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Abstract

The eddy currents generated inside a cable joint may have remarkable consequences both
during measurements on test joints and adso during magnet operation. In the latter case the
induced currents may be very high, possbly exceeding the critica value. Also the power
disspated by the resistive decay of such currents can be many times larger than the steedy State
vaue. These eddy currents -and therefore the disspation can be sgnificantly reduced by means
of asuitable choice of the joint length.
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1 INTRODUCTION

Severd reddive joints are foreseen indde ATLAS Barrd Toroids, between the two
pancakes of each section of the coil, between the two sections of each coil and between different
coils. The problems due to the Joule heating under stationary conditions have been adready
described 1. Here we address oursalves to the non-gtationary effects: during the magnet charge
the magnetic field component normd to the joint induces large currents that may have remarkable
consequences, since they increase the Joule disspation, and possibly exceed the critica current
vaue. Non-dationary effects are aso relevant during test joints measurements, due to the
inductance of the joint, the current is not distributed evenly dong the joint, and this distribution
changes over the time. This effect must be kept into account during the data analysis.

In this note:

i) we present asmple modd of the joint, based on aresistors - inductances network;

i) we show that this moded explains fairly wel the experimenta results on atest joint. This
dlows us to obtan experimental estimates of the modd free parameters. We <ip the
experimental details, described elsewhere 2.

iil) We agpply the modd to the cail joints assuming the appropriate geometry of this
gtuation and the experimental values for the free parameters. We make estimates of the current
profile during the magnet ramp and dump (exponentid) discharge. We andyse the consequences
from the therma and eectricd point of view.

L2

FIG. 1: Sample layout composed of two conductors welded along the narrow faces. The
arrows describe the current flow. This sample was used for specific res stance measurements.
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FIG. 2. Cross section of thejoint shown in Fg. 1. The layer-to-layer joint indgde a pancake
presents the same geometry.

2 THE MODEL

The modd is based on ajoint between two Aluminium-stabilised superconducting cables,
welded dong therr narrow faces (see Fig. 1 and 2). The joint length is L. The resstive path
between the two Rutherford’s may be described asa set of N resstors with resstance R while
the inductive effects due to the closed loop circuit is described by the 2(N-1) inductors with
inductance L and mutual inductance between the corresponding inductors of the two layers M
(seeFig’'s3and 4).
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FIG. 3: Lump dements modd of alayer-to-layer joint. Asexplained inthetext, al resstors and
inductors are equa, with valuesRand L , and mutual inductance M.

We assume the joint to be homogenous so that al the resstors and inductors are smilar,
we neglect furthermore the end effects (the current flow takes place normally with respect to the
Rutherford) as well as the mutua coupling between loops. This last assumption is reasonable



gnce the lines of the magnetic sdf-fidd lie mainly in planes orthogond with respect to the
conductor axis. The scheme depicted in Fig. 3 is gppropriate for ajoint ingde the coails, while for
atest joint the current enters in the upper conductor from one side and exits from the lower
conductor on the same side (Fig. 4).

FIG. 4: Lump dements modd of thetest joint shown in Fig. 1. The main features are the same
asin Fg. 3, only the current enters and exits from the same sde.

The current flow in dl the loopsis described by aset of N-1 equations. We shall see later
that we can pass from this lump eements mode to a modd with digtributed resstance and
inductance. In this case the current flow is described by a parabolic differentid equation. This
equation may be solved andyticaly provided that its coefficients are constant. In our case thisis
not gdrictly true, snce the specific resstance changes during the process because of the
magnetoresstance. For this reason we solve the problem adso numericaly; anaytical solutions
remain useful both for comparison and to get quick results.

3 THE CURRENT DISTRIBUTION INSIDE A JOINT.

3.1 Tedjoint.
Our model iscomposed by N-1 loops (Fig. 4). For each loop we may write:

N-1
2f L - M)%é i1 + R{ins1- in) = 0 j=1,2.N- 1. L)
t

n=j

Now if welet N tend to infinity and divide (1) by Dx = L/N we pass to the continuum:
LM N-1
228 q i+ RDej -0 2
Dx dtn _ ax

Here we have introduced a linear current density j(X). The summation over n is then
replaced by an integra, so that eventudly we get:
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Introducing the following position,

, L
X, 1) :§ (U du (4)

X

(3) may be reduced to the standard diffusion-type (parabolic) differential equation:

d 3x 1) - xiJ(x 0 = 5)

dat 2>(|-n)

This equation describes the current flow a each point of the joint a any time. It must be
completed by boundary conditions, which in our case are;

J(O,t) = I(t)
, (6)
JL,t)=0
where I (t) is aknown function describing the totd current fed into the joint & timet.
3.2 Joint inside coils.
In this case (see Fig. 3) the equivdent of (1) is
® J g 0
(L-mx3€ 8§ i+ A in” + Roije1 - ij):-iDF:-DmﬂB
dt = dt dt
€ n=1 n=j+1 @ . (7
j=1,2.N-1

Where DF isthe flux linked to each loop, which is equd to the mean distance between the two
Rutherford cables, D, times the smdl interval Dx times the norma component of the magnetic
fiedd a the joint, B. The reduction to the continuous form is drictly analogous to what we have
seen above. In this case we get:
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The boundary conditions are the same as above, (6), S0 that we can eventudly write:
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The two cases a) and b) are therefore described by analogous equations, (5,6), for case @) and
(9,6) for case b), the difference being given by the presence of a source term in the latter case,
due to the linked flux. These equations may be solved andyticdly provided that the coefficients
are constant. In our case | - m depends only on the geometry and may be assumed as congtant;
on the other hand r depends on the magnetoresistance and therefore on the total current flowing
inthe BT. In the case of atest joint we gill can assumer as congtant since the contribution of the
sdf field is negligible as compared to the applied externd field. We conclude that the andytical

solution isfully satisfactory in the case of atest joint, while for ared joint ingde the coils we must
solve numericdly (9,6). We shdl see later that the numericd results do not differ significantly

from the andyticd ones, which give aso a better ingght on the role played by the different

parameters. Andyticd and numerica solutions are also useful since they vaidate each other. The
detailed derivation of andyticd solutionsis given in the Appendix.

4  TEST JOINT: MEASUREMENTSRESULTS

4.1 Thesolution

In this case we assume (as we have done in the measurements) that the current goes from
zero o a fixed vadue with congtant ramp rate, then it remains a that value for some time, and
findly it comes back to zero with the same ramp rate (see Fig. 5, where we have reported the
actua vaues used in the joint resistlance measurement shown in Fg. 8).
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FIG. 5: The current ramp exploited in the measurement of the joint resistance.

The solution of this problem is described in Appendix A.2. Here we report only the fina result
for the current dengty:

1 & o x09

ixt) = =&I(t) - px@Q Y (1) ncosEopE O (A.29)
L ¢ e Lg
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where Y;(t) are the functions:

-2% a A 2 2 N
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where: MNO(x,y)=F (y- X):(x- y), F isthe Heaviside step function, and

a- |—1r (A.59)
2{l - m?

Equation (A.29) gives the current dengity digtribution a any point of the joint & any time. This
equation contains the following parameters. L (joint length), 140 (current ramp rate), r and | - m
(through a). The firg two are known from experimental conditions, while the last two may be
deduced from the measurements.

4.2 Discussion of the solution

To understand better the solution behaviour, let us first focus to its time dependence. We
therefore select quite arbitrarily four locations aong the joint, a x/L = 0, 0.25, 0.5, 0.75 (that is,
at the beginning, a one fourth of its length, midway and a three fourths), and we see how the
current density evolves with time at these places (Fig. 6).



In Fig. 7 we revert the gpproach, and we investigate the current dendty profile dong the
whole joint a some given times, specified in the caption.
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FIG. 6: Current dengty as afunction of time at four locations dong the joint. The dash line
represents the externa current (in amperes) flowing into the sample, dso shown in Fig. 5.

Asit can be seen, the current rises faster near the beginning of the joint, and a the end of
the ramp is dill unevenly distributed; later it relaxes gpproaching an even profile which is never
reached because the externd current begins to decrease; dso when the externd current is zero
the Foucault currents (whose slower component decays with time constant (psa)™2) il flow
ingde thejoint.
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FIG. 7: Current dengty profilesdong thejoint, 0.721 m long, a some given ingants. The
corresponding current 1 (t) isshown in Fg. 5.

4.3 Experimental Investigation and Conclusions

The modd described here above has been developed in order to explan the
measurements whose primary goa was to measure the specific resstance (r /L) of ajoint. We
have performed a best fit procedure applying (A.29), (times r) to our measurements of voltage
drop a some known locations dong the joint, leaving r and | - masfree parameters. The qudity
of the fit may be gppreciated from Fig. 8. The vaues of r and | - m used, which therefore
represent the experimental estimates, are:

r = 14540 Qm

-7 " (10)
| -m=330" H/m

All the details of the experimental procedure are described in 2. Measurements shown in Fig. 8
were performed with no applied magnetic field. Measurements with applied magnetic fied up to
4T have been done aso. Although the experimenta data were much
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FIG. 8. Results from a measurement of the voltage drop along ajoint at two different positions,
superimposed with the curves from a best fit procedure.

more noisy, it was possible to measure the specific resstances at dl fidds, even if with larger
uncertainties.

We can summarise the most important conclusions from these measurements as follows:

1) the modd introduced in Sec. 2 describes very well the experimenta data with only two free
parameters. It seems therefore sound to use the same model to predict the behaviour of the
current distribution in ajoint ingde the magnet; and

i) we have experimenta vauesfor r (B) and | - mat digposal.

5 JOINTS INSIDE COILS: BEHAVIOUR DURING NON-STATIONARY
CONDITIONS

We now want to investigate the current ditribution ingde a joint, kegping into account the
coupling with the radid magnetic fidd. In particular we want to determine the amount of Foucault
currents in order to see if these can exceed the critical vaue or introduce a significant increase of
the Joule dissipation. Here we exploit the model described by (9,6). We andyse three operating
conditions; i) the magnet charge with constant ramp rate, followed by a long plateau at the
operating current, ii) the discharge with congtant ramp rate, after along-lasting period at constant
current (Sec. 5.1), and iii) the discharge with exponentid current decay (dump discharge) in
Sec. 5.2.



5.1 Magnet charge and discharge with constant ramp rate.

5.1.1 The analytical vs. numerical approach

The andyticd solution for current density profile is determined in Appendix A.3. The same
solution applies both to the charge and to the discharge, provided that |4, has the right Sgn and
the correct I (t) is exploited. The genera form of the solution isidentical to the previous case:

1 &8 s w0
i) = =KI(t) - px@ Y n(t)mocosFRmp OF. (A.35)
L ¢ e Lo
e n=1 ]
Where the Y,(t) now are;
Mg, S € (npa)?mndtot u
Yn(t)=( o)3>€b>€1-(-1)nL-1L>§enpa wd 0 s
nxpsa E ¢ MNQto, )0 L
P B - e(moa) do )L 0

and MNO(x,y) is defined as above. In this case we are interested aso to the integrated current
densty, which represents the current flowing inside the upper Rutherford cable;

Ix,1) = |(t)>?‘i 04 a Y (t)>€in ?ﬁmx— (A.34)
Lg

n=1

where the functions Yn(t) are again as (A.33). The current flowing adong the lower Rutherford a
X is amply given by the externd current, I(t), minus the current in the upper Rutherford at the
same postion x. The current profiles are not symmetricad since the Foucault current flow may
take place clockwise or anticlockwise depending on the sign of the radid component of the
megnetic field (the sgn of k). In the following andysis we will present only the profile with the
highest peak current, Ince this represents the worst case. As we said before, andytica solutions
based on congant coefficients are not fully satisfactory in this case, snce due to the
magnetores stance the joint specific resstance changes of afactor 3-4 passingfrom0to4 T. We
have developed a finite-differences program to solve the parabolic differentid equation with nor-
congtant coefficients. This program is written in FORTRAN and it adopts an explicit method to
compute the next time step.



— 13—

5.1.2 Current flowing inside the Rutherford cable

We report below the current digtributions ingide the Rutherford calculated numericaly (symbols)
assuming the expression for r (B) shown in Fig. 9; for both the ramp up (Fig. 10) and ramp down
(Fig. 11). In the same graphs we have plotted for reference the results computed from the
andytica solutions assuming proper condtant values for r, asexplained in the captions. The main

parameters exploited in the smulations are listed in Table 1.

TAB. 1 Parameters used in the smulations.

Symbol Vdue
Average distance between the two Rutherfords D 0.057m
Normal (radia) magnetic field at the joint * B 0.77T
Operating current | max 20.5 kA
Fidd/current ratio k= B/ /lpax | 3.756 10™ T/A
ATLAS Toroids ramp rate l ot 2.847 Als
Joint length L Vaidde

A critica point isthe vaue of the specific resstance that changes largely in presence of an gpplied
magnetic field. Kegping into account both the results of the measurements described in this note
and of subsequent measurements 3), we have an acceptable experimental description of the joint

magnetoresistance between 0 and 4 T (see Fig. 9). We
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FIG. 9: Joint magnetoresistance. Triangles are from the experimenta results described in this
note, square are the results appeared in 3. The andytical fit is described in the text.

! Note that the sign reverses from one double pancake to the other.
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have therefore chosen a possble interpolation function of the form r (B) = r O>(1 + a>atan(|3>b‘ 1)) :
This expression depends on the zero-fidd specific resstance ( o) times aterm in brackets that
describes the magnetoresstance. While the former term depends on the sample geometry, the
latter should not. At the same time the experimentd uncertainties on the zero-fidd specific
resstances are comparable while the in-field results are much more accurate on the shorter
sample. Since the most conservative assumption is made with lowest resstance, which yidds the
highest eddy currents, we have chosen i) the zero-fidd vaue (o= 1.45.10%° Wm) from the
longer sample, and ii) the magnetoresistance contribution @=1.928, b=2.139) from the shorter
sample, which has the lower experimenta uncertainty (Fig. 9).

Magnet Ramp-up

60,000 T ¢ num. 2000 s
I num. 7200 s

A num. 12000 s
—eo—analytical 2000 s

50,000 4

—a—analytical 7200 s

40,000 T —a—analytical 12000 s

30,000 1

Current [A]

20,000 ¥

10,000 +

0 1 2 3 4 5
Position along the joint [m]

FIG. 10: Current digribution dong the joint during the megnet charge. The points (lines) are the
numerica (anadytica) results. The specific resstance vaue adopted in the andyticd curves is
3.93:10-10 Wim, corresponding to 2.62 T, that is the value reached in the joint when the Toroid
meagnetic fidd is a its maximum. Asit can be seen, the difference between the two approachesis
smdl. The andyticd method underestimates the peak current sSnce it assumes the find (highest)
vaue for r, while in the numericd computations r grows with the externa current reaching that
vaue only at the end of the current ramp.
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Magnet Discharge

70,000 2000 s
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® 4200s
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7200 s
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—0 s analytical
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60,000

50,000

40,000

Current [A]
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Position along the joint [m]

FIG. 11: Current ditribution aong the joint during the magnet discharge. The points (lines) are
the numerica (andyticd) results. The specific resstance vaue adopted in the andytica curvesis
1.45-10-10 W, corresponding to 2.62 T, that is the value reached in the joint when | = 20.500
A. Here the agreement is much worse than it was in Fig. 10. This can be understood as follows:

the joint magnetoresistance grows largely with the magnetic field. As a consequence, during the
ramp-up the highest resstance vaue is dmost immediatdly atained, and then it remains congant,
S0 that we do not make a large error assuming its value as congtant since the beginning. On the
other hand, during the magnet discharge the specific resstance changes significantly during the
process, snce it remains close to its higher vaue as long as the current is nonzero (and in fact at
t=2000 s the agreement is dtill good), and then it attains the (much lower) vaue a B=0.

We can conclude that during the magnet charge the andyticd (with congtant r) and numerica

gpproaches give results in agreement within 10% or less. Thisis not true during the discharge, and
in this case we must rdy mainly on numericd computations. We note briefly that we made -asa
check- numerica computations with congtant r . Results were identical to the andytica ones. In

Fig. 14 we report the highest current, calculated numericdly, in the Rutherford during the magnet
charge and discharge with a congtant ramp rate.
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5.1.3 Scaling laws for the peak current

In this section we determine an expression for the pesk current during the magnet charge. The
peak current is reached at the end of the current ramp-up, at about one haf of the joint length, as
it can be seen in the above figures. Its value is therefore found from (A.34), estimated at x=L/2,
=t

¥ , <
| max ) 2% dot>D>kx o (- 1)n >El ) e[(2>n+1)>p>a]2>€to- t 1)t .

J peak = (A37)

2 a2>p3>k h=o (2n+ 1)3

This sum has dternaing Sgns, so that the maximum error is equd to the modulus of the firgt
neglected term; in practice the contribution from the second term (included) on is less than 2%, if
the ramp up time is not much smaller than the time congtant (p>a)” 2. In this approximeation we can
write:

2, 5 .
Jpeak: In;ax N 4>’Idot>{):<>1— )&1_ e(pwsa) %to-tl){,— (A.39)
r>p

Assuming the above values and in paticular r = 3.9310™ Wmand L = 5m we get avdue of

52.5 KA for Jpeax, to be compared with 55.3 kA from the numerica results. This eimate is
therefore quite accurate; nonetheless, (A.38) was determined under specific assumptions (and

notably assuming that the highest current takes place near the centre of the joint. Thisistrue only

if the induced current is large, otherwise (A.38) fails. This should not be a problem, since the
formulais useful when high eddy currents are being consdered, and in any case a full numerica

computation is advisable. EQ. (A.38) gives dso the scding laws of the peak current. Asit can be
seen the peak current is the sum of a steady-state term | max/2 plus atrangent term that scales
as (I dot DkL? /r ; it is worth mertioning that it does not depend on | . This meansthat reducing

from 5 to 3 m the joint length the peak current should be about 2.5 times lower (see A.5).

5.1.4 Heating due to the induced currents
A further problem for the magnet operation comes from the extra hegting due to the
induced currents. The total power disspated along thejunction is.

, L
Q) =9 j(x1)2dx. (A.39)
O

Now let us subgtitute the explicit expression for j(x,t) (A.35), we have:



y 2
0
0 - pral Y(n, tymocos(mps) T ds. (A.40)
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Thisintegra isevauated in Appendix B. The result shows a very interesting aspect:

r>‘1(t)2 rop é‘
+ P xa Y
L 24

n=1

(5% (A.41)

Q1) =

that is, the power disspation is due to two terms: the first represents the joule disspation due to
the trangport current (let us cdl it the ‘Joule term’), while the second is related to the induced
currents (let it be the 'Foucault term). In Fig. 12 we investigate how these terms change over the
time, assuming a constant speific resistance of 3.93-10-10 W.m. The Foucault term is maximum
at theend of the current ramp, reaching 0.872 W (from numerical computations), to be compared
with a eady date vdue of 0.033 W. The contribution from the Foucault term may be
overwhelming during trandgent conditions. To understand better how the two terms are dfected
by the different parameters, let us sudy their scaling behaviour. The Joule term is clear: the power
scalesasr andasL1 . Theramp rate | 4o has obvioudy no effect. Asfor the Foucault term, with
some agebra (details in Appendix A.5) and introducing the form of a we may cast the Foucault
term in the following form, that makes explicit the dependencies on the parameters:

¥
xQ y(ny>n’, (A.42)

n=1

BP°H g A A3

r

where the y(n,t) are defined asin (A.31). Thistells us that the Foucault term scales ast -1, I ggt2
and as L3. These dependencies are by far different from the Joule term; a change of afactor 2 for
the joint length changes the ratio between the two terms of a factor 16! Specific resstance and
ramp rate affect quadraticdly the ratio. From the numericd computations we discover that if the
joint length is reduced to 25 m ingead of 5 m, the maximum power disspated by the Foucault
currents is 0.205 W, to be compared with a steady state value of 0.066 W. A last issue to be
clarified is the consequence on the magnetic field stability of the current redistribution in the joints.
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Fig. 12. Power disspated in ajoint 5 m long during the magnet charge, assuming a congtant
specific resstance of 3.93-10-10 Wm. The two terms composing (A.41) are reported separately.

5.2 Magnet discharge with exponential current decay.

The andytical solution for this case is evaduated in Appendix A.6. The solution is given
aways by (A.28):

¥
100 = 108 - 204 & v, (0nFp=9, (A.28)
e Lo e Lo

n=1

with the appropriate expressions for I(t) and Yu(t), (A.43) and (A.44); the function MNO(X,y) is
defined asusud:

bfl- ()"0 - 1 guntol o )Cu
- (- - ) € MNO(t o, th L
npgopa) ot - 14
tot

1) = 1tg)e © . (A.43)
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Here we report in Fig. 14 the numerical and anaytical results found for an exponentid current
decay with time congantt = 5.14H / 2 mW = 2600 s.

2000 s

4200 s

7200 s

12000 s

——0 s analytical
—&— 2000 s analytical
—6— 4200 s analytical
—a— 7200 s analytical

60,000 Dump Discharge

> E e e

50,000

40,000

30,000 —a— 12000 s analytical

Current [A]

0 1 2 3 4 5
Position along the joint [m]

Fig 13. Current didribution dong the joint during the magnet dump discharge witht =
2600 S (Ryymp = 2 MA), assuming r = 1.45:10-10 Wm. The pesk current is reached at t =
4200 s. As it can be seen, analytica solutions are accurate only at the beginning of the process,
when the specific resstance has not changed very much; an anaogous behaviour was observed in
Fig. 11. Thejoint lengthis5m.

Despite the fact that with an exponentid decay the initid di/dt is higher (-7.88 A/s) as compared
with the charge ramp-rate (2.85 A/s), the peak current during the dump (exponentid) dischargeis
actudly lower: this happens because the peak current depends -so to speak- on theintegrd of
the charge/discharge process averaged over thousands of seconds; athough the di/dt of the
exponentia discharge is higher & the beginning, it gets lower quickly.

5.3 Peak currentsand power dissipation asa function of thejoint length.

So far we have dways assumed a joint length of 5 m. This number was chosen in order to
reduce the power dissipation, and therefore the temperature rise, under steady state conditions 2]
In those caculaions we made many conservative assumptions, especialy regarding the heet
exchange with the surroundings; we assumed that no heat was exchanged with the casing dl dong
the joint length. This assumption could be reasonable
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Fig. 14. Highest current in the Rutherford cable during the magnet charge (squares), linear
discharge (crosses) and dump (circles) discharge cdculated numericdly. The externa current fed
into the magnet is reported aso. Thejoint is assumed to be 5 m long.

for ajoint between different coils, but it is doubtless overconservative for the kind of joints we are
investigating now. On the other hand we have seen (see A.38, A.42) that both the peak current
and the power disspated scae with higher powers of the joint length L itsdf. We want to prove
that a reasonable trade off between steady State dissipation and pesk dissipation may be reached
if the joint is between 2 and 3 m long. We report the peak current, pesk power dissipation,
deady Sate power disspation, highest temperature rise during transent and dteady date
conditions in Table 2 and Table 3 for joint lengths from 1 to 5 m. All these quantities are
caculated both during the magnet charge with constant ramp rate and during the discharge on 2
mW dump resistor.

TAB. 2: Peak current, Peak, Steady and Foucault power disspation during the magnet
ramp-up at di/dt = 2.85 A/s, dong with the induced temperature rise under different hypotheses.
1) cooling in thejoint zone: Y = yes, N = no; n/a = not gpplicable. f) hest rlease: P = point-like;
D = didributed.

Peak Peak Steady | Foucault | DT DT DT DT
Length | Current | Power | Power | Power Peak | Steady | Peak | Steady

[m] [A] (W] W] Wl [K] [K]| [K] [K]
n/a®) Y| ND NT)

pPh DY DY DY

1.0 20,500 0.173| 0.165 0.008 | 0.027 0.015| 0.044 0.042
2.0 21,409 0.150| 0.083 0.067| 0.024 0.005| 0.053 0.029
25 25,019 0.205| 0.066 0.139| 0.032 0.003| 0.082 0.027
3.0 30,402 0.304| 0.055 0.249| 0.048 0.002| 0.137 0.025
4.0 43,389 0591| 0.041 0.550| 0.093 0.001| 0.325 0.023
5.0 55,298 0.872| 0.033 0.839| 0.137 0.001| 0.565 0.021




TAB. 3. Peak current, Peak, Steady and Foucault power dissipation during a dump
discharge, aong with the induced temperature rise under different hypotheses. 1) cooling in the
joint zone: Y =yes, N = no; n/a= not gpplicable. ¥) heet release: P = point-like; D = distributed.
Peak Peak Steady | Foucault | DT DT DT DT
Length | Current | Power | Power | Power Peak | Steady | Peak | Steady

[m] [A] W] [W] Wl [K] [K]| [K] [K]
na® Y N N

Pt D¥ D¥ D%
1.0 20,500 0.167| 0.165 0.002 | 0.026 0.015| 0.043 0.042
2.0 22,425 0.222| 0.083 0.139| 0.035 0.005| 0.078 0.029
3.0 31,382 0.367| 0.055 0.312| 0.058 0.002 | 0.166 0.025
4.0 40,462 0.474| 0.041 0.433| 0.074 0.001| 0.261 0.023
5.0 48,241 0.532| 0.033 0.499| 0.083 0.001| 0.345 0.021

The Peak Current and Pesk Power release are numerical results. The steady state dissipation
(Steady Power) was found smply from R>10p2, and the contribution from eddy currents (Foucault
Power) is smply the agebraic difference of the two previous quantities. The temperature rise
under steady conditions was computed assuming a distributed hegt release —as appropriate in this
case- with and without cooling in the joint zone. During trangent conditions the temperature rise
was caculated as follows: first we note that the typica time scae of the current change (say 1000
9 is much larger then the themd diffusvity (which is in the order of a few seconds); as a
consequence we are a any time close to the stationary condition relevant to the disspation
present at that moment (quas-steady state conditions). We are therefore alowed to exploit the
results we found for the steady conditions case described in D, assuming the relevant power
dissipated. The second important point is that the power disspation does not take place uniformly
aong the joint, but it is concentrated near the centre, therefore we exploit the solution (Ref ),
Eq. (4)) found for the point-like power release, which represents a more conservative hypothesis
with respect to the case of uniformly distributed power release and cooled joint. The hypothesis
of no codling in the joint zone and uniformly distributed power release is conddered dso. The
dump discharge case is not worse than the magnet charge with congtant ramp rate, despite the
fact thet the di/dt is much higher at the beginning. The reasons for this were explained in the
previous section.

6 CONCLUSIONS

We have shown that large eddy currents gppear insde a joint when the magnet current is
changing. We have investigated in detall both the magnet ramp up and the dump discharge
scenarios. If ajoint length of 5 m is retained these currents are potentialy dangerous since they
could exceed the critica value and they increase vastly the power disspation. Nonetheless from
our caculaions we find that with a shorter joint length, likely in the range 2 - 3 m, we can achieve
a good trade-off between disspation due to eddy currents and steady State dissipation, both
during the magnet charge and dump discharge, thus alowing a safe magnet operation under those
conditions.
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APPENDIX: RESOLUTION OF THE DIFFERENTIAL EQUATION
DESCRIBING THE CURRENT INSIDE THE JOINTS

Here we solve andytically the two problems expressed by (5,6) (case @) and (9,6) (case
b), assuming congtant coefficients. From a mathematical point of view these two problems are
expressed by homogeneous (case @), non homogeneous (case b) partid derivatives parabolic
differentia equations with nonhomogeneous boundary conditions. This kind of problem may be
solved with standard techniques described in any textbook on the subject. We have used 4.
Hereafter we report the two problems:

A.1 General method

Case a) - testjoint

d o
Et\](x,t) - 5 >(I - m) OIX2J(x,t) =0 ©)
JO,1) = 1Y)
(6)
JL,t) =0
Caseb) - joint insde acoil
d r d? d
aJ(X,t) - mxd—xz\](x,t) = bx&|(t) 9)
J(0,t) = I(t
(0,t) = I(t) ©)
JL,t) =0
where:
s A L
b- 18 Dk 0 AxH =0 j(u)du (A)
2 e | - mg Oy

In order to solve these problems, we first switch to a homogeneous boundary conditions system
with a suitable change of variable:

Yoot = oty - 1R - 20 and  u- (A2)
e Lg

— | x

Eq. (5,6) (case @) become:
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d 2_d?
—Ya- a x—Y,=s{u,t
G W2 {u, 1) (A3
Y, 0,t)=0
(A4
Y, (1,t) =0
where we have used the following postions:
a= |——:  squt=(u- DI ?. (A5)
24 A2 edt g
Smilarly (9,6) (case b) now look asfollows:
d 2.d2,
Et b - a X—ZYb = sp(U,t) (A.6)
Y,(0,) =0
(A7)
Yy (1,1) = 0
with the pogtion:
o .0
Sp(u,t) =u- 1+ b)x=I(t) =
o(u 1) = ( )édt()g_ (A.8)

Where subscripts a and b have been used to remember that the two terms are note the same.
With this choice of variables the two problems have homogeneous boundary conditions but are
not homogenous themselves. These can be solved by means of the eigenfunction expansion
method (Ref. 4, page 64). For both cases the associated homogeneous problem is.

2
dy. azxd—zv 0 (A.9)

dt ax
V(0,1) = 0

VLD - 0 (A.10)
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whose solution is.

¥
o 2
Viu,h= Q ape P hen(opu) (A.11)

n=1

According the expansion method, we look for asolution in the form:

¥
Y(u,t) = é Y (t) psin (mpou) (A.12)

n=1

and we expand S(u,t) on the basis formed by the eigenfunctions of the associated homogeneous
equation:

span (mpu) (A.13)

n
|
Q_)o«

>
1
[EnY

The precise form of J(u,t) depends on the details of the Stuation being investigated. Once that the
detailed form for the s, has been found, the explicit form for the Y,(t) is given by:

t

- (nyp >a)2>¢

2
Y(t), = ape + e (np =) )ét-t)xsn(t)dt (A.149)

0

o0 O

where the a,, are to be found by the initial conditions. We can insart this back into (A.12) to get
Y(u,t) and findly by means of the initid change of varidbles (A.2) we get the andytica form for
the solution.  The detalls of this computation depend on the explicit form for s(u,t), so that we
andysethe relevant casesin turn.

A.2 Ted joint measurement with trapezoidal current time profile.
Since we arein case a), the source term to be used is given by (A.5a):

s(u.t) = (u- DRI 9 (A53)
edt @

Keeping into account the explicit expresson for I(t), (Fig. 5), we can write:

s(UE) = (U- DAgey  ta<t<ts ; s(Ut)=-(u- Dhgy tg<t<ts (A.15)
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s(u,t) =0  any other time. (A.16)

As seen above in (A.13), now we expand s(u,t) on the basis formed by the eigenfunctions of the
associated homogeneous equition:

1
Sp= 2><§ s>s'n(n>p>u) du . (A.17)
0

When s(u,t) iszero (A.16) dl the a,,'s are zero. For case (A.15a) we have:

1
o)

Sp= 24 g0 sn(npu)u - 1) du=
=) n>p

-2 dot

(A.18)

Case (A.15Db) is andogous, the only difference being the sign. We can summarise these results as
follows

7 2xdot

24 dot
Sp= =

ty<t<tg , Sp=
np np

t4 <t< t5 (Alg)

sh=0 any other time. (A.20)

We now insart these expressions for s, back into (A.14), making the further assumption thet no
current is flowing anywhere in thejoint a t = O; theinitia condition istherefore zero everywhere,
and dl thea,'s are zero.

t

2
g (MRAD g () dt (A.21)
0

Y(t)n=

oo O

Now we evauate explicitly thisintegrd, exploiting (A.15, A.16) for sp(t)'s.

Y(t)h=0 t<to Zero current (A.22)



Increasing ramp:

, t
Mgt O 2., - g ¢ ) 20 1 <t <
o8 o (R TR el <t

np O, (npa)’ (A.23)

Y(t)n=

(e} 6)

Plateau at full current; here we split theintegrd in two parts:

Lt
0 2 (0] 2
Y(t)p=0 & ("W A (=9 & "™ g (i)t ...

% ot (A.24)
0 - (mpoa)At-t) |
+0 e s (t) dt
(0]

ts

Introducing the explicit form for s,,(t) we get:

) 2, -2 o8 U ¢ % )
Y(t), - € (np &) >t>€ o l:>€e(n’9ﬂ) 3 e(n’pa) 2C

3 ~( tg<t<ts (A25)
é(mpa)’ 0

Theintegra is evauated in asmilar way for each part of the current profile. At the end we obtain
the following expressions.

Yo(t) =0 t<t,

/

- 2408 ¢ 240
dot )@1_ e(npa) >(t2 t)

Yn(t) = C p<t<ty
(np>a)
'2>4d0t>aé np &) Kt t (n>p>a)2t-tl:
np>a
- 2gera é 2§t 24t . )

Y (1) - %Ee(np )t 1) P 2) £t 1) N f<t<t
(npxa) Ee_+e(n>pa)2>(t4-t) 1 h
_2>1d xa A 2. 20, N

Y1) = ot >€ee(nvp Q) >(t3 t) i e(n>p>a) {tz t) H £ >t

)’ £ mp o] meihs)
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If we define the following function; MNO(x,y) = F (y - YXx- y), where F(x) is the Heaviside
step function, dl the above expressons merge in one:

- 24 g8 )Gée(n>p>a)2>MN0(t3,t) e 2)>MNJt 2, 1)

[ g’

Y n(t) = (A.27)

O™

3 -
n'pxa) &e(nma)zmﬂm(u,t)_ e(n’pa)zMN((t5,t)

Now, from the expression seen above for J(x,t) (A.2), and the expansion for Y(x,t), (A.12), we
can write the explicit expresson for the integrated current dengty:

¥
W)= 18- 20+ v, (panFpl0 . (A.28)
e Lg e Lg

n=1
The current density may be found differentiating (A.28) with respect to x.

d 1 & o 0
i) = -9 = 28I - px@ Yomes(opd)] L (A29)
2 n=1 4]

A.3 Magnet joint behaviour during chargeor dischargewith constant ramp rate.
Here we are in case b) and the source term s has the following form:

spu,t) = (u- 1+ b)%e—l(t)g (A.9)
edt g

We consider a ramp at constant rate, followed by a plateau a constant current, so that 1(t) is

s(u,t) =0 t<t

(A.30)
sut) = (u- 1+b)g  to<t<t

s(u,t) =0 t>tg
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As seen above (A.13), now we expand s(u,t) on the basis formed by the egenfunctions of the
associated homogeneous equition:

Sn = 0 t < to
O1 A dot
Sp= g0 sn(n>p>u)>(u -1+ b) okl- D to<t<ty
O np
Sn = 0 t > tl
(A.31)

We now come back to (A.14); in this case the initid condition is O everywhere both for charge
and for discharge since Y(x,t) is the "homogeneous boundary” solution. As a consequence, dl the
a,'s are zero, and the expression for Yp(t) is the same as (A.21) with the proper si(t). The
integration is draightforward and gives.

Yn(t) =0 t<tg
g, Y o 1) to<t<t
Ya(t) = —— L (1) - 1061 (e A} 0 L
(np>a)
2>4dot>a A A D .\é (nvp>a)2 -t (npa) xt t: t>t
Yi(t) = DfEL- (1)L - dte fut) (e o)™t )L 1
(npoa)
(A.32)
Or, with the same MNO function introduced above,
24 dot™@ A F (n>p>a) MNQ t (n>p>a) MNO t t:
Y () = ik €1- (- - ixe dad g O(O)L (A.33)

from which we get the explicit expressons for the integrated current density (see (A.2) and
(A12)):

¥
W) = 18- 20+ § v, (tenFps9 (A34)
e Lo e L

_ a
n=1

Which, differentiated with respect to X, gives the current density:

d 1 & o 9
jxt) =- &XJ(X,'[) = I"gl(t) -pxa Y n(t)>n>cos(n>p>u)_; . (A.35)
n=1 (%]
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These expressons are formaly identica to (A.28) and (A.29), athough the appropriate forms for
Y, (t) and I (t) must be taken in both cases.

A.4 Peak current estimate.

The peak current is reached at the end of the current ramp-up, at about one hdf of the joint
length, as it can be seen in the above figures. Its valueis therefore found from (A.34), estimated at
X=L/2, t=1y:

¥ X
3 | max o a6 | max
J &2 0. M, Y (t,)en&EpQ- = 4 Y "
pesk = 2T a_ n( 1) é2>pg 5 a 2n+1(1)’( )’
n=1 n=0
(A.36)
which, after some manipulations becomes:
¥
| 2% gDk o )" ¢ 2n+1)poal Skt - t o)L
J = . T a L%l-e[( e N1

2 a%pM o, (@n+1)°

The sum has dternding 9gns, so that the maximum error is equa to the modulus of the first
neglected term; in practice the contribution from the second term (included) on is less than 2%, if
the ramp up time is not much smaller than the time congtant (p>a)” #. In this approximeation we can
write:

2, <
' max M gor DXL F e(p a)2>€t ot ]_)IE

_ . - A.38
J peak 5 3 >E1 ( )
r>p
A.5: The power disspated insgdeajoint during the magnet ramp.
The tota power dissipated aong the junction (Sec. 5.1.4) is given by:
ot
g i(s)%ds (A.39)

0

Introducing the explicit form for (), (A.35), we get:
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o oo

0 .2
r o0& g 0
—0 SI(t) - px@  Y(n,tymoos(nopss)” ds (A.40)
Lo € ~ =
60 e n=1 (4]
é 0" W
A, 50 24 0 S 61
xg(t) +p>0 S a Y, t)>n>cos(n>pxs) ds - 2>p>1(t)><a Y(n, t)>n>o cos(nps) ds:
o % 0,
7 g en=1 a n=1
e 0
01
Since g os(n¥pss) ds = O for dl n, the rightmost term is zero.
0
e 6" .U
r €, ,0 g o 0 (
E>@I(t) +pp E a a Ynox(m, t)m>m>cos(n>p>s)>cos(mp>s)_dsl]
é_ g en=1m=1 (%] l;
e 0 u
Here we exchange sums and integrds, so that:
Exgr 0%+ p xa a Y(n,t)>¥(m,t)>n>m>g cos (mrp>s) >cos (np>s) ds:
e n=1m= 0 a
B o7k :
s ()% + 2><a a Y(n, )% (m, t)omed o,
& =1m= ]
The find expresson for the tota power dissipated in ajoint istherefore:
B X
Q(t) = n ’Il(t) + _Xa Y(n,)5n° . (A.41)
e

n=1 7]
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The behaviour of the first term (‘Joule term) is clear: the power sclesasr andasL-1. Theramp
rate lgot has obvioudy no effect. To understand better the 'Foucault' term, let us come back to

the expression for the functions (A.29):

24 dot

Yol = 5 0

a
where

yn(t) =
(rp)°

¥
(o)
xa yn,non’

n=1

2 2,243
8’13>‘1dot>i A+

r

A.6 Exponential current decrease

b>€1 - (- 1)ni: - 1)ée(n>p a)2>MN((t1,t) ) e(mp a)zx\/INC(to,t)

(A.42)

A third posshble dtuation is represented by the exponentid current decrease with time

constant t . In this case the source term (A.5) is:

squ.t) = (u- 1+ b))
dt

Introducing the form for 1(t);

We get:

sdu,t)=0 t <tp

to t

(to) =

sc(u,t)z-(u-1+ b)x—>e :-t_1>(u'1+b)>4(t) t3t,

(A.43)



Theexpangon of s,(u,t) onthesbassis:

Sn: O t < to
1 ne © . (A44)
0 - - -
S,= 20 sn (n>p>u)d 2A0) Eb)él (Di-% t3tp
Oo t n>p
The Y,,(t) are given by (A.16) (the same comments gpply here):
6" 2
Y(t),=0 & (MR (3)qg
0
0
Now we evauate explicitly thisintegra, exploiting (A.44) for sy(t)'s.
At
24(to) gt o 6 - (npart )L
- Va 1_ _1 _ - - - 3
YO, = o) @¥l- (1)L 1L>Qe g Pl
t np Oto
and after the integration we find:
6 -(t 1) 0
- [ 1N
Y- -2 DL DL L Fomalhody
p{npra) t - 1
Asusud we write:
) & MNdtot) U
£1 _ ne £F—————— £ 2 h
YO, - 2t CD Lo ] ge L - R Y

n>p>(:_(n>p>~a)2>t

Valid a ay time. For the overal current flowing into the Rutherford we can -as dready seen+

take (A.28) and (A.29), provided that the appropriate expressions for Yu(t) and I(t) are used,
(A.45) and (A.44) respectively.



