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Abstract 

1/ f noise and flicker noises - i.e. the class of 1/ f'" noises with O.S < a < 

1.S - are as ubiquitous as they are mysterious. Several physical mechanisms 

to generate 1/ f noise have been devised, and most of them try to obtain a 

broad, nearly flat distribution of relaxation times, which would then yield 

a 1/ f spectrum. However they are all very specialized, and none of them 

addresses the question of the apparent universality of this noise, while they 

all fail in some respect. I show here that the power spectral density of a 

relaxing linear system driven by white noise is determined by the eigenvalue 

density of the linear operator associated to the system. I also show that the 

eigenvalue densities of linear operators that reasonably describe diffusion and 

transport lead to 1/ f or flicker noise. Using the concepts developed in the 

paper and a rough approximation of transport in a resistor I derive the Hooge 

formula for the spectrum of conductance fluctuations. 
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J. INTRODUCTlON 

1/ f noise appears again and again in many apparently uncorrelated systems as diverse as 

MOS devices and ocean currents [1-4J. Indeed there are models that justify the occurrence 

of 1/ f noise in some systems (see the reviews [5- 7]), but they are very specialized, in 

other words they do not have the "universality" suggested by the ubiquity of 1/ f noise. 

It is generally accepted that the mechanism that leads to 1/ f noise is a system with an 

exponential response function driven by a shot noise source, and such that the relaxation 

times of the system are chosen at random from a very broad, flat distribution. The power 

spectral density (PSD) of a simple relaxation process with characteristic time T and rate 

A = I/T is proportional to 1/(w2 + A2) (w is the angular frequency), and if the rates are 

uniformly distributed between the limits Amin and Am.x, then the PSD is given by the integral 

l Am" dA 1 ( Amax Amin) S(w) ex 2 A2 = - arctan -- - arctan -- . 
Am;n W + w w w 

(1) 

Then if Amin ~ w ~ Am.x, S(w) ex l/w, and thus a flat distribution yields a 1/ f spec-

trum. Furthermore such a distribution gives a stationary Gaussian process if the driving 

noise source is itself stationary and Gaussian, and this agrees well with most experimental 

observations of the statistical properties of 1/ f noise, and also seems to rule out all expla-

nations that relate this noise to some underlying nonlinear dynamics. However, as Press 

puts it in his nice review paper [1], "it [isJ hard to conceive ... physical mechanisms which 

contribute stretched pulses with just the right frequency of occurrence over, say, six orders of 

magnitude. Scale superposition just transfers the mystery to the random 'stretching factor' 

process ." 

I suggest here a fairly general explanation which depends only on very weak assumptions: 

the PSD of a linear system [8J driven by white Gaussian noise is urliquely determined by 

the eigenvalue density of the associated linear operator, and the (linear) operators that de

scribe several systems that exhibit flicker noise, and in particular diffusion and transport, 

have densities that lead to 1/ f or flicker noise - i.e. to 1/ f" noises with 0.5 < Q < 1.5. 
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This is a purely mathematical device that does not depend on the underlying physics, and 

there is no need to introduce a "stretching factor". Although the mathematics developed 

here is applicable to many systems that are totally unrelated to 1/ f current noise, the main 

application of a flicker noise theory is the "explanation" of 1/ f current noise. This requires 

a description of charge transport and diffusion, and here I make an attempt to go in this 

direction, but I do not develop a complete theory of flicker noise in resistors. It must be 

remarked that diffusion processes have been repeatedly invoked as the source of 1/ f noise 

in resistors, most notably by Voss and Clark [9J who have introduced a diffusion model 

based on temperature fluctuations. The model described in this paper is based on number 

fluctuations - and therefore has a much wider applicability - and goes further in the analysis 

thanks to a considerably simpler mathematical formalism. 

Section II outlines the connection between diffusion, transport, and systems of linear dif

ferential equations of the relaxation type. The PSD is discussed in section III, while in 

section IV I return to the description of section II and derive lower and upper bounds for 

the eigenvalues. Section V exhibits classes of processes that actually convert white noise 

to 1/ f or flicker noise. A simple transport channel that may roughly model a resistor is 

described in section VI, and it is shown that this model leads to the Hooge formula for 

conductance fluctuations. Notice that no special distinction is made, throughout the paper, 

between "equilibrium" and "transport" noise. 

II. DIFFUSION AND TRANSPORT PROCESSES ON A DISCRETE SET OF 

SITES 

Several measurements [5- 7,9J indicate that 1/ f noise in resistors exists at equilibrium, 

and therefore that it may be due to some sort of diffusion. Thus we start here with pure 

diffusion and consider a population of N non-interacting random walkers distributed over n 

sites, so that Nk(t) is the population of the k-th site at time t, and akjdt is the probability 

that a random walker which is at site j jumps to site k during the time interval (t, t+dt). At 
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present no special topology is associated with the n sites, however ,we make the additional 

hypothesis N :» n; as we shall see later this is not a serious restriction. 

Then the number of random walkers that jump from site j to si,te k during (t, t + dt) is 

a random variable with a binomial distribution, with average and variance both equal to 

akjNj(t)dt. The total number of random walkers that jump to k is then (in the limit of large 

Nj ) a Gaussian variate with average and variance both equal to 

'L akjNj(t)dt. 
j= l,n 
#k 

(2) 

The total number of random walkers that jump away from site k during ;the same time 

interval is still another Gaussian variate with average and variance both equal to 

(3) 

Therefore the net change of the population Nk(t) during the time interval (t, t + dt) is 

where Vk(t) is to a good approximation a Gaussian noise process with 

(Vk(t)) = 0, 

(Vj(t)Vk(t' )) = (y~ojk8(t - t'l, 

(Y~ = 'L akjNj(t) + 'L ajkNk(t) "'" 'L (akj(Nj ) + ajk(Nk)) 
j::::I,n j==l,n j=l ,n 
#k j# j# 

(4) 

(5a) 

(5b) 

(5c) 

(here ( ... ) denotes the ensemble average). Until now nothing has been said about the 

nature of the random walkers: usually they are assumed to be conserved in number, but this 

is not the case here. III writing equations (4) and (5) we have introduced the hypothesis that , " 

they are conserved only on average, so that the fluctuations about the average population 

changes are uncorrelated, While this may seem strange at first, as it is a rather uncommon 
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deviation from the usual random-walk formalism, it is indeed a much more natural assump-

tion, since such processes as charge carrier pair creation and recombination (in conductors), 

or pressure fluctuations due to fluid compressibility (in fluid flow), destroy the correlations. 

This also means that equation (5c) underestimates the white noise variance. However, as 

we shall see later, this affects only the total noise power and not the shape of the PSD. 

Introducing the vectors N = {Nkh=l, ... ,n, V = {Vdk=l, ... ,n and the matrix A = {ajdj,k=l, ... ,n 

with akk = - ;., we can rewrite equation (4) in vector form: 

dN = ANdt + vdt. (6) 

Now assume that the sites 1, ... , n are chained together so that site k is adjacent to sites 

k - 1 and k + 1. Then ordinary diffusion due to the simple 1D unbiased random walk can 

be recovered if we let n -> 00, ajj = -~, ak,k±l = 2~' and ajk = 0 if j f- k, k ± 1. In fact 

from definition (3), Tk is given by Tk = (ak-l,k + ak+l,kt1 and therefore Tk = T is the same 

for all k's, and 

(7) 

Then taking the ensemble average, introducing the position variable x = k!:!"x, and 

denoting N(x, t) = (Nk(t)), where!:!"x is the (small) distance between adjacent sites, we find 

1 1 
dN(x, t) = --N(x, t)dt + -2 (N(x + !:!"x, t) + N(x - !:!"x, t))dt. 

T T 
(8) 

Eventually, if !:!"x is very small we can write 

(9) 

where D = !:!"x 2 IT is the diffusion constant, and this is just the usual forward Fokker-

Planck equation (for the average values N(x, t)) for the simple random walk (see, e.g., [10]). 

Similarly if we take the same topology and let ajj = -~, aj,j-l = ~, aj,j+l = '; with p+q = 1, 

p, q ~ 0, and ajk = 0 if j f- k ± 1, we obtain the forward Fokker-Planck equation for diffusion 

+ transport (for the biased 1D simple random walk, see reference [10]) 
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(10) 

with drift speed v = (p - q)!:;.x/r and the same diffusion constant D as before. 

III. POWER SPECTRAL DENSITIES 

We introduce now the spectral representations for the populations and for the noise 

processes: 

(11) 

(12) 

Then, proceeding as in [I1J and using equation (6), we can write: 

iwF(w) = AF(w) + f (w), (13) 

where F(w) = {Fk(w)h=l ..... n and f(w) = {fk(w)h=l ... .. n are the vectors of Fourier 

transforms. The last equation can be solved formally for F(w), and we find 

F(w) = (iw1 - A)-l f(w), (14) 

(1 is the identity matrix) so that, using the definition given in [12], the PSD of the 

stochastic process Nk(t) is 

(15) 

(in this formula the process Nk(t) is assumed to be nonzero in a time interval of duration 

T) . From the independence of the stochastic processes {vd it follows that 

Sk(W) = t l(iw1 - A)kl l2 lim (lfJ(w)12) 
;=1 J T~oo 21rT 

(16) 

n 

= L l(iw1 - A);;/1 2s;(w) (17) 
j=l 
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where Sj(w) is the power spectral density of Vj, i.e. Sj(w) = 17J/27r. 

Formally this solves the problem of finding the PSD. To proceed further me must make 

assumptions on the PSD's of the individual noise processes that drive the system. Since we 

are mostly concerned with noise in uniform systems, we assume that all the PSD's are the 

same, i.e. 17J = 17
2 for all j. We also assume that ajk = akj (i.e. the interaction between 

different sites is symmetric) and that the eigenvalues of A are not degenerate. Then the 

eigenvalues Pdk;l, ... ,n of A are real and there is an orthonormal basis of real eigenvectors 

{'1kh;l, ... ,n such that A7Ik = ).k7lk. Using this basis we can write 

n 

F(w) = 'Efk(w)71k, (18) 
k;l 

n 

f(w) = 2: 'Yk(w)71k, (19) 
k=l 

and substituting in equation (13) we obtain 

n n 

'E(iw - .Ak)fk(W)71k = 2: 'Yk(w)71k' (20) 
k~ k=l 

Because of the orthogonality of {71d, equality holds for each component, i.e. 

(21 ) 

and therefore 

(22) 

The PSD is proportional to 

and similarly 
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n 

(1!k(wW) = (I I: "'f;(w)(1];hI 2
) 

;=1 
n 

= I:(h;12}1(1];hI2 + I: ("'fni}(1];h(1]ik 
;=1 i,l 

#1 

(24) 

We have already assumed that at each site a random walker sees the same average 

environment i.e. ak = a for all k's. Then both the vector v and the vectors of Fourier 

transforms f(w) are distributed with spherical symmetry in their n-dimensional spaces, 

and a rotation does not change the symmetry properties of the distributions. Therefore 

using {1]d as a basis the stochastic processes hd are still independent in the sense that 

(",{;(Whk(W' )} = 0 if j =f k and w =f w', and (h;(wW) = (IJk(WW) for all j, k. Now we make 

use of the normalization conditions for the vectors 1]k, i.e. l:j=1 1(1]k);12 = 1, and assume a 

uniform distribution of the eigenvector directions so that J:"+ll.~ 1[1](A)hI2dA ~ t>.A/n. Then 

equation (23) becomes: 

where we have dropped the index k, since now all the spectral densities are the same, and 

where Am in and Amax are the minimum and maximum eigenvalues, and JA (A) is the eigenvalue 

density of the matrix A, normalized so that I:::" JA(A)dA = 1. Moreover s;(w) = a2 /27r 

and we get eventually: 

(26) 

(27) 

Thus the shape of the spectrum Sew) is determined by the eigenvalue density JA(A) of 

the matrix A, and if it is nearly constant in the interval (A. , Ab) (with A. ~ Ab), then Sew) 

has a 1/ J dependence in the region A. ~ w ~ Ab. (A different derivation and an extension 

of these results to the case of transport is given in Appendix A). 
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IV. LOWER AND UPPER BOUNDS 

We use now the Perron and the Gershgorin theorems to derive lower and upper bounds 

for the eigenvalues of the relaxation matrices introduced in section II. These matrices have 

the general form: 

--'- a'2 a'3 71 

a21 --'- a23 

A= 
72 

(28) 
a31 a32 --'-

73 

with negative diagonal elements, while all nondiagonal elements are non-negative. We 

define first the matrix A' = A + _'-. n, where Tmin = mink{Tk}, so that A' and A share the 
'Tm1n 

same eigenvectors, while the eigenvalues are shifted: 

(29) 

Now A' is a non-negative matrix and the Perron theorem applies [13], with the result 

that there is a real eigenvalue A:nax such that for any other eigenvalue cl of A' the inequality 

lall < A:nax holds, and A:nax satisfies the following inequality: 

A:"ax s: max {t aik } = max (_1- -~ + L ajk ] = _1_. 
k ·-1 k Tmin Tk ·-1 Tmin J- 3- ,n 

j# 

(30) 

The inequality for the corresponding eigenvalues of A becomes Amax s: 0, so that all the 

eigenvalues of A are non-positive. Now a question arises: when is A singular, i.e. when is 0 

its maximum eigenvalue? This is very important for the PSD, since the sum (26) diverges 

quadratically when w -+ 0 if 0 is an eigenvalue of A. To answer this question we go back to 

equation (6) and notice that the corresponding equation for the average values is 

d(N) = A(N). 
dt (31) 

It is well known that this system of linear differential equations is asymptotically stable 

if and only if all the eigenvalues of A are negative [14], and in this case (N) approaches the 
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null vector as t --+ 00. The conclusion is that 0 is an eigenvalue of A if and only if the average 

total population (N) = Lk=1 (Nk ) is conserved. This is indeed the case for the relaxation 

matrices defined above, since the underlying kinetics conserves the (average) number of 

random walkers. However it is also clear that such a system cannot be observed, and that 

whenever an observer perturbs it there must be some loss so that the greatest eigenvalue of 

A must be at least slightly negative. This may be rephrased saying that the observer must 

extract a fraction of the population at some site to carry out his observations on the system. 

This means also that with the inclusion of an observer the multivariate stochastic process 

is not stationary as long as there are non-zero populations. And even in the case in which 

there is no observer the process is not stationary in the limit of infinite total population. 

In fact the sum (26) diverges quadratically as w approaches 0, and therefore the correlation 

function also diverges (as it does for the simple random walk). In a short while we shall 

introduce more realistic stationary models with non-zero equilibrium states. 

While it is clear that the most relevant part of the eigenvalue density lies near the origin, 

since it determines the behavior of the PSD in the low-frequency limit, it is interesting to 

notice that the same upper bound and also a lower bound can be found assuming that A 

is symmetric and using the Gershgorin theorem [13J. In this case the Gershgorin theorem 

states that every eigenvalue .x satisfies at least one of the inequalities: 

-2: 2: akj 
j= l,n j=l,n 
j# j# 

I.e. all the eigenvalues are contained in the range 

2 --:::;.x:::;0. 
Tmin 

(32) 

(33) 

The idealized systems that we have studied so far look promising but have divergent 

PSD's and cannot be stationary (except in the case of vanishing populations Nk). However 

in real-life systems there is usually a noisy input and an output, so that equations (4) should 

be modified accordingly: 
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1 
dNk = --:;:-Nk(t)dt + L ak;Nj(t)dt + VO.kdt + vk(t)dt, 

k j:;;l,n 
(34) 

j# 

where vo = {VO.dk=l ..... n is a constant vector, which is the average value of the noisy 

input, and where 

(35) 

Moreover (35) must be a strict inequality for at least one site, so that there is at least 

one output site. The requirement of uniform behavior is satisfied by assuming that the 

transition probabilities to neighboring sites are always the same. 

Typically - for a given topology - we can identify an "inside" and a "boundary" for any 

set of sites. Then the random walkers in the inside can usually jump only to neighboring 

sites - and the equal sign holds in (35) - while the random walkers on the boundary can 

jump out of the system and (35) is a strict inequality. We also assume that any site can 

be reached from any other site with a finite sequence of jumps, and that the reverse path 

is also physically possible, then the matrix A must be irreducible, and because of (35) 

it is diagonally dominant, therefore it must be invertible and 0 is not an eigenvalue (see 

theorem 6.2.27 in [13]). Combining this result with the loose bounds from the Perron and 

the Gershgorin theorem that we found above, we see that all the eigenvalues are negative 

and that the deterministic part of the stochastic processes Nk is stable with nonzero Nk's. 

Moreover the statistical descriptions (5a) and (5b) for the stochastic processes v still hold. 

The vector form of equation (34) is: 

dN = ANdt + vodt + vdt, (36) 

while the corresponding equation for the average values is 

d(N) = A(N}dt + vodt, (37) 

and subtracting equation (37) from (36) we get 

d(N - (N}) = A(N - (N}) + v, (38) 
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therefore the spectral results derived in the previous section apply unchanged to the 

variates Nk - (Nk). Notice that equation (37) can easily be solved and it is well-known that 

the general solution is [14] 

n 

= L Wkje A;' + (Nk)eq, 
j;:::;;l 

where No is the vector of initial values, (Nk)eq are the equilibrium values 

D = diag(A" .. . , An), and T is a matrix whose columns are the eigenvectors of A . 

(39) 

(40) 

(41) 

V. THE EIGENVALUE DENSITIES FOR SOME DIFFUSION AND TRANSPORT 

OPERATORS 

We turn now to a detailed analysis of the eigenvalue densities of some linear operators. 

We take first the case of diffusion along a linear chain of n sites with hopping to nearest 

neighbors only (the process described at the end of section II), which is associated to the 

n x n matrix: 

-.1. 1... 0 0 0 7 27 

1... -.1. .!.. 0 0 
27 7 27 

A= 0 .!.. - .1. 1... 0 (42) 
27 7 27 

0 0 .!.. -.1. .!.. 
2T 7 2T 

Using elementary methods it is easy to show that the eigenvalues of this (symmetric) 

matrix are: 

1 ( 1rm ) Am = --:;: 1 - cos n + 1 (m=l, ... ,n) (43) 

Therefore the corresponding density for n ~ 1 is 
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(44) 

which is dominated by the two large peaks near 0 and near -~ The PSD can be 

computed directly from (26) and the result is 

0- 2 n 1 
S(w) ~ - L -:---= 

21m m=) w2 + A 2 

0-2r2 f1-1/n dx 

~ 2;- Aln w2r2 + (1 - cos 7rX)2 
(45) 

From the integral expression (45), it is clear that if wr ~ 1 then S(w) oc l/w2, and if 

wr ~ l/n2 then S(w) is approximately constant. In the intermediate region 1 ~ wr ~ l/n2 

the PSD follows approximately the power law 1/ f1.5 as shown in figure 1, where the PSD 

(45) is plotted for different values of n. The complete integrated form of (45) is quite lengthy, 

and it is difficult to use it to extract the 1/ f1.5 power law. However a derivation of the 1/ f1.5 

power law for n ~ 1 is given in appendix B. 

Thus simple ID diffusion yields a flicker noise, and if n is sufficiently large the effect spans 

many orders of magnitude. Figure 1 shows that for n = 500 the 1/ f1.5 region spans almost 

four decades, and for large n the 1/1'·5 region spans approximately 10glO I ~:::!: I ~ 210g)O n 

decades. The PSD is well-behaved, and the correlation function computed from the Wiener-

Kintchine theorem is free of divergences both at low and at high frequency. 

Many features of this ID diffusion model are shared by all the relaxation operators introduced 

in section IV. We have shown that all the eigenvalues are contained in a range Amin ::; 

A ::; Amax < 0, and therefore the PSD always approaches the (finite) value ~ 2::;;=11> as w 
• 

approaches o. At the same time the derivative also approaches 0, therefore every PSD flattens 

to a constant value near the origin. Moreover the eigenvalue range is bounded, therefore for 

w large enough, the PSD has a 1/ P behavior, and there must be an intermediate region that 

interpolates between these behaviors. We have just seen that it may span several orders of 

magnitude, and it is on this intermediate region that we shall focus our attention from now 

on. Another important feature shared by the whole class of relaxation operators is that the 

processes are linear, while the driving noise sources are stationary and Gaussian, therefore 
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the relaxation processes Nk are also Gaussian. Furthermore the deterministic part of each 

process has a simple attractor (since the eigenvalues of A are all negative), therefore the 

process has a finite variance [15], and it is stationary. This agrees well with past experimental 

observations of the statistical properties of 1/ f noise (see the references in the reviews [5-7]). 

As an independent check of the analytical calculations, I have set up a Monte Carlo program 

to simulate a ID chain. The populations at each site are updated according to 

n 

b.Nk = L: akjNjb.t + vo,kb.t + O'kRk, 
j;;;l 

(46) 

where the Rk'S are Gaussian pseudo-random numbers with zero mean and unit standard 

deviation, and the actual standard deviation O'k of each b.Nk is computed from the formula 

n 

O'~ = L: lakj(Nj)b.tl + Ivo,kb.tl· (47) 
j=l 

The gaussian pseudo-random numbers Rk have been generated with the routine gasdev 

described in [16], and modified to use the uniform pseudo-random number generator ran2 

instead of the faster but less safe ranl (they are both in the program library [16]). 

The simulation included an external noise source at each end of the chain, and the sites have 

been initialized with the resulting equilibrium values (which are further discussed in the next 

section). Figure 2 shows a small part of the simulated signal, while figure 3 shows the PSD 

of the simulated process, which provides a nice confirmation of the theoretical result. 

Now the simple ID diffusion model can be made more "realistic" either by allowing jumps 

to more distant sites, or stepping up in the number of dimensions. Let us start with a 

ID diffusion process with a probability of jumping from site j to site k that decreases 

quadratically with the distance IJ - kl· Now we take matrix elements ajk = Ij..:'kl" akk = 

-~ = - maxk {Lj;Ck ajk}. The associated relaxation matrix is: 

_1 
K !'. !i .!!.. 

r 4 9 16 

K 
_1 

K !'. !'. 
r 4 9 

A= !i K 
_1 

K !i (48) 4 r 4 

!'. !'. K 
_1 

K 
9 4 r 
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with:; ::::: 211: L:::'~o ,;, = K;'. We can still find the eigenvalues of this matrix by elementary 

methods, and they are: 

( 
m m2) 

TAm = -3 n + 1 - 2(n + 1)2 (m=I, ... ,n). (49) 

This expression is exact for n -t 00, however it gives a fairly good approximation of the 

eigenvalues of matrices like (48) even when their dimension is not too large: figure 4 shows 

that the eigenvalue density obtained from the eigenvalues computed with the numerical Ja

cobi method [16J for n = 50, is practically indistinguishable - at the scale of the plot - from 

the density derived from (49). The eigenvalue density in figure 4 is nearly flat in a large 

region near the origin, therefore we expect to find a large 1/ f region in the PSD. Indeed, 

using (26) and the eigenvalues obtained numerically, we obtain the curve shown in figure 

5 for n = 50 and II: = 1, where an extended 1/ f region is clearly visible. This nice 1/ f 

behavior is the exception rather than the rule for one-dimensional systems, which are more 

prone to follow the behavior displayed by the nearest neighbor interactions described at the 

beginning of this section (see figures 6 and 7). 

We consider now two- and three-dimensional lattices with hopping to nearest neighbors only. 

Take, e.g., a 3 x 3, 2D lattice with the sites labeled 

so that the associated matrix is: 

123 

456 

789 
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_1 l 0 l 0 0 0 0 0 < . 4. 4< 

l _1 l 0 l 0 0 0 0 4. < 4. 4< 

0 l _1 l 0 l 0 0 0 4. • 4< 4. 

l 0 l _1 l 0 l 0 0 4. 4. • 4. 4. 

A;= 0 l 0 l _1 l 0 l 0 (50) 4< 'IT • 4. 4. 

0 0 l 0 l _1 l 0 l 
4< 4< < 4< 4< 

0 0 0 l 0 l _1 l 0 4< 4< < 4< 

0 0 0 0 l 0 l _1 l 
4< 4< < 4< 

0 0 0 0 0 l 0 l _1 
47 4< < 

SO that the probability of jumping to any given neighboring site is always the same, the 

relaxation time is also the same for all sites, and the random walkers can leave the lattice 

from all the (2nx + 2ny - 4) sites on the boundary. Once again it is easy to show that for a 

rectangular lattice of nx x ny sites the eigenvalues are: 

1 ( 1rj 1rk ) Ajk = -- 2 - cos - cos 
2.,. nx + 1 ny + 1 

(51) 

(j = 1, ... ,nxi k = 1, ... ,ny) 

Similarly for a 3D lattice of n x x ny x n z sites the eigenvalues are: 

Ajkl "" __ 1 (3 _ cos 1rj _ cos 1rk _ cos _1r_I---,- ) 
3.,. nx + 1 ny + 1 n z + 1 

(52) 

(j = l, ... ,nx; k = 1, ... ,ny; 1= 1, ... ,nz ) 

These expressions are very similar to (43), but yield substantially different eigenvalue 

densities. As it is shown in appendix B, the 2D square lattice leads to an eigenvalue density 

which is very nearly fiat near the origin, and therefore the resulting PSD has a 1/ f shape, 

while the PSD for the 3D cubic lattice has a 1/ fo. 5 shape, and thus models with nearest 

neighbor interactions yield different behaviors for different lattice dimensions. It is also clear 

that as one of the sides of, e.g., the 3D lattice is reduced, the eigenvalue density changes 
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and approaches the eigenvalue density of the 2D lattice (the new density, though, is dnly 

proportional to, and not equal to the density for the 2D lattice\ because the limiting form of 

the 3D lattice allows the random walkers to jump out of the lattice at each lattice site, and 

not just along the sides of the 2D lattice). Therefore lattices with arbitrary sides interpolate 

between the 1D, 2D and 3D lattices. 

Before concluding tills section I wish to discuss the role of transport in a model with nearest 

neighbor interactions, as it was introduced at the end of section II. Formula (43) becomes: 

Am = -~ (1- V4pqcos 7rm ) 
r n+ 1 

(m=l, ... ,n). (53) 

The product 4pq attains its maximum value 1 when p = q = 1/2 and decreases whenever 

there is drift, therefore transport has the effect of "compressing" the whole eigenvalue distri-

bution about its middle value l/r, and as either p or q increases the PSD cbanges more and 

more to the simple 1/(w2 + A2) shape. It seems that transport does more harm than good 

and takes us away from a 1/ f shape, however the physical systems that are known to display 

1/ f noise usually are not one-dimensional. So it makes sense to consider again the 2D and 

3D lattices introduced above, and after some straightforward but tedions calculations one 

finds that the eigenvalues are 

A .k = __ 1 [2 _ cos 7rj _ V4pq cos _7r_k_] 
J 2r nx + 1 ny + 1 

(54) 

(j = 1, ... ,nx ; k=1, .. . ,ny) 

for the 2D lattice with transport along y, and 

Ajkl = - _1 [3 _ cos 7r j _ cos 7r k _ V 4pq cos _7r_l--:-] 
3r nx + 1 ny + 1 n z + 1 

(55) 

(j = 1, ... ,nx; k = 1, ... ,ny; 1= 1, ... ,nz) 

for the 3D lattice with transport along z, so that in these cases the PSD should have a 

1/ f" shape with Q between 1 and 1.5 for the 2D lattice and between 0.5 and 1 for the 3D 
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lattice. 

The overall picture is satisfactory but still incomplete, because when dealing with 1/ f noise 

we' also have to consider current, i.e. transport, noise, and the lattices described above do 

not really represent reasonable transport channels. Better models of transport channels are 

developed in the next section. 

VI. CONDUCTANCE FLUCTUATIONS 

The previous sections of this paper have a mathematical flavor and the results are very 

general, however it is clear that the main purpose of any theory of 1/ f" noise is that 

of "explaining" its occurrence in resistors. In a limited sense, this is the purpose of this 
r ' 

section: I take the diffusion and transport model outlined in section II as a model of charge , (" 

transport, so that the charge carriers correspond to the individual random walkers of that 

section, and at the end I derive a Hooge formula for conductance fluctuations. 

I define a 3D transport channel as a simple cubic lattice of n = nx x ny x n z sites (so 

that each site is labeled by three indices i, j, k), with drift along the z direction, and with 

two "interfaces" at k = 1 and k = nz (ID and 2D channels, i.e. "wires" and "strips" are 

obtained by setting nx = ny = 1 and ny = 1 respectively). Charge is exchanged only at 

these interfaces, and here the transport channel may both lose and gain charge. With the 

labeling defined above, the matrix elements of A for a 3D transport channel are: 

aijk;ijk = -l/T; (1 < i < nx , 1 < j < ny) 

aljk;ljk = an. j k;n.,k = -5/6T; (1 < j < ny) 

(56) 

aij,k+l ;ijk = p/3T; aij,k-l;i ,k = q/3T; 

ai±l,jk;ijk = ai,j±l,k:ijk = 1/67; 

aijk,rst = 0; (all remaining matrix elements) 
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where p and q have the same meaning as in section II. These matrix elements mean that 

the transition rates to neighbors are the same for every site of the lattice, and that the 

relaxation times are also the same for all sites in the bulk and on the interfaces, while they 

change slightly for sites on the boundary (the matrix elements for the 20 channel are very 

similar). The eigenvalues corresponding to these matrices are: 

Ajk = __ 1_ [2 _ cos _11"_] _ V4pq cos _1I"_k_] 
2r nx ny + 1 

(57) 

(j = 0, . . . , nx - 1; k = 1, ... , ny) 

for the 20 transport channel with transport along y, and 

Ajkl = - _1 [3 _ cos _11"_] _ cos _1I"_k _ V 4pq cos _11"_1-:-] 
3r nx ny Tlz + 1 

(58) 

(j=0 , ... ,nx-1j k=O, ... ,ny-l; 1=1, ... ,nz) 

for the 30 transport channel with transport along z. 

Notice that if d is the lattice dimension, 8 is the lattice spacing, p :::::: q :::::: 0.5 and L = nz 8 

is the channel length, the smallest eigenfrequency is IAmaxl :::::: 2d:lT' and since r = ~, then 

IAmaxl :::::: ;:3. The diffusion time IAmaxl-1 is approximately the average lifetime of the 

longest lived transient (see eq. 40), therefore if there is no source, this is also the average 

time needed to empty the transport channel. However it is also clear that if the contacts to 

the "outside" have a cross-section which is smaller than the cross-section of the transport 

channel, then IAmaxl becomes smaller (i.e. it takes longer to empty the channel). Indeed the 

limiting case of a transport channel with no input-output (and no drift) has eigenvalues 

1 [ 11"] 1I"k 11"1] Ajkl = -- 3 - cos - - cos - - cos-
3r nx ny nz 

(59) 

(j=0, ... ,nx -1; k=0, ... ,ny-1; 1=0, ... ,nz- 1) 

and IAmaxl = O. This is something that we already knew from section IV, however 

equations (58) and (59) show that the eigenvalues do not change appreciably when one 
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shuts down the channel, while the diffusion time l).maxl-1 becomes much larger than the 

previously estimated ;:Z, thereby increasing the range of the 1/ r region. 

The PSD's can be computed from (57) and (58) and they have the same general behavior 

as the 2D and 3D lattices discussed in the previous section: examples are shown in figures 

8 and 9. Figure 10 shows a simulated signal for the 2D channel. 

I assume a noisy source of charge at each end of the transport channel, and for given 

noise rates, it is easy to compute the equilibrium values (N;jk).,: if the noise source at the 

"entrance" of the transport channel has an average rate pVo and the noise source at the 

"exit" has an average rate qvo , then all the sites have the same equilibrium population 

(N) e, = (N;jk) eq = TVo, and the environment is uniform (figure 11 illustrates this point for 

a ID chain). This is especially important if the model is to represent a resistor, because it 

means that on the average the charge density is the same over the whole transport channel, 

i.e. there are no space charge effects. At the same time this requirement satisfies the 

uniformity hypothesis that was used to find the PSD. 

A rough approximation of the current PSD can now be obtained as follows. The net flow 

of charge carriers across any section of the transport channel (number of carriers per unit 

time) is given by 

flowacrossk-thsection= ~ (E.Nk-CJ..N·k+1)f:;;«P-q) ~ N' k ~ t,). l,J. L...J t,). 
;=1,1'l.::r T r T i=l,nz 

(60) 
i=l,ny j=l,ny 

(61) 

and therefore the electric current is: 

(62) 

where 0 is the lattice spacing, v = (p - q)~ is the drift speed, A = nxnyo2 is the cross

section of the transport channel, e is the charge of each carrier, and Nk = _1_ L J' N; j k. 
n.::rny , , • 

Now let S(w) be the PSD of the fluctuations of the number of charge carriers averaged over 

the channel section, and S1 be the PSD of the electric current I, then (I) = ~~v (N)." and 
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(63) 

(64) 

(65) 

where 0'2"", 2(N)eq/r has been used. Now notice that the integral in (65) approaches the 

value ~ I:k=l I .I~ I ' as w "'" l.Amaxl, and if n ~ 1, .Amax is very small and ~ I:k=l I.I~ I' "'" ~ l .lm~. I'· 

Therefore, in the range l.Aminl < W < l.Amaxl, the integral in (65) is approximately equal to 

1 (l.lma.I)" and then 
nIAma.:F w ' 

(66) 

where N,o' = n(N)eq is the total number of charge carriers in the channel. Now remember 

that if G is the conductance then SI(W)/ (1)2 = SG(w)/ (G)2 and therefore equation (66) gives 

the PSD of conductance fluctuations as well, and corresponds to the Hooge formula [17]. In 

view of the previous discussion on .Amax , it is clear that the coefficient in front of the N,-;:w-" 

dependence has no fundamental significance. 

VII. CONCLUSIONS 

I have described a mathematical mechanism whereby flicker noise appears as a natural 

feature of a collection of identical interacting relaxing systems driven by white noise. The 

first and most prominent feature of the mechanism studied in this paper is that generic 

PSD's for diffusion processes should be of the form 1/ f" with 0.5 < a < 1.5 and that a = 1 

has no special significance, apart from the fact that nearly all the observed systems are 

approximately 2-dimensional, and a = 1 is exactly what one should expect from the simple 

diffusion model for a 2D system (indeed experiments observe a whole range of values of a in 

the vicinity of 1, see the list of a values in [5]). An important consequence of the linearity of 

the model is that stationarity and Gaussianity - actually observed in experiments - do both 

arise naturally. 

21 



I wish to emphasize the universal features of the model: it applies whenever there are re

laxing linear systems, and diffusion and transport are just special cases. The linearity of 

the model also has an appealing simplicity that nonlinear models certainly lack. Given the 

probabilistic nature of the interaction between different sites, noise is self-generated by the 

system, and there is no real need of an external noise source. 

It may seem that the validity of the model is limited by the request that the populations be 

very large: but this was only used to make the noise source Gaussian. Another seemingly 

unnatural assumption is that each random-walker may step to other sites only at given, 

discrete, times. Both problems can be fixed by assuming that each random-walker jumps 

to adjacent sites with an exponential waiting time distribution, so that now the relaxation 

time r must be regarded as the average transition time. It is very easy to see that this leads 

to exactly the same differential equations for the average values. Moreover the number of 

transitions during any give time interval must be a Poissonian deviate. Very high frequen

cies mean short times and small averages, so that at high frequencies the discrete character 

of the number llucLuations is very prominent, and it leads to shot noise. Lower frequen

cies mean longer times and therefore Poisson distributions with bigger average values. It is 

well-known that the greater the average, the more the Poisson distribution resembles the 

Gaussian, therefore ai low frequency the driving noise is just plain white Gaussian noise, 

and once again the mathematics of this paper is valid and applicable as it is. 

It was remarked in the introduction that other diffusion theories exist, bui they all fail in 

some respect. In particular the thermal diffusion theory of Voss and Clark [9J was troubled 

after its appearance by several problems (listed in [17]), and especially by the lack of spatial 

correlations. Though at the beginning there appeared to be some correlations, they were 

not found by later experiments (see, e.g. [18]). As in any diffusion theory, spatial correlation 

must be present also in the treatment of this paper. However none of the experiments that 

ruled out the Voss and Clark model applies here. This important point is discussed in 

appendix C. 
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I wish to point out that the theory also explains, at least qualitatively, some other facts 

like the steepening of the PSD observed at low temperatures by Voss and Clark [9] and by 

Eberhard and Horn [19]. In fact the difference (p - q) is related to the current flowing in 

the sample by 

lr 
(p-q) =

Ap8 
(67) 

(p is the charge density), therefore, if the current is held fixed while the temperature is 

lowered, the difference (p - q) increases since the relaxation time T also increases. Then the 

factor )4pq = )1 - (p - q)2 decreases and the eigenvalues (whatever the dimensionality of 

the lattice) are compressed about their average value, and the PSD becomes steeper. 

APPENDIX A 

If all the random-walkers see the same average environment we may define an average 

(IFI2), and use formula (16) to obtain 

(1F12) f::j ~d= IFj12) 
n ;=1 

= ~(F+. F) 
n 

= ~ (r [(iwll- Arf· [Ciwll- A)-I] f) 
= ~;'2:. I; [Ciwll - ArI]+ [(iwll - ArI] II) 

n \. k I Jk kl J, , 

= ~ 2:. {[CiWll - Artj'" . [(iwll - ArI]}. U; fI). 
n j,l JI 

(AI) 

(A2) 

(A3) 

(A4) 

(A5) 

If we make make use of the assumptions of independence of the noise processes and of 

average environment uniformity: 

(1F12) f::j ~ 2: {[(iwll - Arf . [(iwll - A)-I]}. 8jl (lfd 2
) 

n j,l )l 
(A6) 

= ~(ifI2)Trace {[(iWll - Arf . [(iwll - A)-I]}. (A7) 

The relaxation matrices A that we consider in this paper are real matrices. Since they 

are nonsingular they are certainly diagonalizable, unless there are degenerate eigenvalues 
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such that they can only be put in a Jordan quasidiagonal form. However in a physical 

environment the degeneracy is likely to be removed by any small randomness in the matrix 

elements. This does not affect substantially the shape of the PSD , because the eigenvalue 

spectrum is stable against small perturbations (see section 6.3 in [13]). Now let", be an 

eigenvector of A, so that A", = ).."', then ",+ is a left eigenvector of At with eigenvalue )..*, i.e. 

",+ At = )..*", (see [13] for the algebra of left and right eigenvectors). If we take normalized 

left and right eigenvectors, i.e. ",j"'k = Ojk, equation (A 7) can also be written as 

(/FI2) ~ !:.(lfI2) I: ",t [(iwll - .4tf . [(iwll - At'] "'I 
n j,l 

(AS) 

= !:.(lfI2li= . 1 .' 1 n . -zw - ).. . zw - ).. . ,::;::1 J J 

(A9) 

1 n 1 
= -(lfI2) I: 2 + 1)..12' 

n j=1 W J 

(A10) 

which is the same as (25) (see also theorem 4.4.3 in [13]). Some information has been lost 

in this' proof, we have not found the individual PSD's for the populations at each site, but 

rather an average PSD. However something else has been gained, now the proof has been 

extended to incorporate non-symmetrical matrices; this means that the results of section 

III hold for the symmetrical case of diffusion as well as for the non-symmetrical case of 

transport. 

APPENDIX B 

Take a set of eigenvalues {Am}m=l, ... ,n such that )..m (X m2 for small m, so that for large 

n, )..(t) ~ at2 and one has to compute the integral 

(Bl) 

to find the PSD. The result of the indefinite integration is 

~ [arctan (1 + tj2 lal) - arctan (1 -tl lal )] + 2 21alw3/ 2 w w 

1 (Iale + tJ21alw + w) + ~ , 
4~W3/2 lalt2 - tJ21alw + w 

(B2) 
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ahd thus for Amin ~ w ~ Am.x 

(B3) 

In the case of the ID chain discussed in section V, Am = -~ (1 - cos :.;;.) ~ - ~:'::: for 

m ~ n, n :;P 1, and indeed integrating the full expression one finds that 

(B4) 

for Amin ~ w ~ Am•x. Similarly, for the 2D lattice one finds that the eigenvalues (51) 

b . d b h . I' I ,,2 j~ ,,2 k
2 d ·f can e approxImate y t e expressIOn "jk ~ 4 + -4 2, an I nx = ny = n., n, :;P 1, 

Tn,%" -rny 

and j, k ~ n., then the sum in (26) becomes 

n 1 n~ 1 

fl w2 + A;' = j~1 w2 + Ajk 
(B5) 

~ [I-lIn, [I-lIn, dxdy 

JI/n tl il/n!! w2 + (7r~;2) 2 
(B6) 

". 10 rdr 

~"2 hln, w2 + ("~~2r 
(B7) 

~ ~ [( dt 2 , 

4 J21n; w2 + (::) t2 
(B8) 

where i.. --> x, .k. --> y, r2 = x 2 + y2, and e is a number between 1 and 2 (and therefore 
n oS ns 

e:;p 2,). The integral (B8) is just the integral (1) that leads to a 1/ f PSD. 
n, 

All this can be repeated for the 3D lattice using (52), and one finds that IAjkz! ~ ;;~~ + , 

6"'k; + 6"'I~, and if nx = ny = nz = n., n, :;P 1, and j, k, I ~ n" then the sum in (26) -rny -rnz 

becomes 

(B9) 

(BlO) 

(Bll) 

(BI2) 
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where, once again, .L -t X, ..is -t y , J..- -t z, r2 = x2 + y2 + Z2, 1 < e < 3, and n. n, ft. 

Amin ~ w ~ Amax. The sum (B9) thus gives a 1/ r· 5 PSD. 

APPENDIX C 

The space correlation function is easily computed using the formalism of section III 

(CI) 

so that, using (22) and bt(w)-y",(w' ) = a 2olm o(W - Wi) 

(F*( ) D ( ')} = 2 ~ (17iM 'T/lh C( _ ') 
] W '" k w a L..J 2 _ 1\ 12 u W W, 

1=1 w Al 
(C2) 

and thus the integral (CI) becomes 

(( N~(t) _ (N)' )(N (t) _ (N.) )} = ~ ]+00 dw ~ (17ili(17I)k = a
2 ~ (17ili(17I)k 

] ] eq k k eq (211")2 -00 8 w2 -IAd 2 411" 8 lAd . 

(C3) 

In general the sum (C3) is different from zero, however this space correlation is not ruled 

out by past experiments. I review now the arguments of a few of them [20- 23]. 

The experiment reported in [20] simply does not apply here, since it ruled out correlations 

in two gold films that were in thermal contact but electrically disconnected. 

The authors of [21] tried to measure voltage cross correlations in a thin wire that was etched, 

together with the contact pads, from a thin metal film. I argue here that they did not observe 

fluctuations in the wire but rather in each pad sepamtely. In fact whatever the (microscopic) 

origin of the fluctuations it must act in the pads as well as in the wire. If the explanation 

proposed in this paper has any validity at all, one should then expect the whole "wire + 
pads" system to behave - more or less - like a 2D system, and indeed what they observe 

is not the 1/ j1.5 spectrum that was expected from the Voss and Clark theory, but a 1/ j 

spectrum which is characteristic of a 2D system (see figure 2 in [21]). 

Again, the experiments reported in [22,23] test thermal fluctuations and do not apply here. 
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Furthermore the observed dependence of noise power on sample width, that the authors of 

those papers used to argue that the noise arises from fluctuations in the local sheet resistiv

ity, does not apply to number fluctuations and can be used instead to support formula (66), 

which does predict the observed dependence. 
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FIG. 1. PSD's for 1D chains of different lengths n calculated using (27). The solid lines show 

the PSD's for chains with a) n '" 20, b) n '" 100, and c) n '" 500. The straight lines are for 

reference and represent 1/ r spectra with a '" 1 (dashed), a '" 1.5 (dashed-dotted), and a '" 2 

( dotted). 
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FIG. 2. A small portion (4096 samples) of the simulated signal for a ID chain with 100 sites 

and with a noise source at each end of the chain. The signal is the population fluctuation of the 

middle element (site 50). The relaxation time is T = 0.5 and the simulation step is 6.t = 0.02 

(arbitrary time units). 
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FIG. 3. PSD of the population fluctuations of the middle site (site 50) of a 1D chain of 100 sites 

and with a noise source at each end of the chain. 220 samples have been generated and each point 

is the average of 256 PSD estimates obtained from records of 2048 samples each. The relaxation 

time is T = 0.5 and the simulation step is f),t = 0.02 (arbitrary time units). 

The solid curve is the theoretical curve b) , shown in figure 1). The dashed line shows the slope of a 

1/ fl.5 spectrum, while the dashed-dotted line shows the slope of a 1/ J2 spectrum. The departure 

from the 1/ J2 behavior at high frequency is due both to the comparatively large time step and to 

aliasing. 
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FIG. 4. Eigenvalue density for the ID chain with matrix elements ajk = I/lj - kl' if j i' k, 

a .. = -l/r = 1C'/3, and n = 50. The dots show the numerical result (obtained with the Jacobi 

algorithm, see [13,16]), while the dotted line shows the approximate theoretical curve. 
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FIG. 5. PSD obtained analytically from the eigenvalue density of figure 4 and from (27). The 

straight lines are for reference and represent 1/ r spectra with a = 1 (dashed), and a = 2 (dotted). 
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FIG. 6. PSD for the ID chain with long range ,,-Ij-kl couplings (here" = 0.6, n = 50). The 

straight lines are for reference and represent 1/ r spectra with a = 1 (dashed), and a = 2 (dotted). 
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FIG. 7. PSD for the ID chain with long range 1/lj - kl 3 couplings (here n = 50). The straight 

lines are for reference and represent 1/ r spectra with", = 1 (dashed), '" = 1.3 (dotted), and", = 2 

( dashed-dotted). 
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FIG. 8. PSD for the 2D transport channel (n, = 20, n, = 45). The straight lines are for 

reference 'and represent 1/ r spectra with ('( = 1 (dashed), and ('( = 2 (dotted). 
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FIG. 9. PSD for the 3D transport channel (n. = 15, ny = 15, nz = 15). The straight lines 

are for reference and represent 1/ r spectra with a = 1 (dashed), a = 0.5 (dotted), and a = 2 

( dashed-dotted). 
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FIG. 10. A small portion (4096 samples) of the simulated signal for a 2D transport channel 

(nx = 20, n, = 45) with a noise source at each end of the channel (the signal is the population 

fluctuation at the center of the channel. The rela.xation time is T = 0.25 and the simulation step 

is tlt = 0.02 (arbitrary time units). 

39 
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FIG. 11. Schematic representation of the average population exchanges between sites of a 

1D chain during a time interval of duration 6.t. When the external sources have the av-

erage rates shown in the figure, every site has the same average equilibrium population, i.e. 

(Nl ) = (N2 ) = ... = (Nn ) = VoT. 
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