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Abstract
The general expression of the Stern-Gerlach force is deduced for a charged particle,

endowed with a magnetic moment, which travels inside a time varying magnetic field. Then,
the energy integral of the Stern-Gerlach force is evaluated in the case of a particle crossing a
TE rf cavity with its magnetic moment oriented in different ways with respect as the cavity
axis. We shall demonstrate that appropriate choices of the cavity characteristics and of the
spin orientation confirm the possibility of separating in energy the opposite spin states of a
fermion beam circulating in a storage ring and, in addition, make feasible an absolute
polarimeter provide that a parametric converter acting between two coupled cavities is
implemented.
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1 Introduction

The Stern-Gerlach force acts on particles, carrying a magnetic moment, which cross inho-

mogeneous magnetic fields. In a reference frame where particles are at rest, the expression

of this force is
~fSG = �rU (1)

where

U = �~� � ~B (2)

is the magnetic potential energy, and

~� = g
e

2m
~S (3)

is the magnetic moment. Heree = �1:602�10�19 C is the elementary charge with+ for

p; e+ and� for �p; e�, making~� and~S either parallel or antiparallel, respectively. The rest

mass,m, is 1:67� 10�27 kg for p; �p and9:11� 10�31 kg for e�, and the relation between

the gyromagnetic ratiog and the anomalya is

a =
g � 2

2
=
�
1:793 (g = 5:586) for p; �p
1:160� 10�3 (g = 2:002) for e�

(4)

In the rest system, the quantum vector~S, named spin, has modulusj~Sj =
q
s(s+ 1) �h,

and its component parallel to the magnetic field lines can take only the following values:

Sm = (�s; � s+ 1; ::::; s� 1; s)�h; (5)

where�h = 1:05 � 10�34 Js the reduced Planck’s constant. Combining Eqs. (3) and (5)

we obtain for a generic spin-1
2

fermion

� = j~�j = g
jej�h
4m

(6)

or

� =
�
1:41� 10�26 JT�1

9:28� 10�24 JT�1
(7)

Take note that the Bohr magneton is

�B = 2 [�=g]electron = 9:27� 10�24 JT�1 (8)

Aiming to have the expression of the Stern-Gerlach force in the laboratory frame,

we have first to carry out the Lorentz transformation of the electric and magnetic field

from the laboratory frame, where we are at rest, to the center-of-mass frame, where parti-

cles are at rest and we can correctly evaluate such a force. Then this force must be boosted

back to the laboratory frame. All of these rather cumbersome operations will be discussed

in the next Section.
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2 Lorentz Boost of a Force

In order to accomplish the sequence of Lorentz boosts more easily, we choose a Cartesian

4-dimensional Minkowski metric [1](x1; x2; x3; x4) = (x; y; z; ict), wherei =
p�1.

Therefore, the back-and-forth Lorentz transformations between laboratory frame and par-

ticle’s rest frame (usually labeled with a prime) are the following:

0
BBB@

x0

y0

z0

ict0

1
CCCA = M

0
BBB@

x
y
z
ict

1
CCCA =

0
BBB@
1 0 0 0
0 1 0 0
0 0 
 i�

0 0 �i�
 


1
CCCA
0
BBB@

x
y
z
ict

1
CCCA)

8>>>><
>>>>:

x0 = x
y0 = y
z0 = 
(z � �ct)

t0 = 

�
t� �

c
z
� (9)

(
� = j~�j = j~vj

c
; 
 =

1p
1� �2

)

and
0
BBB@

x
y
z
ict

1
CCCA = M�1

0
BBB@

x0

y0

z0

ict0

1
CCCA =

0
BBB@
1 0 0 0
0 1 0 0
0 0 
 �i�

0 0 i�
 


1
CCCA
0
BBB@

x0

y0

z0

ict0

1
CCCA)

8>>>><
>>>>:

x = x0

y = y0

z = 
(z0 + �ct0)

t = 

�
t0 + �

c
z0
�
(10)

Moreover, combining both eqs. (9) and (10), we obtain the following expressions for the

partial derivatives:

@

@x0
=

@

@x
;

@

@y0
=

@

@y
(11)

@

@z0
= 


 
@

@z
+
�

c

@

@t

!
(12)

The 4-vector formalism is still applied for undergoing the Lorentz transformation

of a force. First of all, let us define as 4-velocity the quantity

u� =
dx�
d�

(13)

where

d� =
ds

c
=

dt



(14)

is the differential of the proper time. We define the 4-momentum as the product of the

rest massm times the 4-velocity, i.e.

P� = mu� = (~p; i
mc) (15)
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The 4-force is the derivative of the 4-momentum (15) with respect to the proper time, that

is

F� =
dP�

d�
=

 


d~p

dt
; i



c

d(
mc2)

dt

!
=

 

 ~f; i




c

dEtot

dt

!
(16)

where~f is the ordinary force. In the c.m. system eq. (16) reduces to

F 0� = (~f 0; 0) (17)

since
0 = 1 andE 0tot = mc2 is a constant. Bearing in mind the last step of the whole

procedure, i.e. the boost of any force from rest to laboratory frame, we have to use the

relation

F� = M�1F 0� =

0
BBB@

fx

fy

fz
F4

1
CCCA =

0
BBB@
1 0 0 0
0 1 0 0
0 0 
 �i�

0 0 i�
 


1
CCCA
0
BBB@
f 0x
f 0y
f 0z
0

1
CCCA =

0
BBB@

f 0x
f 0y

f 0z
i�
f 0z

1
CCCA (18)

or

~f? =
1



~f 0? (19)

~fk = ~f 0k (fz = f 0z) (20)

3 Stern-Gerlach Force

The Stern-Gerlach force, as described by eq. (1), must be evaluated in the particle rest

frame where it takes the form

~f 0SG = r0(~�� � ~B0) = @

@x0
(~�� � ~B0)x̂+ @

@y0
(~�� � ~B0)ŷ + @

@z0
(~�� � ~B0)ẑ (21)

having defined the magnetic moment as��, rather than�0, for opportune reasons. By

applying the transformations (11), (19) and (20), the force (21) is boosted to the laboratory

system becoming

~fSG =
1




@

@x
(~�� � ~B0)x̂+ 1




@

@y
(~�� � ~B0)ŷ + @

@z0
(~�� � ~B0)ẑ (22)

Bearing in mind the Lorentz transformation [2] of the fields~E; ~B and ~E 0; ~B0
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~E 0 = 
( ~E + c~� � ~B)� 
2


 + 1
~�(~� � ~E) (23)

~B0 = 


0
@ ~B �

~�

c
� ~E

1
A� 
2


 + 1
~�(~� � ~B) (24)

the energy(~�� � ~B0) = �xB
0
x + �yB

0
y + �zB

0
z becomes

(~�� � ~B0) = 
��x

 
Bx +

�

c
Ey

!
+ 
��y

 
By � �

c
Ex

!
+ ��zBz (25)

If we introduce eq. (25) into eq. (22) and take into account eq. (12), we can finally

obtain the Stern-Gerlach force components in the laboratory frame:

fx = ��x

 
@Bx

@x
+
�

c

@Ey

@x

!
+ ��y

 
@By

@x
� �

c

@Ex

@x

!
+

1



��z
@Bz

@x
(26)

fy = ��x

 
@Bx

@y
+
�

c

@Ey

@y

!
+ ��y

 
@By

@y
� �

c

@Ex

@y

!
+

1



��z

@Bz

@y
(27)

fz = ��xCzx + ��yCzy + ��zCzz (28)

with

Czx = 
2
" 

@Bx

@z
+
�

c

@Bx

@t

!
+
�

c

 
@Ey

@z
+
�

c

@Ey

@t

!#
(29)

Czy = 
2
" 

@By

@z
+
�

c

@By

@t

!
� �

c

 
@Ex

@z
+
�

c

@Ex

@t

!#
(30)

Czz = 


 
@Bz

@z
+
�

c

@Bz

@t

!
(31)

4 The Rectangular Cavity

In order to simplify our calculations without loosing the general physical meaning, we

shall consider a rectangular resonator, as the one shown in Fig.1, which is characterized

[3] by the following field components:

Bx = �B0

K2
c

�
m�

a

��
p�

d

�
sin

�
m�x

a

�
cos

�
n�y

b

�
cos

�
p�z

d

�
cos !t (32)

By = �B0

K2
c

�
n�

b

��
p�

d

�
cos

�
m�x

a

�
sin

�
n�y

b

�
cos

�
p�z

d

�
cos !t (33)
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Figure 1: Sketch of the rectangular cavity; take note that coordinates of the beam axis are
x=a/2 and y=b/2.

Bz = B0 cos
�
m�x

a

�
cos

�
n�y

b

�
sin

�
p�z

d

�
cos !t (34)

Ex = �B0

�
n�

b

�
!

K2
c

cos
�
m�x

a

�
sin

�
n�y

b

�
sin

�
p�z

d

�
sin !t (35)

Ey = B0

�
n�

b

�
!

K2
c

sin
�
m�x

a

�
cos

�
n�y

b

�
sin

�
p�z

d

�
sin !t (36)

Ez = 0 (as typical for a TE mode) (37)

whereB0 is the amplitude of theBz-component and

Kc =

s�
m�

a

�2

+
�
n�

b

�2

(38)

!

c
= K =

2�

�
=

s�
m�

a

�2

+
�
n�

b

�2

+
�
p�

d

�2

(39)
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The wave’s phase velocity isvph = �phc where

�ph =
Kq

K2 �K2
c

=

vuut1 +

 
md

pa

!2

+

 
nd

pb

!2

(40)

We have to recall that the polarization of a beam, revolving in a ring whose guide

field is ~Bring, can be defined as

P =
N" �N#
N" +N#

(41)

where

N" = No. Particles Spin Up (e.g. parallel to~Bring)

N# = No. Particles Spin Down (antiparallel to~Bring)

andP indicates the macroscopic average over the particle distribution in the beam, which

is equivalent to the quantum mechanical expectation value found by means of the quantum

statistical matrix. Obviously, an unpolarized beam hasP = 0 orN" = N#.

A quick comparison among the SG-force components, given by the set of equa-

tions (26)-(31), suggests thatfz will dominate at high energy, since it contains terms

proportional to
2, whereas the transverse components have terms independent of
, not

to mention the
�1 terms.

The most appropriate choice of the spin orientation seems to be the one parallel to

ŷ i.e. to ~Bring, i.e. the force component is the one given by eq. (28) with the insertion

of eq. (30). This means that particles undergoing energy gain (or loss) don’t need any

spin rotation while entering and leaving the rf cavity, beyond the advantage of having to

deal with a force component proportional to
2. Choosing the simplestTE011 mode, the

quantities (38), (39) and (40) reduce to

kc =
�

b
(42)

! = c

s�
�

b

�2

+
�
�

d

�2

(43)

�ph =

vuut1 +

 
d

b

!2

(44)

Settingx = a
2

andy = b
2

the field components along the beam axis become

Bx = Bz = 0 (45)

By = �B0
b

d
cos

�
�z

d

�
cos !t (46)
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Ex = �!B0
b

�
sin

�
�z

d

�
sin !t (47)

Ey = Ez = 0 (48)

therefore the force componentfz can be written as

fz = ��
2B0b

8<
: 1

�

2
4��

d

�2

+

 
�!

c

!2
3
5 sin��z

d

�
cos !t+

2

d

 
�!

c

!
cos

�
�z

d

�
sin !t

9=
;

(49)

For completeness, we shall also analyze the possibility of using a spin orientation

parallel toẑ, i.e. to the motion direction, even though this option requires a system of spin

rotators and looses a factor of
 in the force component.

5 Involved Energy

The energy gained, or lost, by a particle with a magnetic moment after having crossed a rf

cavity can be evaluated by integrating the Stern-Gerlach force (22) over the cavity length,

namely:

�U =
Z d

0
dU =

Z d

0

~f � d~r =
Z d

0
fzdz =

Z d

0
��Czy dz (50)

Bearing in mind eq. (49) and carrying out the trivial substitution!t = !z
�c

, the integral

(50) becomes

�U = ��
2B0b

8<
: 1

�

2
4��

d

�2

+

 
�!

c

!2
3
5 I1 + 2

d

 
�!

c

!
I2

9=
;

with

I1 =
Z d

0
sin

�
�z

d

�
cos

 
!z

�c

!
dz =

�
d�

�
d

�2 � � !
�c

�2
"
1 + cos

 
!d

�c

!#

I2 =
Z d

0
cos

�
�z

d

�
sin

 
!z

�c

!
dz = �

!
�c�

�
d

�2 � � !
�c

�2
"
1 + cos

 
!d

�c

!#

or

�U = ��
2B0
b

d

�
�
d

�2
+
�
�!

c

�2 � 2
�
!
c

�2
�
�
d

�2 � � !
�c

�2
"
1 + cos

 
!d

�c

!#
(51)
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Taking into account the stationary wave conditions (eqs. 43 and 44) pertaining to

theTE011 mode, the length of the cavity can be expressed as

d =
1

2
�ph� (52)

which allows us to write eq. (51) as

�U = 
2�2��B0
b

d

1 + �2
ph(�

2 � 2)

�2 � �2
ph

 
1 + cos

�ph
�

�

!
(53)

In the ultrarelativistic limit (
 � 1 and� ' 1),

�U ' ��B0
b

d

2(1 + cos �ph�) = 2��B0

b

d

2 (�ph = even integer) (54)

As hinted before, let us evaluate the work-energy integral when the particle enters

into the cavity with its spin parallel tôz. In this example we must choose the modeTE021

as the lowest one; then we have from eqs. (34) and (31) respectively

Bz = �B0 sin
�
�z

d

�
cos !t (55)

fz = ��Czz = ���
B0

"
�

d
cos

�
�z

d

�
cos !t�

 
�!

c

!
sin

�
�z

d

�
cos !t

#
(56)

and proceeding as above we obtain

�U = ��B0

�

d

!
�c
� �c

!�
�
d

�2 � � !
�c

�2 sin
 
!d

�c

!
(57)

and

�U =
��B0




�ph�

�2
ph � �2

sin

 
�ph
�

�

!
(58)

or ultrarelativistically

�U ' ��B0




�ph
�2
ph � 1

sin�ph�; �Umax � �1:62�
�B0



(when�ph � 1:13) (59)

confirming a result [4] already achieved.

Before making up our mind, we need to compare the energy gain/loss due to the

Stern-Gerlach interaction with the same quantity caused by the electric field. To this aim,

we emphasize that

dUE = ~fE � d~r = eExdx (60)
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as can be easily understood looking at eqs. (47) and (48). Since the carrier particle travels

from 0 tod along thez-axis, the only integral which makes sense is the following:

�UE =
Z d

0
eEx dx =

Z d

0
eEx

dx

dz
dz =

Z d

0
eEx x

0dz (61)

or

�UE = �x0e!B0
b

�

Z d

0
sin

�
�z

d

�
sin

 
!z

�c

!
dz = �x0e!B0

b

d

sin
�
!d
�c

�
�
�
d

�2 � � !
�c

�2
or

�UE =

"
e!B0

bd

�2

�2

�2
ph � �2

sin
�ph
�

�

#
x0 = �x0 (62)

having proceeded as before.

We recall that the Stern-Gerlach interaction in the realm of particle accelerators has

been proposed either for separating in energy particles with opposite spin states, the well

known [5] spin-splitter concept, or for settling an absolute polarimeter [6].

As far as the spin-splitter is concerned, we quickly recall that spin up particles

receive (or loose) that amount of energy given by eq. (54) at each rf cavity crossing, and

this will take place all over the time required. Simultaneously, spin down particles behave

exactly in the opposite way, i.e. they loose (or gain) the same amount of energy turn after

turn. The actual most important issue is that the energy exchanges sum up coherently.

More quantitatively, we may indicate as the final energy separation afterN revolutions:

�"# =
X f�" � (��#)g = 4

b

d
N ��B0 


2 ' 4N ��B0 

2 (63)

Instead, the adding up of the energy contribution (62) due to the electric field is

(�UE)tot =
X

�UE = �
X

x0 = 0 (64)

sincex0 changes continuously its sign with a periodicity related to the period of the beta-

tron oscillations.

The result (63), together with the demonstration (64), would seem to provide very

good news for the spin-splitter method!

As far as the polarimeter is concerned, we have to bear in mind that we are interested

in the instantaneous interaction between magnetic moment and the rf fields: therefore

the zero-averaging due to the incoherence of the betatron oscillations would not help us.

Notwithstanding, if we set�ph equal to anintegerin eq. (62), we have for U.R. particles:

�UE =
x0e!B0 bd

�2(�2
ph � 1)

sin

 
�ph� +

�ph�

2
2

!
' �x0bd

2�

�ph
�2
ph � 1

e!B0


2
(65)

10



Then this1=
2 dependence of the spurious signal, compared to the
2 dependence of the

signal (54) to be measured, sounds interesting for the feasibility of this kind of polarime-

ter; however, one must realize that if�ph is not exactly an integer, then eq. (65) would

become

�UE � �x0bd

2�

e!B0

�2
ph � 1

 
� +

�ph

2

!
(66)

where� is the error in�ph.

6 A Few Numerical Examples

The spin-splitter principle requires a repetitive crossing ofNcav cavities distributed along

the ring, each of them resonating in the TE mode. After each revolution, the particle

experiences a variation, orkick, of its energy or of its momentum spread

� =
Æp

p
=

1

�2

ÆE

E
' Ncav�U

E
' 2

p
3

3
Ncav

B0

B1

 (67)

having made use of eq. (54), further simplified by reasonably setting�ph = 2, and with

B1 =
mc2

��
=

1:503� 10�10 J

1:41� 10�26 JT�1
' 1016 T (68)

for (anti)protons. From eq. (67) we may find as the number of turns needed for attaining

a momentum separation equal to 2
�
�p

p

�

NSS =

�
�p

p

�
�

=

p
3

2Ncav


B1
B0

 
�p

p

!
(69)

Multiplying NSS by the revolution period�rev we obtain

�t = NSS�rev (70)

as the actual time spent in this operation. For the sake of having some data, we consider

RHIC [7] and HERA [8] whose essential parameters are shown in Table I together with

what can be found by making use of eqs. (69) and (70) whereB0 ' 0:1 T andNcav = 200

are chosen as realistic values.
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Table I: RHIC and HERA parameters

RHIC HERA
E(GeV) 250 820


 266.5 874.2
�rev(�s) 12.8 21.1

�p

p
4:1� 10�3 5� 10�5

NSS 6:67� 109 2:48� 107

�t 8:52� 104 s ' 23:7 h 523 s

In the example of the polarimeter we have to pick up a signal generated at each

cavity crossing. Therefore, making use of eq. (54) we have for a bunch train made up of

N particles the total energy transfer

�U � 2NP��B0
b

d

2 (71)

whereP is the beam polarization slightly modified with respect the definition (41)

P =
N! �N 
N! +N 

(72)

The average power transferred will be

W =
�U

�rev
(73)

If we operate our cavity as a parametric converter [9][10], with an initially empty

level, we have for the power transferred to this empty level

W2 =
!rf

!rev
W =

�rf
�rev

W (74)

where�rf is the working frequency of the resonant cavity (typically in the GHz range),

and�rev is the revolution frequency. Putting all together we have

W2 ' 2P
�rf
�rev

��B0
b

d

2 (75)

A feasibility test of the polarimeter principle has been proposed [6] and studied

[11] to be carried out in the 500 MeV electron ring [12] of MIT- Bates, whose main

characteristics are

12



Table II: MIT-Bates parameters

�rev 634 nsec
�rev 1.576 MHz

Nelectrons 3:6� 108 � 225 = 8:1� 1010


 ' 103

b=d
p
3=3

B0 ' 0:1 T
�rf=�rev � 103

�� 9:27� 10�24 JT�1

and, since polarized electrons can be injected into this ring but precessing on a horizontal

plane, theTE101 mode is more appropriate than theTE011 as we shall have to useBx

rather thanBy: a choice that does not make any substantial difference! From the above

data we obtain

W2 ' 137P watts (76)

Paradoxically, even for an almost unpolarized beam withN! � N = 1 and, as a

consequence of eq. (72), withP ' 1:23� 10�11, we should obtainW2 � 1:7 nW, which

can be easily measured.

As a last check, let us compare the energy exchanges (~�, ~B) and (e, ~E). Taking

into account eqs. (52), (54) and (65), and settingx0 ' 1 mrad, �ph = 2 and� = 10 cm,

we have for the Bates-MIT ring:

r =
�UE

�U
=

x0

8

�3
ph

�2
ph � 1

�ec

��
1


4
= 1:72� 10�4 (77)

i.e. the spurious signal, depending upon the electric interaction betweene and ~E, is abso-

lutely negligible with respect the measurable signal generated by the magnetic interaction.

7 Conclusions

There is not too much to add to what has been found in the previous Sections, aside from

performing more accurate calculations and numerical simulations. The Stern-Gerlach

interaction seems very promising either for attaining the self polarization of ap(�p) beam

or for realizing an absolute polarimeter.

In the first example the problem raised [13] by the rf filamentation still holds on,

although some tricks can be conceived: the extreme one could be the implementation of

a triangular waveform in the TM cavity which bunches the beam.
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The second example requires nothing but to implement that experimental test at the

Bates-MIT electron ring.
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