position. Let us notice that:

• f(−→r ) is a single PMT function;

• fs(r) is the detector’s function.
Let us introduce a parameter of the detector vDet

1 (−→r ), corresponding to (4) for a point in
the detector with coordinates −→r :

vDet
1 (−→r ) = 1

NPM

NPM∑
i

si · f(−→ri ) · v1i
. (11)

Using (11) from (8) and (9) one can obtain the resolution at an arbitrary detector
point:

R(Q,−→r ) ≡
√√√√σ2

Q(
−→r )

Q2(−→r ) =
√√√√1 + 1

fs(
−→r )
vDet
1 (−→r )

fs(−→r ) ·Q0
. (12)

If the number of PMTs is big enough, then the mean value of the product in the
definition of the parameter vDet

1 (−→r ) can be substituted by the product of the mean values:
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vDet
1 (−→r ) ≈ 1

NPM

NPM∑
i

fs(
−→r ) · 1

NPM

NPM∑
i

si · v1i
= fs(

−→r ) · vDet
1 (0) . (13)

Then the energy resolution of the detector for the point-like source at an arbitrary
point is:

R(Q,−→r ) =
√√√√1 + vDet

1 (0)

fs(
−→r ) ·Q0

. (14)

As it has been pointed out before, because of the detector’s symmetry the geometrical
factor fs depends mainly on the distance from the source to the detector’s center r. So
the energy resolution in turn depends mainly on r too :

R(Q,−→r ) ≈ R(Q, r) =

√√√√1 + vDet
1 (0)

fs(r) ·Q0
. (15)

One can see that detector’s energy resolution for the case of an arbitrary source position
again behaves in the same way as the energy resolution of a single PMT (1) and is defined
by the parameter vDet

1 (0) which is defined for the source at the detector’s center. The
main difference between the case of a source at the detector’s center (5), and the case of
the source at an arbitrary position, is the geometrical factor fs(r).

2.3 CTF light collection geometrical function

In this section the geometrical functions f(−→r ) and fs(r), introduced in the previous
section, are estimated using the CTF data. The CTF detector is described in detail in
[3]. It consists of 4.3 tones of liquid scintillator, contained in a transparent spherical inner
vessel with a diameter of 105 cm, and viewed by 100 photomultipliers (PMTs) located
on a spherical steel structure support. The PMTs are equipped with light concentrator
cones to increase light collection efficiency. The radius of the sphere passing through the
opening of the light cones is 273 cm.

The CTF programme included a set of measurements with a 222Rn source. These data
were used to calibrate a reconstruction algorithm and the spatial resolution of the event
reconstruction. The source consisted of a 222Rn spiked scintillator contained in a quartz
vial, which could be inserted into the detector[6]. The β-decay of 214Bi of the 222Rn decay
sequence followed by the α-decay of 214Po with a mean lifetime of 236 µs was used to
distinguish radon events.

The events of the 214Po decay are named “radon events” in further discussion. The
amount of light emitted in an α-decay of 214Po corresponds to 862KeV energy deposited
by an electron.
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2.3.1 The method of calculation.

The geometrical function f(−→r ) has been obtained using the data with the radon source
in different positions inside the inner vessel. Every source position gives NPMT points for
the f(−→r ) function, because every PMT “sees” the source in its own coordinate system.
So even the restricted data set (50 source positions have been used) allows one to follow
the geometrical function over all the range of r and Θ. For the estimations, the range of
r and Θ was divided into 21x40 bins, that correspond roughly to the 5x15x15 cm3 bins
in the outer detector’s region. The table {ri,Θi, f(ri,Θi)} has been filled for every source
position. After filling, the mean value at every bin has been estimated using the number
of events as statistical weights. The empty bins were filled with the mean values of the
non-empty neighboring bins using the same weights.

The light propagation has been extensively studied in the CTF (see [4]). The pa-
rameters obtained have been used for improvement of the Monte-Carlo simulations. In
figures 2 and3 the geometrical functions, obtained from the data and with a Monte Carlo
simulation, are presented. One can see good agreement between the two functions. Two
further plots (fig.4 and fig.5) present the difference between the CTF geometrical function
and the solid angle only dependence. One can see significant deviations from the simple
solid angle dependence for large distances of the source from the center, r > 80 cm (fig.5).

2.3.2 CTF geometrical factor fs(r)

The dependence of the fs(r) factor on the source distance from the detector’s center is
plotted in fig.6. The volume of the detector has been divided into 10x10x10 cm3 bins.
The value of the fs function was calculated for each bin, as shown by dots in scatter plot6.
The nominal source positions are shown on the same plot as well (stars). One can see
significant fluctuations of the detector’s fs function for source positions with r > 60 cm.
This is the result of the nonuniformity of the distribution of the working PMTs during
the last CTF runs. For the considered run only 50 PMTs were operating.

One can see also that the source positions have been chosen in the regions where the
fs function has lower values. Note that the geometrical factor is equal to 1 near the
detector’s center.

In order to verify the influence of the fs factor on the CTF detector energy resolution,
an analysis of the data with radon dissolved in the CTF inner vessel has been performed.
During the initial stage of the CTF operation, a certain amount of radon was observed
in the detector’s scintillator [3]. These data have been used for the estimations. The
results are presented in table 1. One can see the dependence of the energy resolution on
the source position. The calculation of the v(p) factor using the data from table 1 1 (see
section 2.5.1) gives the value 0.012. This value is much better than the one calculated
from the data with the artificial radon source at different positions inside the CTF (this

1The radon data in the detector’s region r < 40cm were used to obtain the resolution at the detector’s
center R2

0 = 18.1
243.8 . The radon data distributed over all the detector volume (without any spatial cuts)

were used to obtain the resolution for the distributed source R2
vol = 20.9

239.1 . The parameter v(p) can now
be estimated from the simple relation R2

vol = R2
0 + v(p).
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Figure 2: The CTF-I geometrical function plotted in (r,Θ) coordinates. The upper plot is
the result of a MC simulation, the lower one is obtained using CTF-I data with the radon
source in different positions. One can see good agreement between the experimental and
the Monte-Carlo data.
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Figure 3: Isolevels for the two functions presented on the previous plot.
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Figure 4: The difference between the CTF-I geometrical function and the solid angle
dependence plotted in (r,Θ) coordinates. The upper plot is the result of a MC simulation
with the solid angle dependence (presented on the lower plot) subtracted.
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Figure 5: The difference between the CTF-I geometrical function and the solid angle
dependence is visualized on this plot. Uniform color corresponds to a zero difference
between the two functions. The dark region around (r → 105,Θ � 90◦) corresponds to
the “blind” region which is formed by the total internal reflection of the light at the
PC-water boundary. Two other regions, that are noticeably different from the pure solid
angle function, are the regions with a Θ corresponding to the closest and more distant
region from the given PMT (close to the inner vessel surface).
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Figure 6: The dependence of the fs factor on the source distance from the detector’s
center.
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Table 1: Energy resolution for the radon dissolved in the scintillator volume.
Data Gauss fit

r[cm] < Q > σQ < Q > σQ Nevent

0 < r < 15 242.2 16.5 — — 29
15 < r < 25 245.6 18.5 — — 96
25 < r < 35 243.8 18.4 — — 219
35 < r < 45 244.5 18.0 244.0 18.0 429
45 < r < 55 245.6 19.4 246.2 18.7 568
55 < r < 65 244.1 19.0 244.8 18.4 657
65 < r < 75 242.7 19.5 242.5 19.3 1032
75 < r < 85 239.2 21.4 238.6 21.3 1132
85 < r < 95 235.5 21.3 235.9 21.5 1172
95 < r < 105 231.3 21.2 231.0 21.2 762
0 < r < 40 243.9 18.1 243.8 17.7 529
0 < r < 50 244.6 18.6 244.6 18.2 1831
0 < r <∞ 239.3 20.9 239.1 21.1 6780

value is 0.05, see section 2.3.5). The explanation is that the number of working PMTs in
these runs is different. During the measurements with the artificial radon source, only
about 50 PMTs were operational, while in the first runs the number of PMTs was 84.

2.3.3 The dependence of the total collected charge from the source position
in CTF

The total charge, registered for the different source positions is presented in fig.7 (marked
by crosses). The total charge is defined as a sum of the all PMT signals. The mean value
and its variance over all source positions is:

107.9± 5.8 (5.4%).

On the same plot are shown the values of the total charge for the same source positions
corrected with the fs factor (10). The mean value and its variance over all source positions
is:

111.0± 4.4 (3.9%).

One can see that the correction with the fs factor improves the estimation of the
energy.

2.3.4 The results of the source energy reconstruction in CTF

The results of the source energy reconstruction, with a method discussed later in section 5,
are presented in fig.8. The mean value and its variance for the reconstructed energy over
different source position is:

14



Figure 7: The total charge registered for the different source positions in CTF (crosses).
The values of the total charge for the same source positions corrected with the fs function
are marked with stars.
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137.9± 3.9 (2.8%).

One can notice a big difference between the mean values obtained by summing PMT
signals (107.9) corrected with the fs factor (114.4), and the value obtained with a com-
bined position and energy reconstruction (137.9). The origin of this difference is the
method used for the SER calibration. In the standard CTF reconstruction program
the position of the SER is taken as the calibration value (i.e. the charge corresponding
to 1 p.e.). The reconstruction with PMT charge signals needs a more precise calibration
of the PMTs using the mean value of the SER. This is discussed in detail in [5]. For a
typical PMT the position of the mean is 15 − 20% lower that the position of the peak
(or the most probable value). This difference has no influence on the detector energy
resolution (see section 2.4 for the explanation). The only noticeable change is the energy
scale factor (used to transform p.e. to energy).

2.3.5 Some integrals of the CTF geometrical functions

Some integrals were calculated for the geometrical function obtained from the CTF data.
The mean value of the fs function over the detector volume is< fs(r) >V=< f(r) >V= 1.00.
This value means there is a very high detectors uniformity with respect to the total col-
lected charge.

The relative variance of the CTF geometrical factor turns out to be v(fs) = 0.05. It
is easy to check that the influence of the v(p) factor on the detector’s resolution will be
noticeable at energies above 70KeV (estimated from the equation 1+v1

Q
= v(p) = 0.05).

So, even at the 14C energies, the deviation from the const√
Q

law will be noticeable.
For comparison, the mean quadratic value of the single PMT geometrical function is:

< f 2(r) >V= 1.16. So, the variance of the geometrical function for the single PMT is much
higher than for the whole detector v(f(r)) = 0.16. This should be taken into account when
estimating the PMT parameters using the events distributed over the detector’s volume.

2.4 Influence of the calibration precision on the detector energy
resolution

The calibration of the PMT means establishing the scale for the PMT anode charge in
registered photoelectrons. Assuming the linearity of the registration process, one can
describe the accuracy of the PMT calibration with just one parameter:

ci =
µ′i
µi
, (16)

where µ′i is the i-th PMT charge (or p.e. number) defined applying the calibration,
and µi is the real charge.
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Figure 8: The result of the combined reconstruction (using time and charge data) are
shown with circles. The total charge registered for the different source positions, defined
as a sum over all PMTs, is shown for comparison (marked by crosses). The reconstruction
results are renormalized in order to make the comparison more evident (the point at r ∼ 0
cm has been used for renormalization).
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The relative variance of the registered charge for each PMT doesn’t depend on a
calibration used, and is defined by the relative variance of the PMT single photoelectron
response v1 as:

(
σµ′

µ′

)2

=

(
σµ
µ

)2

=
1 + v1
µ

. (17)

The detector signal (full charge for an event) is defined summing the charge on the
individual PMTs:

Q′ =
NPM∑
i

µ′i = Q · 1

NPM

NPM∑
i

cisi (18)

Here si is the relative sensitivity of the i-th PMT defined as si =
µi

µ0
, where µ0 =

Q
NPM

is
the mean charge registered by one PMT in an event.

From the point of view of probability theory the detector signal is a convolution of the
signals on the individual PMTs. Hence the detector signal variance can be calculated by
summing variances from the PMTs:

σ2
Q′ =

NPM∑
i

σ′2
µi
=

NPM∑
i

(µ′i)2
µi

(1 + v1i
) =

NPM∑
i

c2iµi(1 + v1i
) =

µ0

NPM∑
i

c2i si + µ0

NPM∑
i

c2i siv1i
= Q · ( 1

NPM

NPM∑
i

c2i si +
1

NPM

NPM∑
i

c2i siv1i
) . (19)

So the energy resolution of the detector for the considered calibration is in this case:

R′(Q) =

√√√√√ 1
NPM

∑NPM
i c2i si +

1
NPM

∑NPM
i c2i siv1i

Q · ( 1
NPM

∑NPM
i cisi)2

=
const√
Q
. (20)

In the case when the number of PMTs is big enough (in practice > 50) it is possible
to replace the means of the product in (20) with the product of the means. Taking into
account that < s >= 1 by its definition, and < c2 >=< c >2 +σ2

c , the formula (20) is
significantly simplified:

R′(E) = R(E)
√
1 + v(c) , (21)

where v(c) ≡
(
σc

c

)2
is the relative variance of the calibration “nonaccuracy”.

One can see that the detector energy resolution is quite insensitive to the individual
PMT’s calibration. Indeed, the moderate precision of the PMT calibration of 20% (i.e.
σc = 0.2) will cause only 2% (

√
1 + 0.22) worsening of the detector’s resolution.
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2.5 The energy resolution for a non point-like source

2.5.1 A monoenergetic source

For a point-like source with an energy E at a position −→r , the i-th PMT will register a
mean number of photoelectrons:

µi(
−→ri , E) = f(−→ri ) · µ0(E) · si .

Here the independence of the geometrical function from the source energy is assumed:

f(−→r ) ≡ µ(−→r )
µ(
−→
0 )

(22)

and si is the relative sensitivity of the i-th PMT.
The total registered charge (summed over all PMTs) is:

Q(r, E) =
NPM∑
i=1

f(−→ri ) · µ0 · E · si = µ0E ·NPM · 1

NPM

NPM∑
i=1

f(−→ri ) si .

The mean value of the relative sensitivity is equal to 1 by the definition: < s >=
1

NPM

∑NPM
i=1 si = 1. Using the definition of fs (r) one can write:

Q(r, E) = Q0(E) · fs (r) .

If a source with an energy E is uniformly distributed over the detector’s volume with
density n(r), then the mean registered charge is:

< Q >= Q0(E) ·
∫ R0

0
fs (r)n(r) dr ≡ Q0(E) < fs > . (23)

The mean value of the detector’s function < fs >R is equal to the mean value of the
single PMT function < f >V .

For a point-like source the distribution of registered charge is the convolution of the
charge distributions for the individual PMTs, hence the variation of the registered charge
is the sum of the individual variations:

σ2(r, E) =
NPM∑
i=1

σ2
i (ri, E) =

NPM∑
i=1

µi (ri, E) (1 + v1i
) = Q0(E) fs(r) (1 + v1) .

For the source uniformly distributed over the detector volume, the mean of the total
charge squared can be obtained by averaging the values of the charge squared at every
point in the detector:
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< Q2(E) >=< Q(r, E)2 + σ(r, E)2 >V=

= Q2
0(E) < f

2
s (r) >V +Q0(E)(1 + v1) < fs(r) >V=

= Q2
0(E) < f

2
s (r) >V +Q0(E)(1 + v1) < fs > . (24)

The variation of the total charge is then:

σ2
Q(E) =< Q

2 > − < Q >2= Q2
0(E)(< f

2
s (r) >V − < fs >

2) +Q0(E)(1 + v1) < fs > .

And, finally, the resolution

RV (E) =

√√√√σ2
Q(E)

Q2(E)
=

√
1 + v1

Q0(E) < fs >
+ v(fs) . (25)

Here v(fs) is the relative variance of the fs(r) function over the detector volume:

v(fs) ≡ < f 2
s (r) >

< fs >2
− 1.

It should be pointed out that v(fs) has the same sense as v(p) in formula (2).

2.5.2 A source with energy spectrum fE(E)

If a source is uniformly distributed over the detector’s volume with density n(r), and its
energy spectrum is described with a function fE(E) then the mean charge registered by
the detector is:

< Q >= Q0 ·
∫
E>Eth

E fE (E) dE ·
∫ R0

0
fs (r)n(r) dr ≡ Q0 < E >< fs > . (26)

The proportionality of the registered charge Q and the source energy E is assumed
here. Thus, Q(E) = Q0 · E, where Q0 is a proportionality coefficient (i.e. the charge
registered for the unit energy deposition).

For the source uniformly distributed over the detector’s volume with an energy spec-
trum fE(E) the mean value of the registered charge squared can be obtained by averaging
the mean quadratic values of the charge registered over the detector’s volume:

< Q2 >=< Q(r, E)2 + σ(r, E)2 >V,E= Q
2
0 < E

2f 2
s (r) >V,E +Q0(1 + v1) < Efs(r) >V,E=

20



= Q2
0 < E

2 >< f 2
s (r) >V +Q0(1 + v1) < E >< fs > . (27)

So that the variation of the total registered charge is (using (26) and (27)):

σ2
Q =< Q2 > − < Q >2= Q2

0(< E
2 >< f 2

s (r) >V − < E >2< fs >
2)+Q0(1+v1) < E >< fs > .

and the relative variance of the detector response is:

V arV,E(Q) ≡
σ2
Q

< Q >2
=

1 + v1
Q0E < fs >

+ v(fs) + v(E) + v(fs)v(E), (28)

where v(E) is the relative variance of the source energy spectrum

v(E) ≡ < E2 > − < E >2

< E >2
.

3 Reconstruction using charge signals

The reconstruction of an event position and energy is performed using the maximum
likelihood method with 4 free parameters: 3 coordinates of the event and the event energy.
The likelihood function has the following form:

L(x, y, z, Q0) = log


NPM∏

i=1

p (µ(−→ri (x, y, z), Q0), qi)


 , (29)

where p (µ(−→ri (x, y, z), Q0), qi) is the probability to register charge qi at the i-th PMT
for the event at a position with coordinates −→r = {x, y, z} and the total charge Q0 (this
total charge corresponds to an event of the same energy at the detector’s center). Here−→r i(x, y, z) are the coordinates of the event in the i-th PMT coordinate system. Using the
geometrical function f(−→r ) and the relative sensitivities si one can write:

µ(−→ri , Q) = f(−→ri ) · si · Q

NPM
. (30)

The probability to register charge q at the i-th PMT if the mean expected charge is µ
can be written as:

p (µ, q) =
NMax∑
N=0

P (N, µ)fN(q) . (31)
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This function is discussed in detail in our article [5]. For simplicity the average pa-
rameters have been used, i.e. all PMTs were described using the same set of parameters.

In the reconstruction, the initial Q0 value used is the sum over all PMTs.
The relative sensitivities of the PMTs for the group II electronics (see [3] for the CTF

electronics description) were defined using the data with the artificial radon source at the
detector’s center. The relative sensitivities of the PMTs for the group I electronics were
defined using the 14C data (because of the detector’s spherical symmetry the amount of
light collected by each PMT for such events should be the same).

The algorithm of the likelihood function construction can be divided into the following
steps:

1. The initial total charge value Q0 is defined as the sum of the charge registered at
the individual PMTs.

2. The initial coordinates (x, y, z) of the event are guessed on the basis of the signal
distribution symmetries.

3. At this point a cycle starts over all PMTs. First of all, the mean charge µ(−→ri , Q)
expected at the i-th PMT is defined using formula (30);

4. Then the probability pi to register charge qi at the i-th PMT for the event at a
position with coordinates −→r = {x, y, z} is calculated using formula (31);

5. Then the value of the likelihood function is increased by the log(pi), and the algo-
rithm is repeated starting from point 3.

In figures 9,10 and 11 are shown examples of reconstruction using the charge signals,
compared to the reconstruction using the time signals, for the different source positions
(CTF data with the artificial radon source are used). One can see that the reconstruction
using the time signals is better for small r (source close to the detector’s center), while the
reconstruction with the charge signals at r ≥ 60 cm is comparable to the reconstruction
with the time signals. The reconstruction with the charge signals for the source close to
the inner vessel is better than the reconstruction with the time signals.

3.1 Analysis of the precision of the spatial reconstruction using

the charge data

Let us consider an event of an energy E at a position r = {x, 0, 0}. Because of the
detector’s spherical symmetry this case is quite common. It is easy to recalculate the
source position for every PMT in it’s own coordinate system.

When the source is moved by ∆x the mean registered charge will change by

∆µ = µ0 si
df(r,Θi)

dx
(x, 0, 0)∆x .
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Figure 9: Examples of the reconstruction with the source close to the center. The recon-
structed X,Y and Z coordinates are shown.

r=0 cm (red lines-reconstruction with charge signals, black one- reconstruction
with time signals)
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Figure 10: Examples of the reconstruction with the source far away from the center. The
reconstructed X,Y and Z coordinates are shown.
r=65 cm (red dashed lines-reconstruction with charge signals, black solid one-
reconstruction with time signals)
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Figure 11: Examples of the reconstruction with the source at different positions inside
the detector’s volume. The distance between the nominal source position and the recon-
structed one is shown.
r(0,0,0)=0 cm & r(0,0,-40)=40 cm
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Figure 12:

i-th PMT

r X

Z

Y

L(0)

L(r)

Replacing ∆µ by the uncertainty of the charge registered σ2
µ = µ0 si f(

−→r )(1+v1i
) and

adding quadratically the error of the registered charge reconstruction

σ2
q =

σ2
Q

NPM
=

1

NPM

1 + vDet
1

fs(r)Q0
· (fs(r)Q0)

2 = µ0(1 + v
Det
1 ) fs(r)

(if the source energy is unknown a priori) one can write for a single PMT:

σxi
=

√√√√f(−→ri )1 + v1i

µ0
+
fs(r)

si

1 + vDet
1

µ0
·
(df(r)
dx

(ri)
)−1
. (32)

The signals on the PMTs are independent, so for the whole detector:

σx ≥ 1√∑ 1
σ2

xi

=
1√∑ 1

f(
−→ri )

1+v1
µ0

+
fs(r)

si

1+vDet
1

µ0

(df(r)
dx

(ri))
2
=

=
1√

µ0NPM

1+vDet
1

1
NPM

( si

si f(
−→ri )

1+v1i
1+vDet

1

+fs(r)
)(df(r)

dx
(ri))

2
=

=
R0(E)√

1
NPM

( si

si f(
−→ri )

1+v1i
1+vDet

1

+fs(r)
)(df(r)

dx
(ri))

2
. (33)

It is convenient to change to the PMT coordinate system and to replace the summing
with integration:

σr(r) ≥ R0(E)
(1
2

∫ π

0

1

f(r,Θ) + fs(r)
(
df(r,Θ)

dr
)2sin(θ)dθ

)− 1
2 . (34)
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Here the differentiation over x in the detector’s coordinate system is replaced by dif-
ferentiation over r in the PMT coordinate system. In fact σr(r) is the detector’s radial
resolution. The azimuthal resolution can be obtained in the same way (the factor 1/2
comes from the averaging over φ angle):

σΘ(r) ≥ R0(E)
(1
2
· 1
2

∫ π

0

1

f(r,Θ) + fs(r)
(
df(r,Θ)

r sin(Θ)dΘ
)2 sin(Θ)dΘ

)− 1
2 . (35)

Because of the detector’s spherical symmetry the radial and the azimuthal resolutions
define the total detector’s resolution at any point in the detector.

3.1.1 Simple geometrical function

For estimation of the detector’s resolutions let us use a simplified geometrical function of
the detector (preserving only solid angle dependence)

f(
→
r ) =

L2(0)

L2(−→r )cos(θ) , (36)

where L(−→r ) is the distance between the source and the PMT, and θ is the angle of
incidence of light on the PMT. From elementary geometrical considerations (see fig.12)
one can obtain:

L2(−→r ) = r2 + L2(0)− 2rL(0)cos(Θ0) ,

where θ0 is the azimuthal angle of the PMT and r · cos(Θ0) + L(r)cos(Θ) = L(0).
If the detector’s radius is L0 ≡ L(0) then the simplified geometrical function is:

f(−→r ) = L2
0

L3(−→r )(L0 − r · cos(Θ0)) . (37)

The precision of the spatial reconstruction at the detector’s center, calculated with
the function (37), is:

σ(q)
x =

√
3

2
L0R0(E) , (38)

where R0(E) is the energy resolution at the detector’s center.

3.1.2 Simple geometrical function with absorption

A better approximation for the energy resolution at the detector’s center can be obtained
taking into account the light absorption in the scintillator. If, for an event with coordinates−→r , the path of light in the scintillator is L1(

−→r ), then the simplified geometrical function
will have the following form:

f(−→r ) = L2
0

L3(−→r )(L0 − r · cos(Θ0)) · exp(−L1(
−→r )
LA

+
RDet

LA
) , (39)
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where Rdet is the detector radius. The exponential factor is equal to 1 at the detector’s
center (L1(0) = Rdet by definition).

The precision of the spatial reconstruction at the detector’s center calculated with this
function is:

σ(q)
x =

√
3

2
L0R0(E) · 1

1 + L0

2LA

. (40)

In the CTF detector the influence of light refraction at the scintillator/water interface
significantly changes the geometrical function for events far away from the center.

3.1.3 Comparison of the estimations and the results of the reconstruction
with the CTF data.

Fig.13 presents the comparison of the reconstruction precision obtained in the different
ways, discussed in previous sections. The spatial resolutions (1σ) obtained with the
standard (for the CTF) likelihood function (41), that is using the time data only, for the
different distances from the detector’s center are plotted with triangles (the method is
described in the next section 4). The spatial resolutions (1σ) obtained with the likelihood
function (29), i.e. using the charge data only, are plotted with crosses on the same plot.
One can see that the spatial resolution at the detector’s boundary is the same for both
methods.

In the same figure the estimations using simplified geometrical functions (37) and the
simple geometrical function with the light absorption (39) are plotted with solid lines. One
can see that the better estimation provides the function which accounts for absorption.
Nevertheless, if the source position is far away from the detector’s center, both functions
fail to describe the spatial resolution.

The last plot in fig.13 is the estimation of the spatial resolution with the geometrical
function obtained from the CTF data (stars). This time the functions (34) and (35), used
for the estimations, give the results that agree with the spatial resolutions found during
the reconstruction by maximizing the likelihood function (29).

3.1.4 Spatial reconstruction using charge data (predictions for Borexino).

In the Borexino detector it is intended to use, as a buffer liquid, the pseudocumene (PC)
which is the main scintillator component. In this case there will be no refraction at the
inner vessel boundary and one can use the simple geometrical functions (37) and (39) for
the estimations. The results of the estimation for sources with two different energies are
presented in fig.14. The following parameters have been used in the calculations: v1 = 0.6
and light yield of 400 p.e./MeV.
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Figure 13: The spatial reconstruction precision (1σ) using the time data (triangles) and
the charge data (crosses) as a function of the source distance from the detector’s center.
The results of the calculation using the geometrical function estimated from the CTF
data are plotted with stars. The two lines corresponds to the calculation using the sim-
plified geometrical function (upper line) and the simple geometrical function with light
absorption (lower line).
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Figure 14: The precision of the spatial reconstruction for Borexino as a function of the
distance from the source to the detector’s center. The simple geometrical function with
absorption length of 12 meters has been used in estimations.
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4 Reconstruction using time signals

The reconstruction of an event position is performed using the maximum likelihood
method with 4 free parameters: 3 coordinates and one timing parameter τ0, with the
total charge being fixed. The likelihood function can be written as:

L(x, y, z, τ0) = log


 NPM∏
i=1,ti<Tmaxi

p (τ(−→ri (x, y, z), τ0, tdci), µ(Q0,
−→ri (x, y, z)), pt)


 , (41)

where

p (τ(−→ri (x, y, z), τ0, tdci), µ(Q0,
−→ri (x, y, z), pt)) is the probability density function to ob-

serve the first pulse on the i-th PMT at time τ , for an event with coordinates
{x, y, z} in the detector’s coordinate system, if the first photon at the i-th
PMT has been registered at the time tdci;

τ (−→ri (x, y, z), τ0, tdci) is the function that gives the time when the first photon, regis-
tered at the i-th PMT, has been emitted. It takes into account the time of
flight of the photon from the position with coordinates −→ri (x, y, z) in the i-th
PMT coordinates system to the i-th PMT. The parameter τ0 coincides with
τ (−→ri (x, y, z), τ0) for the first PMT which satisfies the relation Tmin < tdci <
Tmax;

µ(Q0,
−→ri (x, y, z)) is the mean charge registered at the i-th PMT for an event at the

position with coordinates −→ri (x, y, z) and the energy that corresponds to the
Q0 total charge registered for an event of the same energy at the detector’s
center;

Q0 is the total charge registered for an event of the same energy at the detector’s
center;

τ0 is a free parameter, its meaning will be clarified during further discussion;

pt is the part of the SER that remains unregistered (discriminator threshold
effect). It gives a renormalization factor for the p.d.f.

Tmaxi
is a hardware or software cut on the time registration at the i-th PMT (whichever
cut is smaller);

−→r i(x, y, z) is the event coordinate in the i-th PMT coordinate system;

(x, y, z) are the event coordinates in the detector coordinate system.

31



If, one of the PMTs registers an event at the time tdc0 and the i-th PMT registers the
same event at the time tdci, then:

tdc0 = T0 + tof0 + tt0 + τ0 ,

tdci = T0 + tofi + tti + τi ,

where T0 is the absolute time at which the event occurred and tofi is the minimum
time of flight for the photon from the event position {x, y, z} to the i-th PMT. The drift
time of the electrons inside the i-th PMT is tti, and τi is the moment when the first
photon, registered at the i-th PMT, has been emitted. Index “0” is used for the arbitrary
PMT (the first one satisfying Tmin < ti < Tmax condition). One can see that the time
of photon registration at the i-th PMT can be calculated using the time of arrival of the
photon to one of the PMTs:

τi = τ0 + (tof0 + tt0 − tdc0)− (tofi + tti − tdci) . (42)

Thus the time of registering of the first photon by the i-th PMT can be calculated
from the time of arrival of the first photon at one of the PMTs.

The algorithm of the likelihood function construction can be divided into the following
steps:

1. The initial total charge value Q is fixed to the sum of the charge registered at the
individual PMTs.

2. The initial coordinates (x, y, z) of the event are guessed on the basis of the signal
distribution symmetries.

3. The charge Q0 that corresponds to the event of the same energy at the detector’s
center is calculated as

Q0 =
Q

fs(x, y, z)
;

4. At this point a cycle starts over all PMTs. First of all, the condition Tmin < ti < Tmax

is checked out. If this condition is false, the corresponding PMT is excluded from
the maximum likelihood calculation.

5. The mean charge expected at the i-th PMT can be defined now as

µ(−→ri , Q) = f(−→ri ) · si · Q0

NPM
; (43)
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6. For the first PMT that arrives at this point, the moment of time at which the first
photon has been emitted is assumed to be τ0, and the parameter t0 = tof0+tt0−tdc0
is calculated (see formula (42)). For all other PMTs the parameter τi is calculated
as τi = τ0 + t0 − (tofi + tti − tdci);

7. Now the cut time at the i-th PMT Tcuti is calculated using formula (48) of the next
section;

8. Then the probability of the PMT hit at the moment τi is calculated: pi = ρ(τi, µi, pt);

9. The conditional probability of the PMT hit at the moment τi is calculated as

pci =
pi

F (Tcuti ,µi,pt)
, where F (Tcuti, µi, pt) =

∫ Tcuti
Tmin

ρ(t, µi, pt)dt is the total probability

to register a p.e in the time interval up to Tcuti ;

10. The value of the likelihood function is increased by log(pci) and the algorithm is
repeated starting from point 4.

The p.d.f. (probability density function) of the registration time of the first photon ρ1(t)
has been studied in laboratory conditions [7]. The conditions were set in such a way that
a PMT was registering practically a single p.e. (the mean number of the registered p.e.
were about 0.05) with p.d.f. ρ(t) � ρ1(t). The time of the scintillation occurrences were
measured by another PMT with a high precision. It is easy to show that the pdf of the
registration time t for the light pulse with the mean p.e. number µ is

ρ(t) =
µ · ρ1(t)

1− e−µ e
−µF (t). (44)

where F (t) =
∫ t
−∞ ρ1(t)dt. In order to take into account the transit time of the PMT

ρTT (t) it is necessary to replace : ρ1(t) → ρ1(t) ⊗ ρTT (t) (the sign ⊗ is used for the
convolution of two functions).

It is important to notice that it was assumed that the p.d.f. of the time of the
registering of the first photon is independent of the source position.

4.1 Analysis of the precision of spatial reconstruction using time

data

When reconstructing an event position using (41) one should note that late registered pho-
tons do not provide information about the event coordinates, so such signals should be
excluded from the analysis. The influence of the different “time cuts” on the reconstruc-
tion precision is investigated below. The Tcut is counted from the moment (T0 + tofmin)
where T0 is an event occurrence time, and tofmin is time of flight to the closest PMT in
the detector.

The uncertainty of the time of arrival of the photon to a single PMT is:
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σt(T ) =

√
σ2(T ) + σ2

T0
(T )

1− e−µF (T )
, (45)

where

σ2(T ) =

∫ T
−∞(t− t(T ))2ρ(T )dt

F (T )
, (46)

and

σ2
To
= [

NPM∑
i

1− e−µF (Ti)

σ2
i (T )

]−1 (47)

is the uncertainty of the reconstruction of T0 for an event with known coordinates. The
denominator 1− e−µF (t) reflects the fact that the photon is registered in the time interval
[−∞, T ]). The “cut time” for the i-th PMT is:

Tcuti = Tcut + T0 + tofmin − tofi . (48)

So, the closer to a PMT the event occurs, the bigger is the “cut time”.
Using simple geometrical relations one can write:

L(r,Θ) =
√
L2

0 + r
2 − 2 · r · L0 · cos(Θ) ,

so
dL

dr
=
r − L0 · cos(Θ)

L(r,Θ)

and
dL

d(cos(Θ))
= −r · L0 · cos(Θ)

L(r,Θ)
.

A small change of the source position by ∆r along the radius can be registered by a
PMT if dL(r,cos(Θ))

dr
∆r ≈ σt · c

n
from where:

σr =
c

n

σt(T )
dL(r,y)

dr

.

Summing over all PMTs and substituting the summing with an integration over
y ≡ cos(Θ), we will obtain

σ2
T0
=

1

NPM
[
1

2

∫ +1

−1

1− e−µF (T (r,y))

σ2(T (r, y))
dy]−1. (49)

(
1

σr
)2 =

∑ 1

σr2i
≈ NPM · 1

2

∫ +1

−1

(dL(r,y)
dr

)2

( c
n
)2σ2

t (T (r, y))
dy .
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Taking into account the relations for dL
dr

and σt(T ) we can finally write:

σr(r) =
1√
NPM

c

n

[
1

2

∫ +1

−1
(

r − L0 · y
L(r, y) · σt(T (r, y)))

2(1− e−µ(r,y)F (T (r,y)))dy

]−1

. (50)

The same relation can be obtained for the azimuthal resolution:

(
1

σΘ

)2 =
∑ 1

σr2i
≈ NPM · 1

2

∫ +1

−1

(1
r
dL(r,y)

dy
)2

( c
n
)2σ2

t (T (r, y))
dy ,

σΘ(r) =
1√
NPM

c

n

[
1

2

∫ +1

−1
(

L0 · y
L(r, y) · σ(T ))

2(1− e−µ(r,y)F (T (r,y)))dy

]−1

. (51)

It should be noted that the estimate for the mean time of flight is only approximate
due to the simplified geometrical relations used. In the CTF detector for events close to
the inner vessel, the refraction effects at the scintillator/water interface will complicate
the precise time of flight estimation. Nevertheless, comparison with a precise calculation
shows that these effects can be neglected.

4.1.1 Special case: an event at the detector’s center.

Let us assume that for an event of an energy E occurred at the detector’s center the total
registered charge is Q0 and the mean p.e. number registered by one PMT is µ0 =

Q0

NPM
.

Assuming the relative sensitivities of the PMTs to be equal, one can simplify the formula
(50) for events at the detector’s center:

σ(t)
x =

√
3

c
n

√
σ2(T ) + σ2

T0
(T )√

NPM(1− Exp(−µ0F (T ))
, (52)

where

σ(T ) =

∫ T
Tmin

ρ(t)(t− < t(T ) >)2dt

F (T )

< t(T ) > =

∫ T
Tmin

ρ(t)tdt

F (T )
,

F (t) =
∫ T

Tmin

ρ(t)dt ,

and:

• n is the scintillator refraction index;
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• NPM(1−Exp(−µ0F (T ))) is the mean number of PMTs triggered in the time interval
[Tmin;T ] for an event in which the mean number µ0 of photoelectrons is registered
by one PMT;

• T0 is the moment of scintillation;

The Tmin parameter here (Tmin < T0) is chosen to satisfy the relation
∫ Tmin
−∞ ρ(t)dt � 0.

The factor
√
3 - appears from the averaging over all PMTs (volume factor).

4.2 Precision of the spatial reconstruction using time data cal-

culated for CTF.

The precision of the spatial reconstruction for CTF is presented in fig.15 as a function of
Tcut. The time data only are used in the estimations. In order to compare the estimation
with real data, only 50 PMTs were considered (as in CTF for the runs with the artificial
radon source).

4.3 Precision of the spatial reconstruction using time data cal-

culated for BOREXINO.

The precision of the spatial reconstruction for Borexino is presented in fig.16 as a function
of Tcut. The time data only are used in the estimations. It should be pointed out that the
p.d.f. of the time of arrival of the first photon obtained in the laboratory measurements
have been used in the calculations resulting in an overestimate of the reconstruction
resolution using the time signals. Nevertheless, the behaviour of the spatial reconstruction
precision as a function of Tcut is demonstrated.

5 Reconstruction using time and charge signals si-

multaneously

The reconstruction of an event position is performed using the maximum likelihood
method with 5 free parameters: 3 coordinates, one timing parameter τ1 and the total
charge Q. The likelihood function is in this case the sum of the likelihood functions (29)
and (41):

L(x, y, z, τ0, Q0) = log
(∏NPM

i=1,ti<Tmaxi
p (τ(−→ri (x, y, z), τ0, tdci), µ(Q0,−→ri (x, y, z)), pt)

)
+

+log


NPM∏

i=1

p (µ(−→ri (x, y, z), Q0), qi)


 . (53)

The notations used are the same as in (29) and (41).
One can expect that the precision of reconstruction using (53) can be obtained by

summing quadratically the separate resolutions for the reconstruction using the time
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Figure 15: The precision of the spatial reconstruction for CTF as a function of Tcut. The
time data only are used in estimations. Two sources with different energies have been
considered at different source distances from the detector’s center.
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Figure 16: The precision of the spatial reconstruction for Borexino as a function of Tcut.
The time data only are used in estimations. Two sources with different energies have
been considered at different source distances from the detector’s center.
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signals and the one using charge signals. Examples of the reconstruction for CTF data
are presented in fig.17. One can see a significant improvement of the reconstruction when
using both charge and time data.

The reconstructed energy using both charge and time data was presented in fig.8. As
it was already pointed out, the combined use of the charge and time data allows better
reconstruction of the energy; it is even better than simple correction using the geometrical
factor fs(r).

5.1 Improvement of the spatial reconstruction when using the
time and charge data for CTF.

The precision of the spatial reconstruction for CTF is presented in fig.18 as a function of
Tcut. The time and charge data are used in estimations. These plots should be compared
to those in fig.15. In order to compare the estimations to real data, only 50 PMTs
were considered (as in CTF for the runs with the radon source). One can see that
significant improvement of the resolution can be obtained, especially in the region near
the inner vessel boundary. Notice that the resolution at r=75 cm is even better than at
the detector’s center.

5.2 Improvement of the spatial reconstruction when using the
time and charge data for BOREXINO.

The precision of spatial reconstruction for Borexino as a function of Tcut is presented in
fig.18. These plots should be compared to those in fig.16. The improvement in resolution
is not so evident in these plots, but nevertheless one can see that some improvement of
the resolution can be obtained in the region near the inner vessel boundary. Notice that
the resolution at r=390 cm is comparable to the resolution at the detector’s center. As
it was already mentioned, in the calculations the “sharp“ p.d.f. of the time of arrival of
the first photon, obtained in the laboratory measurements, have been used. This caused
an overestimation of the reconstruction resolution using the time signals.
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Figure 17: Example of the reconstruction using the time and charge data with CTF
data. The artificial radon source is at the position r(4,-63,76)=98 cm from the detector’s
center. The upper plot presents the reconstruction of the source position using charge
only (red dashed lines) and time only (black solid lines) data. The central plot presents
the reconstruction of the source position using charge and time (red dashed lines) and
time only (black solid lines) data. In the lower plot the reconstructed distance from the
nominal source position is presented. The first plot shows charge only and time data only
reconstruction. The last one shows the reconstruction using charge and time data (red
narrow plot) in comparison to the time data only reconstruction (black wider plot).
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Figure 18: The precision of the spatial reconstruction precision for CTF as a function
of Tcut .The time and charge data are used in estimations. Two sources with different
energies have been considered at different source distances from the detector’s center.
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Figure 19: The precision of the spatial reconstruction for Borexino using charge and
time data as a function of Tcut .The time and charge data are used in estimations. Two
sources with different energies has been considered at the different source distance from
the detector’s center.
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