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Abstract

We derive the limit of validity of the Slowly Varying Envelope Approximation
(SVEA) as a function of the ”bulk” velocity v of the radiating system, which reads
£, > A1 — v/c), being £, the radiation pulse length. This condition reduces to the
usual SVEA in the limit v/c < 1, whereas it is sensibly relaxed in the relativistic limit.
The example of a Free Electron Laser is discussed.



1 Introduction

In the study of the interaction of radiation with matter, the Maxwell wave equation is of
fundamental importance. This is a second order partial differential equation in space and
time coordinates which, under some conditions that we shall investigate, reduces to a first
order partial differential equation.

Let us consider the one-dimensional case for one component of the transverse electric field
E(z,t) and for the transverse current density J(z,t)
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Usually, when a primary radiation wavelength A arises in the study of a physical problem

and the main propagation is in the 4z direction, as the spontaneous emission in a FEL,
it is useful to introduce the complex amplitudes E(z,t) and J(z,t) defined such as

(2,t) = E(z,t)eik(z_“) (2)
J(2z,t) = J(z,1)ez=) (3)

where k = ZT” and A is the radiation wavelength.

E and J have an immediate physical meaning in the case in which they do not vary
sensibly over a wavelength: they represent the envelope of the electric field and of the
current respectively.

Replacing (2) and (3) into (1) we have
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Equation (4) can be simplified to, as a first approximation, a first order differential equation
keeping only the largest terms on each side.

2 The usual SVEA

Let us briefly reconsider the hypotheses underlying the usual SVEA [1], which consist in
assuming
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so that (4) becomes
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Equation (6) is the so called SVEA counterpart of eq.(1). A sufficient condition for the
validity of (5) is
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neglecting the cases in which the terms on the Lh.s. cancel each other and the terms
on the r.h.s. do not. Assuming the scaling argument
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where £, and £; define the scale of variation of the pulse and the current, we can write (7)
as

L>A4> A (9)

i.e. the radiation and the current pulse show a slow variation over a wavelength scale.

3 The generalized SVEA

Let us now write (4) in terms of 2’ and z; defined as

Z =z
z; = z—wvt

where v is the bulk velocity of the radiating system.
One obtains easily
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Let us now suppose that
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With this condition, equation (10) can be written as
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This is equivalent to the SVEA equation:
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In fact, taking the derivative of (13) to respect to z;, one obtains
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This equation plus eq.(13) multiplied by 2:ik gives back equation (12). Going back to the
initial variables z and ¢, equation (13) becomes the SVEA equation (6).

Hence a sufficient condition for the validity of (6) or (13) is the inequality (11).

For B =1, our analisys becomes equivalent to that of Haselhoff [2].

For B =0, since z; = z = z' , inequality (11) reduces to

E
E"—l < k|E| (14)




which is the usual SVEA.
A sufficient condition for the validity of (11) is that

E
~6 < 2k|E| (15)
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We are neglecting the case in which 243 gf and 2:kE cancel each other. Defining a gain
length £, and a pulse length £, such as
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we have
L> X > M1 -p) (17)

The physical meaning of these conditions is obvious. The first one implies that the field can
not be sensibly amplified in a wavelength. The second condition can be derived imposing
that the electron-photon interaction time is much larger than the optical period. Note
that the last condition reduces to the usual SVEA condition for # < 1 and it is much less
restrictive if @ ~ 1, as in a FEL, since it can be written as £, > A/~

Futhermore, since in a FEL

£l =(1-B), (18)
the two conditions (17) reduce to the single one

Aw > Ap (19)

This can be seen easily using the normalisation of ref.[3]
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In this way, inequality (11) becomes
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which gives immediately condition (19).
Finally let us note that in the steady—state regime, where % = 0, condition (19) becomes
necessary and sufficient for the validity of the SVEA.

4 Conclusions

We have shown that the Slowly Varying Envelope Approximation is valid under conditions
(17) which depend on the bulk velocity of the acting medium.

This condition gives a strongly relaxed limit of validity for the SVEA approximation in
the case of the FEL, where the electrons move at relativistic velocity.
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