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Abstract 
 

The eddy currents generated inside a cable joint may have remarkable consequences both 
during measurements on test joints and also during magnet operation. In the latter case the 
induced currents may be very high, possibly exceeding the critical value. Also the power 
dissipated by the resistive decay of such currents can be many times larger than the steady state 
value. These eddy currents -and therefore the dissipation- can be significantly reduced by means 
of a suitable choice of the joint length. 
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1 INTRODUCTION 
Several resistive joints are foreseen inside ATLAS Barrel Toroids, between the two 

pancakes of each section of the coil, between the two sections of each coil and between different 
coils. The problems due to the Joule heating under stationary conditions have been already 
described 1). Here we address ourselves to the non-stationary effects: during the magnet charge 
the magnetic field component normal to the joint induces large currents that may have remarkable 
consequences, since they increase the Joule dissipation, and possibly exceed the critical current 
value. Non-stationary effects are also relevant during test joints measurements; due to the 
inductance of the joint, the current is not distributed evenly along the joint, and this distribution 
changes over the time. This effect must be kept into account during the data analysis.  

In this note: 
i) we present a simple model of the joint, based on a resistors - inductances network; 
ii) we show that this model explains fairly well the experimental results on a test joint. This 

allows us to obtain experimental estimates of the model free parameters. We skip the 
experimental details, described elsewhere 2). 

iii) We apply the model to the coil joints assuming the appropriate geometry of this 
situation and the experimental values for the free parameters. We make estimates of the current 
profile during the magnet ramp and dump (exponential) discharge. We analyse the consequences 
from the thermal and electrical point of view.   

 

 
 
 

FIG. 1:  Sample layout composed of two conductors welded along the narrow faces. The 
arrows describe the current flow. This sample was used for specific resistance measurements. 
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FIG. 2:  Cross section of the joint shown in Fig. 1. The layer-to-layer joint inside a pancake 
presents the same geometry.  
 
 
2 THE MODEL 

The model is based on a joint between two Aluminium-stabilised superconducting cables, 
welded along their narrow faces (see Fig. 1 and 2). The joint length is L. The resistive path 
between the two Rutherford’s may be described as a set of  N  resistors with resistance R, while 
the inductive effects due to the closed loop circuit is described by the 2(N-1) inductors with 
inductance Λ and mutual inductance between the corresponding inductors of the two layers M 
(see Fig.’s 3 and  4). 

 
 
 
 

 
 
 
 
 
 
 
FIG. 3: Lump elements model of a layer-to-layer joint.  As explained in the text, all resistors and 
inductors are equal, with values R and Λ, and mutual inductance M. 

 
We assume the joint to be homogenous so that all the resistors and inductors are similar, 

we neglect furthermore the end effects (the current flow takes place normally with respect to the 
Rutherford) as well as the mutual coupling between loops. This last assumption is reasonable 
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since the lines of the magnetic self-field lie mainly in planes orthogonal with respect to the 
conductor axis. The scheme depicted in Fig. 3 is appropriate for a joint inside the coils, while for 
a test joint the current enters in the upper conductor from one side and exits from the lower 
conductor on the same side (Fig. 4). 
 

 
FIG. 4: Lump elements model of the test joint shown in Fig. 1 . The main features are the same 
as in Fig. 3, only the current enters and exits from the same side.  

 
The current flow in all the loops is described by a set of  N-1 equations. We shall see later 

that we can pass from this lump elements model to a model with distributed resistance and 
inductance. In this case the current flow is described by a parabolic differential equation. This 
equation may be solved analytically provided that its coefficients are constant. In our case this is 
not strictly true, since the specific resistance changes during the process because of the 
magnetoresistance. For this reason we solve the problem also numerically; analytical solutions 
remain useful both for comparison and to get quick results. 

 
3 THE   CURRENT   DISTRIBUTION   INSIDE   A   JOINT. 
 
3.1  Test joint. 

Our  model is composed by N-1 loops (Fig. 4). For each loop we may write: 
 

 
               

                  .  (1) 
 
 
 
Now if we let N tend to infinity and divide (1) by ∆x = L/N we pass to the continuum: 

 
             

  .               (2) 
  
     
Here we have introduced a linear current density j(x). The summation over n is then 
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                 .                            (3) 

 
 
Introducing the following position,  

 
 

      ,                             (4) 
 
 
(3) may be reduced to the standard diffusion-type (parabolic) differential equation: 
 
 

.                                      (5) 
 
 
This equation describes the current flow at each point of the joint at any time. It must be 
completed by boundary conditions, which in our case are: 
 
 

,                                                                            (6) 
 
 
where I(t) is a known function describing the total current fed into the joint at time t.  
 
3.2  Joint inside coils. 

In this case (see Fig. 3) the equivalent of (1) is: 
 
 
 

 
.     (7) 

 
 
 
Where ∆Φ is the flux linked to each loop, which is equal to the mean distance between the two 
Rutherford cables, D, times the small interval ∆x times the normal component of the magnetic 
field at the joint, B. The reduction to the continuous form is strictly analogous to what we have 
seen above. In this case we get: 
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.      (8) 
 
 
 

 
 
 
The boundary conditions are the same as above, (6), so that we can eventually write: 
 
 

,              (9) 
 
 
 
where            and   .              
 
The two cases a) and b) are therefore described by analogous equations, (5,6), for case a) and 
(9,6) for case b), the difference being given by the presence of a source term in the latter case, 
due to the linked flux.  These equations may be solved analytically provided that the coefficients 
are constant. In our case λ−µ  depends only on the geometry and may be assumed as constant; 
on the other hand ρ depends on the magnetoresistance and therefore on the total current flowing 
in the BT. In the case of a test joint we still can assume ρ as constant since the contribution of the 
self field is negligible as compared to the applied external field. We conclude that the analytical 
solution is fully satisfactory in the case of a test joint, while for a real joint inside the coils we must 
solve numerically (9,6). We shall see later that the numerical results do not differ significantly 
from the analytical ones, which give also a better insight on the role played by the different 
parameters.  Analytical and numerical solutions are also useful since they validate each other. The 
detailed derivation of analytical solutions is given in the Appendix. 
 
4 TEST JOINT: MEASUREMENTS RESULTS 
 
4.1 The solution 

In this case we assume (as we have done in the measurements) that the current goes from 
zero to a fixed value with constant ramp rate, then it remains at that value for some time, and 
finally it comes back to zero with the same ramp rate (see Fig. 5, where we have reported the 
actual values used in the joint resistance measurement shown in Fig. 8). 
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FIG. 5: The current ramp exploited in the measurement of the joint resistance.  
 
The solution of this problem is described in Appendix A.2.  Here we report only the final result 
for the current density: 

 
,      (A.29) 

 
 
where Yn(t) are the functions: 
 
 

  (A.27) 
 
 
where: )()(),(0 yxxyyxMN −⋅−Φ= , Φ is the Heaviside step function, and  
 
 

     .       (A.5a) 
 
 
Equation (A.29) gives the current density distribution at any point of the joint at any time. This 
equation contains the following parameters: L (joint length), Idot (current ramp rate), ρ and λ−µ 
(through α). The first two are known from experimental conditions, while the last two may be 
deduced from the measurements. 
 
4.2 Discussion of the solution 

To understand better the solution behaviour, let us first focus to its time dependence.  We 
therefore select quite arbitrarily four locations along the joint, at x/L = 0, 0.25, 0.5, 0.75 (that is, 
at the beginning, at one fourth of its length, midway and at three fourths), and we see how the 
current density evolves with time at these places (Fig. 6). 
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In Fig. 7 we revert the approach, and we investigate the current density profile along the 
whole joint at some given times, specified in the caption. 

 
FIG. 6: Current density as a function of time at four locations along the joint. The dash line 
represents the external current (in amperes) flowing into the sample, also shown in Fig. 5. 

 
As it can be seen, the current rises faster near the beginning of the joint, and at the end of 

the ramp is still unevenly distributed; later it relaxes approaching an even profile which is never 
reached because the external current begins to decrease; also when the external current is zero 
the Foucault currents (whose slower component decays with time constant π α⋅( ) 2− ) still flow 
inside the joint. 
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FIG. 7: Current density  profiles along the joint, 0.721 m long, at some given instants. The 
corresponding current I(t) is shown in Fig. 5. 
 
4.3 Experimental Investigation and Conclusions  

The model described here above has been developed in order to explain the 
measurements whose primary goal was to measure the specific resistance (ρ/L) of a joint. We 
have performed a best fit procedure applying (A.29), (times ρ) to our measurements of voltage 
drop at some known locations along the joint, leaving ρ and λ−µ as free parameters. The quality 
of the fit may be appreciated from Fig. 8. The values of ρ and λ−µ  used, which therefore 
represent the experimental estimates, are: 

 
 

.                                              (10) 
 
 

All the details of the experimental procedure are described in 2). Measurements shown in Fig. 8 
were performed with no applied magnetic field. Measurements with applied magnetic field up to 
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FIG. 8: Results from a measurement of the voltage drop along a joint at two different positions, 
superimposed with the curves from a best fit procedure.  
 
more noisy, it was possible to measure the specific resistances at all fields, even if with larger 
uncertainties. 
We can summarise the most important conclusions from these measurements as follows: 
i) the model introduced in Sec. 2 describes very well the experimental data with only two free 
parameters. It seems therefore sound to use the same model to predict the behaviour of the 
current distribution in a joint inside the magnet; and 
ii) we have experimental values for ρ(B) and λ−µ at disposal. 
 
5 JOINTS INSIDE COILS: BEHAVIOUR DURING NON-STATIONARY 
CONDITIONS 

We now want to investigate the current distribution inside a joint, keeping into account the 
coupling with the radial magnetic field. In particular we want to determine the amount of Foucault 
currents in order to see if these can exceed the critical value or introduce a significant increase of 
the Joule dissipation. Here we exploit the model described by (9,6). We analyse three operating 
conditions; i) the magnet charge with constant ramp rate, followed by a long plateau at the 
operating current, ii) the discharge with constant ramp rate, after a long-lasting period at constant 
current (Sec. 5.1), and iii) the discharge with exponential current decay (dump discharge) in 
Sec. 5.2. 
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5.1 Magnet charge and discharge with constant ramp rate.  
 
5.1.1 The analytical vs. numerical approach 

The analytical solution for current density profile is determined in Appendix A.3. The same 
solution applies both to the charge and to the discharge, provided that Idot has the right sign and 
the correct I(t) is exploited. The general form of the solution is identical to the previous case:  

 
 

 .                       (A.35) 
                                                                     
 

Where the Yn(t) now are: 
 
 
 

,        (A.33) 
 
 
 
and MN0(x,y) is defined as above. In this case we are interested also to the integrated current 
density, which represents the current flowing inside the upper Rutherford cable: 
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where the functions Yn(t) are again as (A.33). The current flowing along the lower Rutherford at 
x is simply given by the external current, I(t), minus the current in the upper Rutherford at the 
same position x. The current profiles are not symmetrical since the Foucault current flow may 
take place clockwise or anticlockwise depending on the sign of the radial component of the 
magnetic field (the sign of k). In the following analysis we will present only the profile with the 
highest peak current, since this represents the worst case. As we said before, analytical solutions 
based on constant coefficients are not fully satisfactory in this case, since due to the 
magnetoresistance the joint specific resistance changes of a factor 3-4 passing from 0 to 4 T. We 
have developed a finite-differences program to solve the parabolic differential equation with non-
constant coefficients. This program is written in FORTRAN and it adopts an explicit method to 
compute the next time step. 
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5.1.2 Current flowing inside the Rutherford cable 
  
We report below the current distributions inside the Rutherford calculated numerically (symbols) 
assuming the expression for ρ(B)  shown in Fig. 9; for both the ramp up (Fig. 10) and ramp down 
(Fig. 11). In the same graphs we have plotted for reference the results computed from the 
analytical solutions assuming proper constant values for ρ,  as explained in the captions. The main 
parameters exploited in the simulations are listed in Table 1. 
 

TAB. 1: Parameters used in the simulations. 
 Symbol Value 
Average distance between the two Rutherfords D 0.057 m 
Normal (radial) magnetic field at the joint 1 Br 0.77 T 
Operating current Imax 20.5 kA 
Field/current ratio k= Br / Imax 3.756 10-5 T/A 

ATLAS Toroids ramp rate Idot 2.847 A/s 
Joint length L Variable 

 
A critical point is the value of the specific resistance that changes largely in presence of an applied 
magnetic field. Keeping into account both the results of the measurements described in this note 
and of subsequent measurements 3), we have an acceptable experimental description of the joint 
magnetoresistance between 0 and 4 T (see Fig. 9). We  

 
FIG. 9: Joint magnetoresistance. Triangles are from the experimental results described in this 
note, square are the results appeared in 3). The analytical fit is described in the text. 
 

                                                 
 1 Note that the sign reverses from one double pancake to the other. 
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have therefore chosen a possible interpolation function of the form ρ B( ) ρ 0 1 a atan B b 1−⋅( )⋅+( )⋅ .  
This expression depends on the zero-field specific resistance (ρ0) times a term in brackets that 
describes the magnetoresistance. While the former term depends on the sample geometry, the 
latter should not. At the same time the experimental uncertainties on the zero-field specific 
resistances are comparable while the in-field results are much more accurate on the shorter 
sample. Since the most conservative assumption is made with lowest resistance, which yields the 
highest eddy currents, we have chosen i) the zero-field value (ρ0 = 1.45·10-10 Ωm) from the 
longer sample, and ii) the magnetoresistance contribution (a=1.928, b=2.139) from the shorter 
sample, which has the lower experimental uncertainty (Fig. 9).   
 
Magnet Ramp-up 

 
FIG. 10: Current distribution along the joint during the magnet charge. The points (lines) are the 
numerical (analytical) results. The specific resistance value adopted in the analytical curves is 
3.93·10-10 Ωm, corresponding to 2.62 T, that is the value reached in the joint when the Toroid 
magnetic field is at its maximum. As it can be seen, the difference between the two approaches is 
small. The analytical method underestimates the peak current since it assumes the final (highest) 
value for ρ, while in the numerical computations ρ grows with the external current reaching that 
value only at the end of the current ramp. 
 
 
 
 

0

10,000

20,000

30,000

40,000

50,000

60,000

0 1 2 3 4 5

Position along the joint [m]

C
ur

re
nt

 [A
]

num. 2000 s

num. 7200 s

num. 12000 s

analytical 2000 s 

analytical 7200 s

analytical 12000 s



— 15 — 

 
Magnet Discharge 
 

 
FIG. 11: Current distribution along the joint during the magnet discharge. The points (lines) are 
the numerical (analytical) results. The specific resistance value adopted in the analytical curves is 
1.45·10-10 Ωm, corresponding to 2.62 T, that is the value reached in the joint when  I = 20.500 
A. Here the agreement is much worse than it was in Fig. 10. This can be understood as follows: 
the joint magnetoresistance grows largely with the magnetic field. As a consequence, during the 
ramp-up the highest resistance value is almost immediately attained, and then it remains constant, 
so that we do not make a large error assuming its value as constant since the beginning. On the 
other hand, during the magnet discharge the specific resistance changes significantly during the 
process, since it remains close to its higher value as long as the current is nonzero (and in fact at 
t=2000 s the agreement is still good), and then it attains the (much lower) value at B=0. 
 
 
 
We can conclude that during the magnet charge the analytical (with constant ρ) and numerical 
approaches give results in agreement within 10% or less. This is not true during the discharge, and 
in this case we must rely mainly on numerical computations. We note briefly that we made -as a 
check- numerical computations with constant ρ. Results were identical to the analytical ones. In 
Fig. 14 we report the highest current, calculated numerically, in the Rutherford during the magnet 
charge and discharge with a constant ramp rate. 
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5.1.3 Scaling laws for the peak current 
In this section we determine an expression for the peak current during the magnet charge. The 
peak current is reached at the end of the current ramp-up, at about one half of the joint length, as 
it can be seen in the above figures. Its value is therefore found from (A.34), estimated at x=L/2, 
t=t1: 
 
 

.     (A37) 
 
 
This sum has alternating signs, so that the maximum error is equal to the modulus of the first 
neglected term; in practice the contribution from the second term (included) on is less than 2%, if 
the ramp up time is not much smaller than the time constant π α⋅( ) 2− . In this approximation we can 
write: 
 
 

.                        (A.38) 
 
 
Assuming the above values and in particular ρ = 3.93·10-10 Ωm and L = 5m we get a value of 
52.5 kA for Jpeak, to be compared with 55.3 kA from the numerical results. This estimate is 
therefore quite accurate; nonetheless, (A.38) was determined under specific assumptions (and 
notably assuming that the highest current takes place near the centre of the joint. This is true only 
if the induced current is large, otherwise (A.38) fails. This should not be a problem, since the 
formula is useful when high eddy currents are being considered, and in any case a full numerical 
computation is advisable. Eq. (A.38) gives also the scaling laws of the peak current. As it can be 
seen the peak current is the sum of a steady-state term 2maxI   plus a transient term that scales 
as  ( ) ρ2LkDIdot ; it is worth mentioning that it does not depend on λ. This means that reducing 
from 5 to 3 m the joint length the peak current should be about 2.5 times lower (see A.5). 
 
 
5.1.4  Heating due to the induced currents 

A further problem for the magnet operation comes from the extra heating due to the 
induced currents. The total power dissipated along the junction is: 

 
 

 
.                                            (A.39) 

 
 
Now let us substitute the explicit expression for j(x,t) (A.35), we have: 
 
 

J peak
I max

2

2 I dot⋅ D⋅ k⋅

α2 π3⋅ λ⋅ 0

∞

n

1−( ) n

2 n⋅ 1+( )3
1 e

2 n⋅ 1+( ) π⋅ α⋅[ ]2 t 0 t 1−( )⋅
−





⋅∑

=

⋅−

J peak
I max

2

4 I dot⋅ D⋅ k⋅ L2⋅

ρ π3⋅
1 e

π α⋅( )2 t 0 t 1−( )⋅
−





⋅+

Q t( ) ρ
0

L

xj x t,( )2⌠

⌡

d⋅



— 17 — 

 
 
 

.                   (A.40) 
 
 
 
This integral is evaluated in Appendix B. The result shows a very interesting aspect:  
 
 
 

,                               (A.41)   
 
 
that is, the power dissipation is due to two terms: the first represents the joule dissipation due to 
the transport current (let us call it the 'Joule term'), while the second is related to the induced 
currents (let it be the 'Foucault term').  In Fig. 12 we investigate how these terms change over the 
time, assuming a constant specific resistance of 3.93·10-10 Ω·m. The Foucault term is maximum 
at the end of the current ramp, reaching 0.872 W (from numerical computations), to be compared 
with a steady state value of 0.033 W. The contribution from the Foucault term may be 
overwhelming during transient conditions. To understand better how the two terms are affected 
by the different parameters, let us study their scaling behaviour. The Joule term is clear: the power 
scales as ρ and as L-1 . The ramp rate Idot has obviously no effect. As for the Foucault term, with 
some algebra (details in Appendix A.5) and introducing the form of α we may cast the Foucault 
term in the following form, that makes explicit the dependencies on the parameters: 
 
 
 

,                                   (A.42) 
 
 
where the y(n,t) are defined as in (A.31). This tells us that the Foucault term scales as ρ -1, Idot2 
and as L3. These dependencies are by far different from the Joule term; a change of a factor 2 for 
the joint length changes the ratio between the two terms of a factor 16!  Specific resistance and 
ramp rate affect quadratically the ratio. From the numerical computations we discover that if the 
joint length is reduced to 2.5 m instead of 5 m, the maximum power dissipated by the Foucault 
currents is 0.205 W, to be compared with a steady state value of 0.066 W. A last issue to be 
clarified is the consequence on the magnetic field stability of the current redistribution in the joints. 
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Fig. 12. Power dissipated in a joint 5 m long during the magnet charge, assuming a constant 
specific resistance of 3.93·10-10 Ωm. The two terms composing (A.41) are reported separately. 
 
5.2 Magnet discharge with exponential current decay.  

The analytical solution for this case is evaluated in Appendix A.6. The solution is given 
always by (A.28): 
 
 

,                       (A.28) 
 
 
 
with the appropriate expressions for I(t) and Yn(t),  (A.43) and (A.44); the function MN0(x,y) is 
defined as usual: 
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Here we report in Fig. 14 the numerical and analytical results found for an exponential current 
decay with time constant τ = 5.14H / 2 mΩ = 2600 s. 

 
 
Fig 13.   Current   distribution   along  the  joint  during  the   magnet  dump  discharge  with τ = 
2600 s (Rdump = 2 mΩ), assuming ρ = 1.45·10-10 Ω·m.  The peak current is reached at t = 
4200 s. As it can be seen, analytical solutions are accurate only at the beginning of the process, 
when the specific resistance has not changed very much; an analogous behaviour was observed in 
Fig. 11. The joint length is 5 m. 
 
Despite the fact that with an exponential decay the initial dI/dt is higher (-7.88 A/s) as compared 
with the charge ramp-rate (2.85 A/s), the peak current during the dump (exponential) discharge is 
actually lower:  this  happens  because the peak current depends -so to speak- on the integral of 
the charge/discharge process averaged over thousands of seconds; although the dI/dt of the 
exponential discharge is higher at the beginning, it gets lower quickly. 
 
5.3  Peak currents and power dissipation as a function of the joint length. 

So far we have always assumed a joint length of 5 m. This number was chosen in order to 
reduce the power dissipation, and therefore the temperature rise, under steady state conditions 1). 
In those calculations we made many conservative assumptions, especially regarding the heat 
exchange with the surroundings; we assumed that no heat was exchanged with the casing all along  
the joint length. This assumption could be reasonable 
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Fig. 14. Highest current in the Rutherford cable during the magnet charge (squares), linear 
discharge (crosses) and dump (circles) discharge calculated numerically. The external current fed 
into the magnet is reported also. The joint is assumed to be 5 m long. 
 
for a joint between different coils, but it is doubtless overconservative for the kind of joints we are 
investigating now. On the other hand we have seen (see A.38, A.42) that both the peak current 
and the power dissipated scale with higher powers of the joint length L itself. We want to prove 
that a reasonable trade off between steady state dissipation and peak dissipation may be reached 
if the joint is between 2 and 3 m long.  We report the peak current, peak power dissipation, 
steady state power dissipation, highest temperature rise during transient and steady state 
conditions in Table 2 and Table 3, for joint lengths from 1 to 5 m. All these quantities are 
calculated both during the magnet charge with constant ramp rate and during the discharge on 2 
mΩ  dump resistor. 
 

TAB. 2: Peak current, Peak, Steady and Foucault power dissipation during the magnet 
ramp-up at dI/dt = 2.85 A/s, along with the induced temperature rise under different hypotheses. 
†) cooling in the joint zone: Y = yes; N = no; n/a = not applicable. ‡) heat release: P = point-like; 
D = distributed. 

Length 
Peak 
Current 

Peak 
Power 

Steady 
Power 

Foucault 
Power 

∆T 
Peak 

∆T 
Steady 

∆T 
Peak 

∆T 
Steady 

[m] [A] [W] [W] [W] [K] [K] [K] [K] 
     n/a †)  Y†) N†) N†) 
     P‡) D‡) D‡) D‡) 

1.0 20,500 0.173 0.165 0.008 0.027 0.015 0.044 0.042 
2.0 21,409 0.150 0.083 0.067 0.024 0.005 0.053 0.029 
2.5 25,019 0.205 0.066 0.139 0.032 0.003 0.082 0.027 
3.0 30,402 0.304 0.055 0.249 0.048 0.002 0.137 0.025 
4.0 43,389 0.591 0.041 0.550 0.093 0.001 0.325 0.023 
5.0 55,298 0.872 0.033 0.839 0.137 0.001 0.565 0.021 
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TAB. 3: Peak current, Peak, Steady and Foucault power dissipation during a dump 
discharge, along with the induced temperature rise under different hypotheses. †) cooling in the 
joint zone: Y = yes; N = no; n/a = not applicable. ‡) heat release: P = point-like; D = distributed. 

Length 
Peak 
Current 

Peak 
Power 

Steady 
Power 

Foucault 
Power 

∆T 
Peak 

∆T 
Steady 

∆T 
Peak 

∆T 
Steady 

[m] [A] [W] [W] [W] [K] [K] [K] [K] 
     n/a †)  Y†) N†) N†) 
     P‡) D‡) D‡) D‡) 

1.0 20,500 0.167 0.165 0.002 0.026 0.015 0.043 0.042 
2.0 22,425 0.222 0.083 0.139 0.035 0.005 0.078 0.029 
3.0 31,382 0.367 0.055 0.312 0.058 0.002 0.166 0.025 
4.0 40,462 0.474 0.041 0.433 0.074 0.001 0.261 0.023 
5.0 48,241 0.532 0.033 0.499 0.083 0.001 0.345 0.021 

 
The Peak Current and Peak Power release are numerical results. The steady state dissipation 
(Steady Power) was found simply from R Iop

2⋅ , and the contribution from eddy currents (Foucault 
Power) is simply the algebraic difference of the two previous quantities. The temperature rise 
under steady conditions was computed assuming a distributed heat release –as appropriate in this 
case- with and without cooling in the joint zone. During transient conditions the temperature rise 
was calculated as follows: first we note that the typical time scale of the current change (say 1000 
s) is much larger than the thermal diffusivity (which is in the order of a few seconds); as a 
consequence we are at any time close to the stationary condition relevant to the dissipation 
present at that moment (quasi-steady state conditions). We are therefore allowed to exploit the 
results we found for the steady conditions case described in 1), assuming the relevant power 
dissipated. The second important point is that the power dissipation does not take place uniformly 
along the joint, but it is concentrated near the centre, therefore we exploit the solution (Ref 1), 
Eq. (4)) found for the point-like power release, which represents a more conservative hypothesis 
with respect to the case of uniformly distributed power release and cooled joint. The hypothesis 
of no cooling in the joint zone and uniformly distributed power release is considered also. The 
dump discharge case is not worse than the magnet charge with constant ramp rate, despite the 
fact that the dI/dt is much higher at the beginning. The reasons for this were explained in the 
previous section. 
 
6 CONCLUSIONS 

We have shown that large eddy currents appear inside a joint when the magnet current is 
changing. We have investigated in detail both the magnet ramp up and the dump discharge 
scenarios. If a joint length of 5 m is retained these currents are potentially dangerous since they 
could exceed the critical value and they increase vastly the power dissipation. Nonetheless from 
our calculations we find that with a shorter joint length, likely in the range 2 - 3 m, we can achieve 
a good trade-off between dissipation due to eddy currents and steady state dissipation, both 
during the magnet charge and dump discharge, thus allowing a safe magnet operation under those 
conditions. 
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 APPENDIX: RESOLUTION OF THE DIFFERENTIAL EQUATION 
DESCRIBING THE CURRENT INSIDE THE JOINTS 

Here we solve analytically the two problems expressed by (5,6) (case a) and (9,6) (case 
b), assuming constant coefficients. From a mathematical point of view these two problems are 
expressed by homogeneous (case a), non homogeneous (case b) partial derivatives parabolic 
differential equations with nonhomogeneous boundary conditions. This kind of problem may be 
solved with standard techniques described in any textbook on the subject. We have used 4). 
Hereafter we report the two problems: 
 
A.1  General method 
 

Case a) - test joint 
 
  
 

(5) 
 
 

(6) 
 
 
 
Case b) -  joint inside a coil 

 
 
 

(9) 
 
 

(6) 
 
 
where: 
 
 

                                   (A.1)  
 
 
In order to solve these problems, we first switch to a homogeneous boundary conditions system 
with a suitable change of variable: 
 
 

          and            .                                (A.2) 
 
 
Eq. (5,6) (case a) become: 
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(A.3) 
 
 

(A.4) 
 
 
 
where we have used the following positions: 
 
 

          ;       .  (A.5)        
 
 
Similarly  (9,6) (case b) now look as follows: 
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with the position: 
 
 
 

        .                                    (A.8) 
 
 
Where subscripts a and b have been used to remember that the two terms are note the same. 
With this choice of variables the two problems have homogeneous boundary conditions but are 
not homogenous themselves. These can be solved by means of the eigenfunction expansion 
method (Ref. 4), page 64).  For both cases the associated homogeneous problem is:  
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whose solution is: 
 
 

                                    .   (A.11)
      

 
 
According the expansion method, we look for a solution in the form: 
 
 

           (A.12) 
 
 
 
and we expand s(u,t) on the basis formed by the eigenfunctions of the associated homogeneous 
equation: 
  
 

           (A.13) 
 
 
 
The precise form of s(u,t) depends on the details of the situation being investigated. Once that the 
detailed form for the sn has been found, the explicit form for the Yn(t) is given by:   
 
 
 
                 (A.14) 
 
 
 
where the an are to be found by the initial conditions. We can insert this back into (A.12) to get 
Y(u,t) and finally by means of the initial change of variables (A.2) we get the analytical form for 
the solution.  The details of this computation depend on the explicit form for s(u,t), so that we 
analyse the relevant cases in turn. 
 
A.2  Test joint measurement with trapezoidal current time profile. 
 Since we are in case a), the source term to be used is given by (A.5a): 
 

 
(A.5a) 

 
 
Keeping into account the explicit expression for I(t), (Fig. 5), we can write: 
 
        ;           (A.15) 
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 any other time.         (A.16) 

 
 
As seen above in (A.13), now we expand s(u,t) on the basis formed by the eigenfunctions of the 
associated homogeneous equation: 
 
 

       .    (A.17) 
 
 
When s(u,t) is zero (A.16) all the an's are zero. For case (A.15a) we have: 
 
 
 

              (A.18)
  

 
Case (A.15b) is analogous, the only difference being the sign. We can summarise these results as 
follows:   
 
 

 ;                                    (A.19) 
 
 

  any other time.                      (A.20) 
 
 
We now insert these expressions for sn back into (A.14), making the further assumption that no 
current is flowing anywhere in the joint at  t = 0; the initial condition is therefore zero everywhere, 
and all the an's are zero. 
 
 
 

    .                    (A.21) 
 
 
 
Now we evaluate explicitly this integral, exploiting (A.15, A.16) for sn(t)'s. 
 
 

     Zero current          (A.22) 
 
 
 
 

s u t,( ) 0

s n 2
0

1

us sin n π⋅ u⋅( )⋅
⌠

⌡

d⋅

s n 2 I dot⋅
0

1

usin n π⋅ u⋅( ) u 1−( )⋅
⌠

⌡

d⋅
2− I dot⋅

n π⋅

s n
2− Idot⋅

n π⋅
t2 t< t3< s n

2 Idot⋅

n π⋅
t4 t< t5<

s n 0

Y t( ) n
0

t

τe n π⋅ α⋅( )2− t τ−( )⋅ s n τ( )⋅
⌠

⌡

d

Y t( ) n 0 t t2<



— 27 — 

Increasing ramp: 
 
 
 

           (A.23) 
 
 
Plateau at full current; here we split the integral in two parts: 
 
 
 
 

              (A.24)
  

 
 
 
Introducing the explicit form for sn(t) we get: 
  
 
 

              (A.25) 
 
 
 
The integral is evaluated in a similar way for each part of the current profile. At the end we obtain 
the following expressions: 
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If we define the following function;        , where Φ(x) is the Heaviside 
step function, all the above expressions merge in one: 
 
 
 

             . (A.27)
            

 
 
 
Now, from the expression seen above for J(x,t)  (A.2), and the expansion for Y(x,t), (A.12), we 
can write the explicit expression for the integrated current density: 
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The current density may be found differentiating (A.28) with respect to x. 
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As seen above (A.13), now we expand s(u,t) on the basis formed by the eigenfunctions of the 
associated homogeneous equation: 
 
 
 
 
      
 

               
(A.31) 

 
We now come back to (A.14); in this case the initial condition is 0 everywhere both for charge 
and for discharge since Y(x,t) is the "homogeneous boundary" solution. As a consequence, all the 
an's are zero, and the expression for Yn(t) is the same as (A.21) with the proper sn(t). The 
integration is straightforward and gives: 
 
 
 
 
 
 
 
 
 
 

              (A.32) 
 
Or, with the same MN0 function introduced above, 
 
 

              (A.33) 
 
 
from which we get the explicit expressions for the integrated current density (see (A.2) and 
(A.12) ): 
 
 

              (A.34) 
 
 
Which, differentiated with respect to x, gives the current density: 
 
 
 

             .         (A.35) 
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These expressions are formally identical to (A.28) and (A.29), although the appropriate forms for  
Yn(t) and I(t) must be taken in both cases. 
 
 
A.4 Peak current estimate. 
 The peak current is reached at the end of the current ramp-up, at about one half of the joint 
length, as it can be seen in the above figures. Its value is therefore found from (A.34), estimated at 
x = L/2,   t = t1 : 
 
 
                    
               , 
 

              (A.36) 
 
which, after some manipulations becomes: 
 
 
 

          .  (A.37) 
 
 
 
The sum has alternating signs, so that the maximum error is equal to the modulus of the first 
neglected term; in practice the contribution from the second term (included) on is less than 2%, if 
the ramp up time is not much smaller than the time constant π α⋅( ) 2− . In this approximation we can 
write: 
 
 

             (A.38) 
 
 
 
 
A.5: The power dissipated inside a joint during the magnet ramp. 

The total power dissipated along the junction (Sec. 5.1.4) is given by: 
 
 
 

         (A.39) 
 
 
Introducing the explicit form for j(x), (A.35), we get:  
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(A.40) 
 
 
 
 
 
 
 
 
 
 
 
 
Since                                   for all n, the rightmost term is zero.  
  
 

 
 
Here we exchange sums and integrals, so that: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The final expression for the total power dissipated in a joint is therefore: 
 
 
 

.                               (A.41) 
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The behaviour of the first term ('Joule' term) is clear: the power scales as ρ and as L-1 . The ramp 
rate Idot has obviously no effect. To understand better the 'Foucault' term, let us come back to 
the expression for the functions (A.29): 
 
 
 
 
 
     
where       
 
 
 
 
 
 
 

(A.42) 
 
 
 
 
A.6 Exponential current decrease 
 A third possible situation is represented by the exponential current decrease with time 
constant τ. In this case the source term (A.5) is: 
 
 
 
 
 
Introducing the form for I(t); 
 
 
 

(A.43) 
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The expansion of sn(u,t) on the s basis is: 
 
 
 

                  .      (A.44) 
 
 
 
 
The Yn(t) are given by (A.16) (the same comments apply here): 
 
 
 
 
 
 
 
Now we evaluate explicitly this integral, exploiting (A.44) for sn(t)'s. 
 
 
 
 
 
 
 
 
 
and after the integration we find: 
 
 
 
 
 
 
As usual we write: 
 
 
 

(A.45) 
 
 
 
Valid at any time. For the overall current flowing into the Rutherford we can -as already seen- 
take (A.28) and (A.29), provided that the appropriate expressions for Yn(t) and I(t) are used, 
(A.45) and (A.44) respectively. 
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