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A classical magnetic model with compact su(2) and noncompact su(1,1) spin phase
space admitting the Hirota bilinear form is presented in an arbitrary number of space di-
mensions. The esscntial point of the construction is the presence of a velocity field with
nontrivial vorticity tensor related to a topological charge density. The model covers in par-
ticular a variety of familiar topological equations, such as the Heisenberg ferromagnets and
the (24 1) —dimensional O(3) o—model. Using the bilinear representation, several special
cases and ezact solutions of physical interest ( spin waves, domain walls and vortezes) are
considered.

I. INTRODUCTION

In field theories governed by nonlinear differential equations, an important role is
played by those kinds of solutions, such as for examples solitons and vortexes, which find
applications in different physical areas [1]. We recall, for instance, the recent discovery
of localized solitons in 2+1 dimensions [2] and the studies made to extend their search
in higher dimensions [3]. One of the more interesting aspects of the dynamics of these
solutions is that they can simulate inelastic scattering processes of quantum particles as
creation and annihilation, fusion and fission, and interactions with virtual particles [2,4].

On the other hand, a special attention should be paid to those nonlinear fields, which
are endowed with topological structures [5]. Concerning these models, many effects have
been shown in the quantization of planar localized solutions. The latter have a fractional or
even irrational spin and obey peculiar statistics, which are intermediate between the Bose-
Einstein and Fermi-Dirac statistics [6). These phenomena occur in the treatment of the
- quantum Hall effect and the high temperature superconductivity [7]. Some attempts also
exist to describe topological localized solutions in 3+1 dimensional systems by introducing
the Chern-Simons and Hopf invariants [8].

We notice that in connection with the complete integrability of a given nonlinear
field model, the existence of a linear problem associated with the underlying equation of
motion is crucial. Moreover, this feature may help to build up the corresponding o - model
representation via the gauge equivalence theory [9).

The above considerations suggest that any construction of physical nonlinear models,
possibly with nontrivial topological structures, allowing analytical studies of the dynamics
of solutions would be appreciated.



Following this line of research, here we present and investigate a multidimensional
classical nonlinear magnet model with compact (sphere §?) and noncompact (pseudosphere
S§11) spin phase space, interacting with a vclocity field having a vorticity related to a
topological charge density. Our model contains as special cases some interesting well-
known nonlinear field systems such as the Heisenberg ferromagnets, their generalization
to anisotropic crystals with magnetic ordering depending on the spatial directions, the
nonlinear o-models, the Ishimori and the Ernst equation and many others [1,10, 11,12,13].

The main purpose of this work is to solve the equations of the model by means of the
Hirota bilinearization tecnique [14]. Adopting this procedure, we obtain exact solutions of
domain wall type, spin waves and vortexes. In Sec. II we describe our model and discuss
some reductions corresponding to particular space dimensions. In Sec. III we write our
model in a bilinearized form, while in Sec. IV we present examples of exact solutions.
Finally, Sec. V contains some concluding remarks.

II. THE MODEL

In order to formulate our model, let us consider a D-dimensional pseudoeuclidean
space RP'? with metric tensor g,, = diag(+,...,+,—,...,—). The model describes the
time evolution of the unit "spin” vector S = (5}, Sz, S3) according to the Landau-Lifshitz
equation [15] in a local moving frame, where S; = S (z,,t) (2, =(z1,-++,2p)) and
S3 + k% (51% + 52%) = 1. S belongs to the sphere 52, or to the pseudosphere §1, when
k% =1 or k? = —1, respectively. The vorticity tensor of the velocity field v, is assumed to
be related to the gradient of the spin field vector as follows

S¢+v"3,S =S x 9%9,S, (2.1a)
Ouvy — dyv, = 2k2S . (0,8 x 8,S), (2.1b)

where p,v = 1,2,...,D. Here (a xb); = finnambn is the exterior product associated
with the structure constants fi,, of the su(2) and su(1,1) algebras, 8, = J/0z, and
o* = gH*vg,.

The interaction between the spin field and the velocity is suggested by several examples
concerning integrable models, like the Ishimori model [11], the Davey-Stewartson equation
[16) and by the Papanicolau equation [13]. On the other hand, we point out that for D
= 2 Eq. (2.1b) defines essentially the topological current pertinent to the O(3) nonlinear
o—model [6], which implies a conserved topological charge.

In the context of the nonlinear o —model, Eq. (2.1b) is invariant under a local gauge
transformation v’ p = Vu + Oua (being @ = a(x,,t) any differentiable function). Thus
one can interpret the velocity field v, as a gauge potential, leading to a new topological
conserved quantity, the Hopf invariant, which describes the homotopy classes 3 (S 2) =2
[17]. So one is able to handle the spin and the statistics of the topological configurations
(skyrmions) of the model [6]. However, since Eq. (2.1a) includes explicitly the field v,,
our model is not invariant under the above mentioned gauge transformation.

Finally, we notice that Eq. (2.1b) is inspired by the Mermin-Ho relation [18], which
occurs in the theory of quantized vortexes in the superfluid 3He.

In order to demonstrate the great versatility of the model proposed here, we shall
discuss some special cases, which can be obtained from Egs. (2.1) and from their diffcrent
versions derived in Sec. III. Ia brief, we shall limit ourselves to deal with a few examples
‘m D > 1 dimensions. A systematic treatment of all the cases is carried out in [19].



1) Models in D = 2 dimensions

a) In the static limit for v# = 0, Eqgs. (2.1) provide the (integrable) su(2) and su(1, 1)
nonlinear o-models in two - dimensional Minkovskian or Euclidean space, respectively,
according to the metric tensor g#” [20]. Conversely, the case v,= constant was considered
by Papanicolau [13], in connection with the study of the static configurations of planar
ferromagnets. In Ref. [13] the Lax pair of the system and a duality transformation were
found.

b) Let us suppose that the two-dimensional velocity field is represented in terms of a
real scalar field ¢, namely

v, = 0,9, vy = a?0,;¢ (a? = £1), (2.2)

with metric tensor g*“= diag(1, a?). Then system (2.1) reduces to the Ishimori model [11].
This model, both in the compact and the noncompact version [21], is important because
it is the first example of a nonlinear spin field model on the plane, allowing a Lax pair
formulation. It admits exact solutions, which are classified by an integer topological charge
(localized solitons [22], vortex-like [11], closed string-like, and doubly periodic solutions
[21]). Furthermore, one can show that, in general, the Ishimori model is gauge equivalent
to the complex Davey- Stewartson equation [19]. However, for a? = —1 the Ishimori model
is gauge equivalent to a reduced case of the so-called DS-II equation [9].

2) Models in D = 3 dimensions

a) In the static limit, for v, = 0 Egs. (2.1) provide the su(2) and su(1,1) three
dimensional nonlinear ¢-model. Integrable reductions for this model are well known [1,
20, 23).

b) Let us assume that the spin ficld takes an axially symmetric configuration (that
is S = S(p, 2), where p = (2% + y?)!/2). Then in the su(2) case we get the Heisenberg
model [10]; on the other hand, in the su(1,1) case we have the Ernst equation for axially
symmetric gravitational fields [12]. This equation admits a Lax pair and soliton solutions
(24].

c) Finally, we observe that when restricting ourselves to the field configurations satis-
fying the constraint

S x 9"9,S =0, (2.3)

‘the equation (2.1a) is reduced to the Euler equation for the vorticity field S = V x v
[25], which can be put into a hamiltonian form [26]. On the other hand, Eq. (2.3) can
be regarded as the stationary Landau-Lifshitz equation for isotropic ferromagnets or, from
another point of view, as the nonlinear ¢ model. These equations have solutions of the
vortex type at least in two dimensions (instantons). Then, if we assume that such static so-
lutions depend parametrically on time according to the Euler equation, we obtain a vortex
hydrodynamics for a perfect fluid, eventually incompressible if the supplementary condi-
tion 9"v, = 0 is satisfied. Actually, the total magnctization M = [ SdPz for Egs.(2.1) is
conserved only if the last constraint on the velocity field is verified.



8) Models in higher dimensions

For D = 4 and in the static limit, taking vy = 0, we get the four dimensional s-model.
In the special case in which the vorticity components (1,2) and (3,4) are equal, we find a
reduction of the self-dual Yang-Mills equations [1].

Taking again v, = 0 in the static limit and for any D, we get the D - dimensional
o model in a pseudoeuclidean space. The integrability of this class of models has not yet
been explored.

III. BILINEARIZATION OF THE MODEL

For our purposes, it is convenient to have Egs. (2.1) in a different form. We perform
the stereographic projection of the spin vector S on the complex plane ¢ by means of the
relationships

. . 2 1_K2 2
S+=Sl+252=ﬁ'3<my, S3=m-l|-g-||1. (31)
So the equations of motion (2.1) take the form
0#¢0u¢ =

(O ¥, 0% — 92— 2785 7 _ 0, 3.2
7'( tC+'U I‘C)+ C K 1+K2ICI2C . ( a)
. allzayc - 0,,?6#(
— = —41? 3.2
aﬂvv auv;t dix (1 n K,,IClz)z ) ( )

where the overline denotes the complex conjugate.
Now in order to derive the Hirota representation of the model, we introduce two

complex functions f and ¢ such that

¢=g/f. (3.3)

Then the "projective” representation of the spin components (3.1) is given by
— _2Tg —~ LI=r'Tq 3.4
StT T 9= friam, (34)

By substituting (3.3) into Eq. (3.2a), after some algebra we get a complicate equation,
which can be put in the bilinearized form

#(Tol+x2Fo -
(e1* - <lgl’) {(iDt —D)+ Y [ivl‘ + 2"_“(1‘,%5,&4 D,‘} (fog)
n
—_— -0 K2—0
o7 { (oD% + £ o 22zl D} Fosrgog) =0
i

where D, and D, are the Hirota operators, defined by

(3.5)

D{‘Dfa(zl,...,:I:D,t)ob(:z:l,...,:vp,t) =



(Ou = 0w )’ (B — Or)*a(zy, ...,z D, )b(z}, .. ., 2D, ") st =t (3.6)

D* = g#D, and D? = D#D,,
Eq. (3.5) is satisfied by putting

(iD. = D?)(fog) =0, (3.7a)
(iD= D?*)(fof —k%gog) =0, (3.7b)
while the velocity field is :
D,(fof+ &%
v, = 2i—% (—f treo ). (3.8)
Il + 2|g]

Since the expression (3.8) for the velocity field v, fulfills Eq. (3.2b), a solution (¢, v,)
of system (3.2) is obtained by solving Eqs. (3.7) for f and g and using the definitions (3.3)
and (3.8).

IV. SPECIAL SOLUTIONS
a) Special solutions in D = 2 dimensions

First we show some interesting particular solutions of the model in the case D = 2.
Now the bilinear system (3.7-8) takes the form

(iD¢ - D? — a®D?})(f o g) =0, (4.1a)
(iD¢ - D? — o®’D¥)(fo f — k?Go g) = 0. (4.1b)
Let us consider the case a? = 1, which corresponds to the metric tensor g** =

diag(1,1). Thus, by introducing the complex coordinates

7]=:E+iy, ﬁ=$—iy, (42)

Eqgs.(4.1) become
(iD—4D?)(fog) =0, (4.3a)
(iDy — 4D )(fo f — k%Gog) = 0. (4.30)

Confining ourselves to look for analytical solutions of Egs. (4.3), i.e. in the case in which
the relations

a-ﬁg = 01 al_]f = 0) (44)
hold, we can find "ghost solutions”. For instance, in the su(2) case, we can choose
g= ekq—wt+6’ f — ge—i'y’ (45)

where 7, 6, w and k are complex contants, with w = 2|k|2. Then we get



2e'7

1 4 x2e-2Im+y’

(=€,  S=0 S5, = (v1,v2) =4 (Imk, Rek).  (4.6)

Another example is given by the choice
g=0, f=ekrwttis (4.7)
which leads to

C= 0, S:; = 1, S+ = 0, (vl,vz) =4 (Imlc, Relc) . (48)

Solutions of the form (4.6) and (4.8) can be used as asymptotic behavior at infinity of
solutions belonging to the topological sector.
In order to obtain vortex solutions, we make the choice

f=1, (=g (4.9)
Then, Egs. (4.1) reduce to

(i0: + 82 + a?92) g = 0, (4.10a)
0:9 0:9 + a%9,3 Oyg =0, (4.100)

while the velocity field is given by
v = (2i6°/(1 + £%g]%))(90,F — F0,9). (4.11)
Under the assumption (4.9), from Eq. (4.100) it follows that nontrivial solutions exist only
for pseudoeuclidean metric tensor, that is for a? = —1. In this case and using the variables

(4.2), the bilinear equations (4.1) read
(10, + 20] + 20%)g = 0, (4.12q)

0n3 Byg + 957 959 = 0. (4.120)

Equation (4.12b) is identically satisfied by any analytical function g = g(n,t). Then, Eq.
(4.12a) reduces to the one-dimensional time dependent Schrédinger equation

(10 +207)g = 0. (4.13)
The simplest nontrivial solution of this equation is
g = etnwis, (4.14)
where k = ky + tky,w = —2ik? and § is a constant. The third spin component and the
velocity field are given by
2x%p2 42 p}
Sy=1-—=L0 (4 0,)= B (ky, k), (4.15)

6—26 + szg) e-—2£ + szo



where § = k1z — kay — 4k kat and pg = exp(Re §). Concerning the asymptotic behavior of
the solution (4.15), we find that

for ¢ — —o0, S3—=1 and (v;,v2) =(0,0),

for E — +o00, 53 — —1 and (‘Ul,‘vz) = 4(k2,k1) . (416)

This is a domain wall solution, located on the line ¢ = —Inpy, where S3 = 0 (in the
compact case) or S3 — +oo (in the non-compact case). It propagates in the plane with
velocity v = (4kz, —4k;). The vorticity for this solution is

Bzvy — Oyvz = 2k*(k% + k2)sech?¢, (4.17)

and the corresponding topological charge is divergent. A reason for this is that the asymp-
totic behavior of the domain wall does not satisfy the compactification condition S3 — 1
for 2 + y? — 0.

Following a well known procedure [27], we can expand the solution (4.15) in power
series for k; < 1 and R = k;/k; = O(1). We have

=go Z o n" Z M = go Z eN Z (n!m!)_ln"(Zit)"‘, (4.18)

m/!
n=0 m=0 N=0 n+2m=N

where 7 = z + iy and € = k;(1 +:R).

Truncating the series (4.18) to a given N, we get an exact time - dependent N-vortex
solution. We can easily see that the corresponding topological charge is just N. In this
sense a domain wall solution can be considered as a superposition of infinite number of
vortexes and, consequently, it possesses an infinite topological charge.

Because of the linearity of Eq. (4.13), the superposition of M domain walls

M
g= Zexp{kjn —wjt+6;}, w(j) = —Zik(zj) (4.19)

i=1

is also a solution of the same equation. Expanding , as we have done above, in power series
one of the exponentials appearing in (4.19), we obtain interactions involving vortexes and

domain wall solutions.
Using the relations (4.9) (and more generally f = f), from Eq. (3.8) the velocity field
~ reduces to the form

_ 2 C aﬂc C 0#( 4 20
vy = 219——————1_'_’;2'('2 ) (4.20)
while Eq. (3.2a) can be written in terms of { only, namely
10 + 0%8,¢ — 2& 2 00,0 — B =, (4.21)

+ K2|([?
We notice that this result holds for any dimension D.



Finally, we recall that system (4.1) also provides solutions for the Ishimori model (see
Sec. II). With this in mind, we need to know the scalar field ¢ in terms of the variables f
and g. This can be done with the help of (3.8) and the expressions (2.2). So the auxiliary
field ¢ is such that

o; Da(fo f+K%5og) 2Dy(fo f+x"Fog)
IfI? + 2lg> IfI? + x2|g
Furthemore, the integrability condition 8,¢, = 8,¢, holds for a® = —1. Exploiting the

gauge equivalence tecnique, we can also find solutions of the Davey-Stewartson equation.
For more details the reader is addressed to [9] and [19].

¢y=

$: = Zia (4.22)

b) Special solutions in D = 3 dimensions

In this subsection we show how to construct exact solutions with nontrivial vorticity
tensor in three dimensions.
In doing so, we start again from (4.9). Adopting the metrics defined by g*¥ = diag
(1,a?, B?), the bilinear equations (3.7) ‘are reduced to the following system:

(10, + 92 + 32 + p*32) g =0, (4.23a)

8:90:9 + *0,§0,g + £%0,50.9 = 0. (4.23b)

Interesting solutions to this system exist only in the case of pseudoeuclidean metrics.
For definiteness we choose a? = 1, 4% = —1.
_ Let us assume g = exp{k-x — wt + 6}, where k = (ki, ks, k3) is a complex three-
~ dimensional wave vector, parametrized in the form

ky = |ku|expidy, (r=1,2,3), (4-24a)

|kl = |klcos A, |ko| =[k|sind,  |k3] = |k], (4.24b)
with arbitrary real parameters A and ¢,,. Then system (4.23) implies the dispersion relation

iw = |k|*{cos® Aexp 2i¢; + sin® Aexp 2i¢; — exp 2i¢3}. (4.25)

In analogy with the case D = 2, we find the domain wall solutions moving in three
dimensions, namely

290+ 2x%g3 4kg3
= % 1 r2g2 =l-—=r 5 =—0 4.26
S+ e—ZE + K2g§’ 53 1 6_26 + f€2g(2) ) Uy 6_26 T f;zgg Im k#, ( )

where ¢ and 3 are linear combinations of (z,y, z,1) given in terms of the A and ¢,s. The
asympotic behavior of the component S3 is S3 — +1 for £ — Foo.

In order to obtain rational solutions, we adopt the same procedure used above, expanding
g in terms of |k| < 1:



oo N
g = goexp{|k|a} exp{|k|%ibt} = go Z |k|N Z (nim!)~1a"(ibt)™, (4.27)
N=0 n42m=N
where
a =zcosA expig; +ysin expid; + zexpids, (4.28
b = cos? A exp 2i$; +sin® A exp 2i¢s — exp 2id;. -28)

For N =1 we get static solutions. In this case the velocity field components are

v1 = (4vo/A){ysin Acos Asin(¢; — ¢2) + zcos Asin(¢; — ¢3)},
vz = (4vg/A){—zsin A cos Asin(¢; — ¢2) + zsin Asin(¢, — ¢3)}, (4.29)
v3 = (4vo/A){—z cos Asin(¢; — ¢3) — ysin Asin(@, — #3)},

where

A =1+ vo{z?cos? A + y?sin® A + 2% + 2zysin A cos A cos(¢; — ¢2)+
2zz cos Acos(p; — ¢3) + 2yzsin Acos(dz — @3)}, (4.30)
vo = x%|go|?|k[*.
The spin field S can be expressed by (3.4) with the help of (4.27) for N = 1. By direct
calculation we find that the vorticity tensor has non vanishing components in any direction.
In general, for an arbitrary N, we obtain time dependent rational solutions of the vortex
type in three dimensions.

Now we observe that in our context it is possible to obtain a relativistic vortex dynam-
ics in 241 dimensions. To this aim we consider static solutions of the 341 dimensional
version of Eqs. (2.1) and regard the third coordinate z as a new time variable 7. The
equations of motion read

21(v40,5 — v90,5) =[S, AS] — (S, 525 (a=1,2) (4.31)
Ouvy — 0yv, = —1k25(0,5,0,5] (n,v=10,1,2) '
which describe a relativistic nonlinear ¢—model for the spin matrix
_ 53 K§+
S_<nS+ _53). (4.32)

Using the relations (4.9) and the complex variable 7 (see (4.2)), the bilinear equations
corresponding to system (4.31) are reduced to the form

ey 4.33
{2(6”90'19 + 0590,9) = 0-90:9. (4.33)

Choosing the particular solution to this system of the form

g = an + V2ae'r, (4.34)

we are led to a moving vortex solution with topological charge N = 1.
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Another interesting example of exact solutions comes from the choice

g = goexp[x(e**n + "7 — 2¢'@+A)/27y), (4.35)

where x > 0,a and f are real constants. Resorting to an expansion in x analogous
to (4.18), we arrive at time dependent vortex - antivortex conﬁguratlons The simplest
examples of such solutions correspond to the following expressions for g:

g= gox{eian + e‘ﬂﬁ— 26“"""”“1‘}, for N=1, (4.36)

and

9= go2 " 'x?{e'n + €'P7j — 2/ (@ +PA)/21)2 for N=2. (4.37)

Inserting these quantities into (3.1) and (3.8), we can build up the explicit expressions
for the spin field S and the velocity field v,,.

c) Special solutions in higher dimensions

Here we discuss some simple solutions in an arbitrary number of space dimensions.
First, let us consider the case in which the space has an even number of dimensions D = 2n
and is endowed with the metrics g#*=diag(I,,—~I,). Then we can exploit the bilinear

equations (3.7), by introducing n complex coordinates g = z; + iz (I = 1,...,n), and
the functions f and g as in (4.9) . Classes of particular solutions can be found by limiting
ourselves to the case in which g is an analytical function (i.e., 85 9=0,(I=1,...,n)). In

this way we are led to the n-dimensional linear Schrodinger equatlon for a free particle,
which is a generalization of Eq. (4.13). Therefore we can extend the results achieved above,
obtaining multidimensional domain wall solutions and superposition of domain walls and
rational solutions with nontrival vorticity.

Second, in the case D = 2n + 1 with ¢*Y= diag(+Iz.,—1) we consider the static
solutions of Eqs. (2.1). Regarding the (2n + 1)-th coordinate as a new time variable
7, we get an extension of system (4.31). Consequently, using again (4.9), the relations
corresponding to Eqgs.(4.32) read

{ Org =430, 05,9 =0, (4.38)
2 Z?:] amgaﬁ,g + aﬁ,gamg) = 0,90-g.

These equations admit classes of solutions which suitably generalize the expressions
(4.34) and (4.35). So we can provide topological solutions of vortex and vortex-antivortex
type in 2n space dimensions.

Finally, it is a remarkable fact that we can find spin - wave solutions for system (2.1)
in any space dimension D. Indeed, the functions

D
9=poexp{i()_kuzu—wt+w)}, f=expli (Z PuTu — #t)}; (4.39)

p=1 p=1
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where

kl‘ = (1 + '92/’(2))_11)0#, Pu = __sz%(l + szg)_lpom (4.40)
w=(1-r*0)(1+£%03) 2P, v =—rpj(1-K?p3)(1+ K>p}) 2P,

are solutions of the bilinear equations (3.7). The corresponding stereographic projection ¢
is given by

D
¢ = poexp{i( ) Pouzn — Dot +wo)}, (4.41)

p=1

where Py = k — p,Q0y = w — ¢ and the dispersion relation

_1- K2po?
14 K2p02

holds. Now one can show that for the SU(1,1) model in D =1 and for the corresponding
Ishimori-II version (D = 2 and g#*=diag(1,-1)), the dispersion relation (4.42) can be
suitably modified, assuming that the third component S;3 of the spin field depends on the
wave number Py in a physically meaningful way. In order to be brief we shall skip all details
(which are presented in [19]), here we claim that this possibility is assured by the gauge
equivalence between the above mentioned systems and the nonlinear Schrédinger equation
of the repulsive type (NLS-) for D = 1, or the Davey - Stewartson equation (D = 2),
which provides, under proper boundary conditions, a description of a repulsive Bose gas
(see the review article about spin models in Ref. [1]). For instance, a one-dimensional Bose
gas, whose particle density at infinity is Eq = p, can be described by solutions of NLS_
which asymptotically tend to \/p. The gauge equivalence theory associates this type of
solutions with spin-wave solutions of the Landau-Lifshitz equation (the one-dimensional
reduction of system (2.1)), in such a way that the corresponding density of energy

Qo P02 + P(;‘vo" = S3P: + P(;"Uo“ (442)

“7 Ezfczf)” o

is equal to the density of particles in the former case. From (4.41), the above mentioned
relationship between densities can be satisfied only if the amplitude py will depend on the
wave number Py, precisely

P 2
2 1} 2

In the upper half-plane of the pseudosphere §!+!, the third component of the spin field is

_1+p5 _ VP’ +4p
Sy = ——F0 - : (4.45)
1—pg Py
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and the frequency ¢ has the Bogolyubov form [1]

Qo = Pyy/ Po? + 4p. ' (4.46)

These solutions are known as "hole - like” spin - wave [1].
For the Ishimori-II model, the situation is much more intricate. However, following
the same route, we are led to the dispersion relation

Po12 + Pyt -4
Qo=:i:(P012—P022)\/ = 5 = 5 p,
vV Po1” + Po2

which is different from the two - dimensional Bogolyubov dispersion relation. Nevertheless,
Eq. (4.47) reduces to (4.46) when one of the wave number components vanishes. Finally,
for |Po;| = |Poz|, Eq. (4.47) provides a zero-mode (or ”Goldstone mode”) solution .

(4.47)

V. CONCLUSIONS

We have proposed and analyzed a multidimensional spin field model endowed with
both a compact and a noncompact symmetry. The main feature possessed by the equations
of motion is the coupling between the spin field and the velocity field, whose vorticity is
connected with the topological charge density.

The model introduced particularly contains some well-known topological nonlinear
field systems, a few of them turn out to be linearizable by a Lax formulation and admit
exact solutions mimicking a particle-like behavior. Although most of these solvable models
arise from mathematical speculations, they might be a useful guide to build up more
realistic field theories. This task could be made easier by a more complete study of Eqgs.
(2.1), whose unifying character allows us to tackle globally many problems inherent to a
whole class of topological nonlinear field models [19].

It should be also noted that Eqgs. (2.1) offer the possibility of clarifying the role of
the symmetry structure of the spin phase space. In fact, in the cases where the spin field
variables range over a compact or a noncompact manifold, Egs. (2.1) may lead to solutions
with different properties.

To conclude, we observe that the approach based on the bilinearization tecnique re-
veals a powerful tool for handling nonlinear field equations such as Eqgs. (2.1). The results
obtained produce new classess of exact solutions.

Finally, an important aspect regarding the model (2.1) is that it can cover a broad
range of topics, going from the propagation of domain walls, spin waves and magnetic
vortexes in condensed matter, to the nonlinear field theories in high energy physics.
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