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Abstract: I present here a numerical procedure to compute survival probabilities for 

random walks on lattices with randomly distributed traps. The procedure has some 

advantages over existing methods, and its performance is evaluated for the 1 D simple 

random walk, for which some exact results are known. Thereafter, I apply the 

procedure to 1 D random walks with variable step length and to 3D simple random walks. 
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1. Introduction. 

Random walks on lattices with randomly distributed traps serve as models for 

many physical processes in which absorption and emission occur [1,2). In spite 

of their conceptual clarity and simplicity, these models often defy exact 

mathematical analysis. Indeed, most of the existing exact results are limited to 1 D 

random walks with transitions to nearest neighbours only. 

Apparently, the stochastic nature of these models makes them well·suited to 

brute·force Monte Carlo simulations, but in this case useful studies take up an 

enormous amount of computer time. In fact, the probability that a random walker 

survives an n-step walk is a fast decreasing function of n, and to explore the 

large-n behaviour one must generate a huge amount of random walks and random 

trap configurations. Moreover, the lower the concentration of traps, the higher 

the probability that the random-walker is trapped at large n, therefore the scope 

of the method is rather limited. 

The gap between exact results and brute-force simulations has been filied by 

several workers who have produced approximate results . Those studies 

concentrate mainly on two quantities : the number {Sn} of distinct sites visited by 

a random walker in an n-step unrestricted walk, and the n-step survival 

probabilities {fn} in presence of traps. 

Basically, the relevance of the Sn's comes from their relationship with the fn's: 

( 1 ) 

Here c is the concentration of traps and < > denotes the average over all n-step 

unrestricted walks (in formula (1) the average over all trap configurations has 

already been taken). In his original paper on luminescent emission in organiC 

solids with traps (3) Rosenstock approximated (1) moving the average to the 

exponent: 
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( 2 ) 

The Rosenstock approximation (2) has been shown to work reasonably well only 

for very small concentrations (see e.g. (4)). --

It turns out that (2) is just the first of a series of approximations derived aller 

truncation of the so-called ·cumulant expansion" [2], where the ·cumulants" 

are simply expressed in terms of the central moments of the distribution P(Sn) . of 

the Sn's. Only the first moment <Sn> can be computed without too much trouble 

using the generating function formalism [5], and analytic results also exist for 

the second central moment. However, to compute the higher moments one must 

resort to Monte Carlo simulation of unrestricted walks. This is no longer a direct 

simulation of the trapping problem, hence it is free from the simulation time 

problems mentioned above. These expansions work quite well for short walks, but 

they all break-down badly for longer walks [2]. 

In addition, I wish to mention a wealth of asymptotic formulas, both for the Sn's 

[6J and lor the In's [7,8,9J : these formulas set the goal for all numerical efforts 

(cfr. [8J and [10]) . 

In this paper I present a numerical approximation which is in some way similar 

to the cumulant expansion and to the work of Blumen and Zumofen [5], but which 

is much better behaved, In section 2 I describe the approximation, apply it to 1 D 

Simple random walk and compare the numerical results with the asymptotic 

formula of Anlauf [8J. In section 3 I give numerical results for the 1 D random 

walk with transitions to nearest neighbours (NN) and next-nearest-neighbours 

(NNN) and lor the 3D simple random walk. 
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2. The procedure. 

Consider 8 simple random walker which has already taken n-1 steps on the 

lattice. Some of the lattice sites that can be reached at the next step have already 

been visited, while others may be new to the walker. Let Pn be the fraction of new 

sites. Then Pn is also the probability of visiting a new site at the n-th step, and 

cPn is the probability of falling on a trap at the n-th step. Therefore the 

probability that this walker is still free after the n-th step is: 

Thus 

n 

f n =TI(1-CPk) 
k=O 

( 3 ) 

( 4 ) 

where it is assumed that the origin may also be a trap, and one defines PO'" 1. 

Then, taking the average over all walks 

n 

fnK<ln>=<TI (1-CPk) > 
k=O 

Equation (5) can also be written as a recurrence formula : 

( 5 ) 

( 6 ) 

Notice also that <Pn> is just the average number of new sites visited by the 

random walker at the n-th step, and therefore <Pn> ~ ton in the usual notation of 

Montroll and Weiss (c1r. [11] and [1]) . 

Equation (5) or (6) shows that if one neglects correlations then 
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or, equivalently, 

Moreover, il c « 1, then 

n 

n 

In -ll{1 -C6 k), 
kEO 

n 

( 7 ) 

( 8 ) 

log In = L log{1 - Cdk) = 
k=O 

-c L 6k - -c <Sn> = <Sn> log{1-c) , (9) 
k=O 

and one recovers the Rosenstock approximation (2)'. 

Equation (7) or (8) is still onlk" an approximate lormula, but one can do beller 

by including some 01 the missing correlation, namely applying the recurrence 

lormula (3) twice, so that 

= 1 n·2 - c(Pn+Pn · ' )In.2 + c2PnPn.,1 n·2 . (10) 

Alter averaging, il one still neglects the correlations between the Pn's and the 

In's, this gives 

In = In-2 - C{6 n+6n., )In-2 + c2<PnPn.' >In-2 

= [1 - C(6n+6n. ,) + c2<PnPn.'> 1 In·2 . ( 1 1 ) 

, It is also quite easy to see that (8) is an approximate lower bound for (6). tn fact when Pn 
is large it is easy to find . on average - a trapping site, and fn., must be small, and 
conversely if Pn is small then fn., is large. 

Therefore <Pnln.,> < lonfn., and then fn > (' -clon)fn.,. 
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Though still approximate, (11) displays explicitly the correlation between the 

two last steps; moreover this correlation involves only probabilities that may be 

computed from unrestricted random walks. It is difficult to compute this 

correlation analytically, but it can be found by Monte Carlo simulation of 

unrestricted walks, just like the moments <Snk> required for the cumulant 

expansions. It must also be remarked that in order to compute (11) one needs two 

starting values for the survival probabilities: 

fO = (1·c) 

f, ~ (1-c)(1-ct.,) ( 1 2) 

(f, is exact, since for all random walks p,= 6,). 

It is now possible to proceed further, and include the correlations among the last 

three steps , and so on. Then one obtains recurrence formulas similar to (11). 

Three or more starting values are required, and they must be found by direct 

enumeration. 

In what follows the procedure shall be denoted by PFP (probability factorization 

procedure), and the 'j·th order" PFP is the approximation obtained by 

expanding the first j factors in expression (5). E.g. (11) is the second order 

approximation . The j·th order approximation requires j starting values. 

To test PFP I used the asymptotically exact expression [BJ for the survival 

"probabilities of the 10 simple random walk 

B ~ 3/2 (.3 X) { , 7 1 205' f = - - x exp - , + - - + --
n 11 311 2 '8 X 648 x2 

3"5' (')1 
• 34992 x3 + 0 x4 f 

with x = ['11 log(1-c)]2/3 n'/3. ( 1 4) 
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I computed the 4 n'S exactly. using a series inversion method similar to that used 

by Blumen and Zumofen (5). and the averages <PnPn.l ... Pn.j+' > with a Monte 

Carlo simulation of the unconstrained walks. The starting values for the survival 

probabilities are easily found from direct enumeration of short walks2 . 

I have generated 105 10 unrestricted simple random walks. 1000 steps long. To 

choose the direction of each step I have used a Tausworthe-type random bit 

generator (12) with p=9689. q=41 87. where p and q are the exponents in the 

(irreducible) polynomial associated with the random bit recurrence formula 

(13). With such a generator one can safely simulate random walks less than 104 

steps long. since linear relationships among bits appear only after p=9689 steps. 

Figure 1 some of the correlation terms <PnPn.1 ... Pn.j+ p obtained from the Monte 

Carlo program and used by PFP. The same program was used to compute the 

averages <Snk> (up to k=4) needed for the cumulant expansion. The first 4 

cumulant approximations of fn are shown in figure 2. while the results of PFP up 

to 4th order are shown in figure 3. 

2 It turns out that for all simple random walks on O·dimensional cubic lattices the first four 
Pn's are constant 

PO = 40 = ' . 
and therefore for these walks the calculation of the first five fn's is trivial 

fO = 10 = "c, f1 = i, = (1 ' C}2. 

- 2( 20.') f2 • f2 = (1-c) , -c "'20' - 2 ( 20-11 t3 = f3 = (1 -c) 1-c "'20') , 
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Figure , : Some of the correlati?n terms Irom the Monte Carlo simulation of the 

unrestricted , 0 simple random walk. <PnPn-P. <PnPn-l Pn-2> and <PnPn-' Pn-2Pn-3> 

appear respectively. as the top. middle and bottom data points. 

2 4 6 x 8 10 12 14 

Figure 2: log ,ol. Irom the lirst four cumulant approximations lor the 10 simple 

random walk. The solid line is the asymptotically exact expression (14) (for c=O.4) . 

while the dashed lines show the first lour cu'mulants. The data are plotted vs. the scaling '. 
variable x (see text) . The irregularities in the fourth cumulant are due to the statistical 

fluctuations of Monte Carlo data. The first cumulant is the Rosenstock approximation. 
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Figure 3: log,o'. obtained from 1st to 4th order PFP for 1he 10 simple random walk 
. 

(dashed lines). The solid line is the asymptotically exact expression (14) (lor c=O.4) . 

The data are plotted vs , the scaling variable x (see text) , The Rosenstock approximation 

(dots) is also shown lor comparison. 

The computed values 01 In are plotted versus x. the scaled step number 01 (14): 

the advantage 01 using x instead 01 n is that the plots. at least asymptotically. do 

not depend on the concentration (lor the record. I always used c=O.4 in these 

simulations) . 

PFP is Iree Irom the divergence problems 01 the cumulant expansion and seems to 

reproduce reasonably well the asymptotic behaviour (14). at least lor step 

" numbers that are not too large , For large step numbers the correlation terms 

approach constant values . so that the approximated survival probabil ities 

eventually behave like simple exponentials. 

The difference between the second and the lirst order approximations 

(expressions (11) and (7). denoted by .f~) and IN) ) can be expressed by 
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- c2 Cov(PnPn_') _ ( 1 7) 

Figure 3 shows that with increasing order k the difference log fg+" - log f~' 1 

decreases and has the same order of magnitude as (17), therefore the asymptotic 

value of the covariance may be used as an empirical estimator of the rate of 

convergence of the series of PFP approximations. 

3. Some results. 

PFP is a rather fast algorithm: the only step that takes a sizable amount of time is 

the Monte Carlo program used to compute the averages <PnPn-, .. . Pn-j+P. If n is 

the length of each random walk, N is the total number of walks generated and j is , 

the order of the approximation, then the program takes a time proportional to 

21Nn2, and a memory space proportional to 21n for any lattice dimension (the run 

time is proportional to n2 because at each step during the generation of the 

random walk one must scan the previous steps to count the number of free 

adjacent sites). 

PFP is affected by two kinds of errors: statistical errors in the Monte Carlo used 

to compute the averages, and systematic errors intrinsic in the method. Statistical 

errors can be minimized by generating a large number of unrestricted random 

walks. The systematic errors can be reduced by going to higher orders and using 

the covariance (17) as a heuristic estimator of the accuracy of PFP. 

have applied PFP to symmetric 1 D random walks with transitions to nearest-

neighbours and next· nearest-neighbours, and to simple 3D random walks. 

Take the 1 D random walk first, and tet p be the probability that the random 

walker steps to one of its nearest neighbours (NN) and q the probability of 
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stepping to one of the next-nearest-neighbours (NNN) (p+qcO.5). This walk 

becomes a simple random walk il pe O.5 or q=0.5. 

I have generated t05 unrestricted walks. 100 Iteps long. for each 01 21 

unilormly spaced values 01 the parameter p 

Figure 4 shows the "asymptotic· covariance i.e. the covariance at ncl00 

which estimates the rate 01 convergence of PFP. The covariance decreases lor both 

tow and high p·s. indicating that the procedure is more retiabte when the random 

walk approximates aID simple random walk. 

Figure 5 shows tog,o(I,oo) from third order PFP as function 01 the parameter p. 

SiRce q=0.5-p. it is easy to see that there is no symmetry between p and q. 

Then I generated 105 unrestricted 3D simple random walks. 200 steps long. In 

this case there are no asymptotic formulas for the survival probabilities. so I 

used then a Monte Carlo procedure like that 01 Anlaul [4.8] to estimate the quality 

01 PFP. The results 01 the simulation are shown in figure 6. together with the 

Rosenstock approximation. and the first and fourth order PFP. t wish to stress 

that the simple first order PFP seems to be much beller than the Rosenstock 

approximation (clr. [4]), even though the computational effort is exactly the 

same3. 

Unlortunately the simple exponential behaviour is reached quite early even by the 

4th order approximation. and therefore it cannot be used to find the onset 01 the 

Oonsker-Varadhan asymptotic regime having stretched exponential behaviour 

_. (clr. [7] and [10]) . 

3 As a side remark. notice that by combining the 1st order approximation (7) with the 
fining curve 01 Zumolen and Blumen [14J 

<Sn> - 0.662 n + 0.525 n"1 + 0.50t . 
and recalling that 6n E <Sn>-<Sn-l >, one oblains the approximation 

n 

tog In - L log[t - .c(0 .662+0.2625 n-1I1)], 
>_ 0 

which turns out to be practically indistinguishable from the first order approximation 
shown in figure 6. 
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Figure 4: ·Asymptotic· covariance Cov(p,ooP •• ) from the Monte Carlo data for the 

10 random walk with NN and NNN transitions. The crosses show the covariance vs. p. 

and the solid curve is only meant to 'guide the eye. 
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Figure 5: Plot of 109 ,0(f ,00) vs. p for the 10 random walk with NN and NNN transitions 

obtained from the 3rd order PFP (lor c=OA) . 
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Figure 6: log,.f. for the 3D simple random walk: the dots are the results of the Monte 

Carlo simulation 0;1. la Anlaufo [8J with cEO.4. the dotted curve is the Rosenstock 

approximation. while the solid Hnes show the 1st (lower curve) and the 4th order (upper 

curve) PFP. 

Ali the numerical calculations have been carried out on an Apple Macintosh IIfx 

and on a Digital VAX 900. The simulation of the 1 D unrestricted random walks 

with transitions to NN and to NNN to compute the averages needed by the 3rd order 

PFP was one of the longest. and it took 40 minutes of CPU time on the VAX. 
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4. Conclusions 

I have Introduced a new method (PFP) to compute the survival probabilities for 

random walks on lattices with traps. PFP shares with the cumulant expansion the 

-
advantage of being independent from the trap concentration, and the disadvantage 

of not being analytic. The averages <PnPn-! .•. Pn-j+ p needed by PFP have to be 

computed by Monte Carlo simulation of unrestricted walks, but once this is done 

they can be used for any trap concentration. In this sense PFP is much faster than" 

the enumeration methods described in [1 OJ4. 

Moreover PFP is much more stable than the cumulant expansion (cfr. figures 2 

and 3) . 

The PFP algorithm is easily adapted to widely different lattice topologies, neither 

run time nor memory space depend on the lattice dimensionality, and the 1 st 

order approximation (7) is so simple and performs so much better than the 

Rosenstock approximation that it might replace it. 

Just as it happens for the other methods. it is quite difficult to estimate the 

systematic error of the PFP approximation. However, it is possible to reduce this 

systematic error by going to higher order approximations, and to estimate 

empirically the rate of convergence of this series of approximations. 

4 While these methods are actually much faster than brute-force Monte Carlo methods, 
they require a large amount of memory space_ For a given trap concentration one can easily 
estimate the run time and the memory space to be proportional respectively to nON, and to 
nO, where N, is the number of simulated configurations with the given trap concentration. n 
is the length of the random walk and 0 is the lattice dimension. 
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