ISTITUTO NAZIONALE DI FISICA NUCLEARE

Sezione di Trieste

INFN/FM-91/02
11 aprile 1991
E. Milotti

DIMENSIONAL RECURRENCE FORMULAS FOR GREEN'S FUNCTIONS OF CUBIC LATTICES

Dimensional Recurrence Formulas for Green's Functions of Cubic Lattices.

Edoardo Milotti,
Dipartimento di Fisica dell'Universita' di Trieste and INFN - Sezione di Trieste, Via Valerio 2, I-34127 Trieste, Italy.

Abstract

I apply the theory of random walks to prove dimensional recurrence formulas for return probabilities and Green's functions of cubic lattices. I use these formulas to compute the average number of distinct sites visited by the random walker on an "almost 1 dimensional" lattice.

(To be published in Physics Letters A).

1. Introduction.

Many problems in solid state physics, statistical physics and particle physics can be "latticized": then the propagation of lattice "excitations" can be described by "lattice Green's functions" or "position-space propagators" (applications to statistical physics can be found, e.g. in the classical papers by Dyson [1], while a review of solid-state physics applications is e.g. [2]). The propagation of lattice excitations is a kind of diffusion process, and it is well-known that it can be modeled by discrete random walks on the lattice: this equivalence has been used in the past to compute propagators by Montecarlo methods (see e.g. Kuti [3] and Montvay [4]).

Here I study simple random walks on cubic D-dimensional lattices and using elementary combinatorial arguments I show dimensional recurrence formulas relating the Green's function (propagator) for the D-dimensional lattice to the Green's function for the (D-1)-dimensional lattice.

In section 2 of this Letter I review some known results about the Green's functions for simple random walks on a cubic lattice: I use a formalism akin to that used in [5] and | cast the results in a combinatorial setting; in section 3 | prove the recurrence formulas. I apply the recurrence formulas to find the average number of distinct sites visited by a random walker on an "almost 1-dimensional" lattice in section 5, and section 4 contains a discussion of the results.

2. Green's functions for simple random-walks on a cubic lattice.

Take a cubic D -dimensional lattice with unit lattice spacing and let $\mathbf{r}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{D}}\right)$ be a lattice vector, that is a vector that points to a lattice site (and therefore the x_{i} 's are integer coordinates when measured in units of lattice spacings). Also, let $\mathrm{p}(\mathrm{j})$ be the probability for the random walker to step from its current site r to $\mathrm{r}+\mathrm{j}$, let 0 be
the random walker's starting point and let $P_{D}(r, n)$ be the probability of reaching r after n steps (not necessarily for the first time). Then the $P_{D}(r, n)$'s are related to the single-step probabilities $p(j)$ by

$$
\begin{equation*}
P_{D}(r, n+1)=\sum_{j} p(j) P_{D}(r-j, n) \tag{1}
\end{equation*}
$$

(\sum_{j} denotes the sum over all lattice points j) with the initial condition

$$
\begin{equation*}
P_{D}(r, 0)=\delta_{r, 0} . \tag{1.1}
\end{equation*}
$$

This recurrence equation can be solved using standard Fourier methods after introducing the functions

$$
\begin{equation*}
\lambda(t)=\sum_{j} p(j) \exp (i \quad j \cdot t) \tag{2}
\end{equation*}
$$

$(\lambda(t)$ is also called the "structure function" of the random walk) and

$$
\begin{equation*}
L_{n}(t)=\sum_{r} P_{D}(r, n) \exp (i r \cdot t) . \tag{3}
\end{equation*}
$$

Then (1) and (1.1) become:

$$
\begin{gather*}
L_{n+1}(t)=\lambda(t) L_{n}(t) \tag{4}\\
L_{0}(t)=1 \tag{4.1}
\end{gather*}
$$

so that

$$
\begin{equation*}
L_{n}(t)=[\lambda(t)]^{n} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{D}(r, n)=\frac{1}{(2 \pi)^{D}} \int_{-\pi}^{\pi}[\lambda(t)]^{n} \exp (-i r \cdot t) d t . \tag{6}
\end{equation*}
$$

Therefore the generating function for the return probabilities $P_{D}(r, n)$ is

$$
\begin{align*}
G_{D}(r, z) & =\sum_{n=0}^{\infty} P_{D}(r, n) z^{n}= \\
& =\sum_{n=0}^{\infty}\left(\frac{1}{(2 \pi)^{D}} \int_{\pi}^{\pi}[\lambda(t)]^{n} \exp (-i r \cdot t) d t\right) z^{n} \\
& =\frac{1}{(2 \pi)^{D}} \int_{-\pi}^{\pi} \frac{\exp (-i r \cdot t)}{1-z \lambda(t)} d t . \tag{7}
\end{align*}
$$

In a simple random-walk the $\mathrm{p}(\mathrm{j})$'s are non-zero only if j is a unit lattice vector, i.e. one of the vectors $\pm \mathbf{e}_{i}$, where $\mathbf{e}_{1}=(1,0,0, \ldots, 0), \mathbf{e}_{2}=(0,1,0, \ldots, 0), \ldots, \mathbf{e}_{D}=$ $(0,0,0, \ldots, 1)$; then the structure function becomes

$$
\begin{equation*}
\lambda(t)=\sum_{k=1}^{D}\left[p\left(+\mathbf{e}_{k}\right) \exp \left(-i t_{k}\right)+p\left(-\mathbf{e}_{k}\right) \exp \left(i t_{k}\right)\right], \tag{8}
\end{equation*}
$$

where $t=\left(t_{1}, \ldots, t_{D}\right)$. Furthermore if one also assumes that there is no net drift motion, then $\mathrm{p}\left(+\mathbf{e}_{\mathrm{k}}\right)=\mathrm{p}\left(-\mathrm{e}_{\mathrm{k}}\right) \equiv \mathrm{p}_{\mathrm{k}}$ and (8) and (7) become respectively

$$
\begin{equation*}
\lambda(t)=2 \sum_{k=1}^{D} p_{k} \cos \left(t_{k}\right), \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{D}(r, z)=\frac{1}{\pi^{D}} \int_{0}^{\pi} \frac{\prod_{k=1}^{D} \cos \left(x_{k} t_{k}\right) d t_{k}}{1-2 z \sum_{k=1}^{D} p_{k} \cos t_{k}} \tag{10}
\end{equation*}
$$

where $r=\left(x_{1}, \ldots, x_{D}\right)$ as before, and (10) is seen to be the usual expression for the scalar boson propagator in position space on a cubic D-dimensional lattice; if $p_{i}=\frac{1}{2 D}$
for all i's, z is related to the usual "hopping parameter" $K, K=\frac{z}{2 D}$, while the mass of the "hopping particle" is given by $\mathrm{M}^{2}=2 \mathrm{D}(1-\mathrm{z})$ [6].

Now I turn to the problem of explicitly computing the $\mathrm{P}_{\mathrm{D}}(\mathrm{r}, \mathrm{n})$'s. Assume the randomwalker to be in $\mathbf{r}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{D}}\right)$ at the n -th step; then the number $\mathrm{k}_{ \pm \mathrm{i}}$ of steps taken in the direction $\pm \mathbf{e}_{\mathrm{i}}$ must satisfy the constraint $\mathrm{k}_{+\mathrm{i}}-\mathrm{k}_{-\mathrm{i}}=\mathrm{x}_{\mathrm{i}}$. On the other hand there are $\frac{n!}{k_{+1}!k_{-1}!\ldots k_{+} D!k-D!}$ such sequences of n steps with the constraint $k_{+1}+k_{-1}+\ldots+k_{+} D+k_{-D}=n$, and each of them has a probability $\prod_{k=1}^{D} p_{i}^{k+i+k-i}$ of actually occurring (the pi's are the single step probabilities defined above). Then the probability that the random-walker be in r at the n-th step is:

$$
\begin{aligned}
& P_{D}(r, n)=\sum_{D} \quad n!\prod_{i=1}^{D} \frac{p_{i}^{k_{+i}+k_{-i}}}{k_{+i}!k_{-i}!} . \\
& \sum_{i=1} k_{+i}+k_{-i}=n ; k_{+i-k-i=x_{i} ; k_{ \pm} \geq 0}
\end{aligned}
$$

$$
\begin{equation*}
P_{D}(r, n)=\sum_{2 \sum_{i=1}^{D} k_{i=n}+\sum_{i=1}^{D} x_{i} ; k_{i} \geq \max \left(0, x_{i}\right)}^{n!\prod_{i=1}^{D} \frac{p_{i}^{2 k_{i}-x_{i}}}{k_{i}!\left(k_{i}-x_{i}\right)!} .} \tag{12}
\end{equation*}
$$

Notice that the constraint $2 \sum_{i=1}^{D} k_{i}=n+\sum_{i=1}^{D} x_{i}$ forces $n+\sum_{i=1}^{D} x_{i} \quad$ to be even, therefore n and $\sum_{i=1}^{D} x_{i}$ must have the same parity: if this is not the case then $P_{D}(r, n)=0$. In the specially important case $r=0, n$ must be even and (12) becomes

$$
\begin{equation*}
P_{D}(0,2 n)=\sum_{D}(2 n)!\prod_{i=1}^{D} \frac{p_{i}^{2 k_{i}}}{\left(k_{i}!\right)^{2}} . \tag{13}
\end{equation*}
$$

If the single step probabilities p_{i} are all equal and the number of random walkers is conserved (i.e. $\sum_{i=1}^{D} p_{i}=\frac{1}{2}$) then $p_{i}=\frac{1}{2 D}$, and (13) reduces to

$$
\begin{equation*}
P_{D}(0,2 n)=(2 D)^{-2 n} \sum_{\sum_{i=1}^{D} k_{i}=n} \frac{(2 n)!}{\prod_{i=1}^{D}\left(k_{i}!\right)^{2}} . \tag{14}
\end{equation*}
$$

If $D=1$ or $D=2$, the sum (14) can be easily evaluated to yield

$$
\begin{align*}
& P_{1}(0,2 n)=\frac{1}{2^{2 n}}\binom{2 n}{n}, \tag{15}\\
& P_{2}(0,2 n)=\frac{1}{4^{2 n}}\binom{2 n}{n}^{2}, \tag{16}
\end{align*}
$$

and if $D=1$ it is also easy to find the nonzero probabilities for even ($r=2 x$) and odd ($\mathrm{r}=2 \mathrm{x}-1$) lattice points:

$$
\begin{align*}
P_{1}(2 x, 2 n) & =\frac{1}{2^{2 n}}\binom{2 n}{n+x}, \tag{17}\\
P_{1}(2 x-1,2 n+1) & =\frac{1}{2^{2 n+1}}\binom{2 n+1}{n+x} . \tag{18}
\end{align*}
$$

If D>2 and/or the pi's are not all equal, the P's have more complicated expressions, but there is a simple gaussian approximation (see, e.g. [5]), which is valid when $n p_{i} \gg x_{i}$:

$$
\begin{equation*}
P_{D}(r, n) \approx \frac{2}{(4 \pi n)^{D / 2}}\left[\prod_{i=1}^{D} p_{i}\right]^{-1 / 2} \exp \left\{-\frac{1}{2 n} \sum_{i=1}^{D} \frac{x_{i}^{2}}{2 p_{i}}\right\}, \tag{19}
\end{equation*}
$$

where it is understood that r and n have the same parity, and that $P_{D}(r, n)=0$ if

$$
\sum_{i}^{D} x_{i}>n .
$$

I remark here that for the 1-dimensional simple random walk there is an exact expression for the Green function in closed form [7]:

$$
\begin{equation*}
G_{1}(k, z)=\frac{1}{\sqrt{1-z^{2}}}\left[\frac{1}{z} \cdot \sqrt{\frac{1-z^{2}}{z^{2}}}\right]^{|k|} \tag{20}
\end{equation*}
$$

3. The dimensional recurrence formulas.

The single step probabilities are often chosen to be $p_{i}=\frac{1}{2 D}$: the resulting random-waik is "isotropic". Now let $\mathrm{p}_{\mathrm{i}}=\mathrm{p}$ for $\mathrm{i}=1, \ldots, \mathrm{D}-1$ and $\mathrm{p}_{\mathrm{D}}=\alpha \mathrm{p}$, then:

$$
\begin{equation*}
\mathrm{P}_{\mathrm{i}}=\frac{1}{2(\mathrm{D}-1+\alpha)} \quad \text { for } \mathrm{i}=1, \ldots, \mathrm{D}-1, \text { and } \quad \mathrm{P}_{\mathrm{D}}=\frac{\alpha}{2(\mathrm{D}-1+\alpha)}, \tag{21}
\end{equation*}
$$

(I assume the normalization condition $\sum_{i=1}^{D} p_{i}=\frac{1}{2}$ which means that the number of randow walkers is conserved) and when α changes from 1 to 0 , it interpolates continuously between the D-dimensional and the (D-1)-dimensional case.

Now denote with $P_{D}(\mathbf{r}, \mathbf{n} ; \alpha)$ the return probability computed from (12) with single step probabilities given by (21) (and therefore $P_{D}(r, n ; 1)=P_{D}(r, n)$, and $P_{D}(r, n ; 0)$ $\left.=P_{D-1}(r, n)\right)$, and let $\mathbf{r}=0, k \equiv k_{D}$, then

$$
\begin{equation*}
P_{D}(0,2 n ; \alpha)=\sum_{\sum_{i=1}^{D} k_{i}=n} \frac{(2 n)!}{\prod_{i=1}^{D}\left(k_{i}!\right)^{2}} \frac{\alpha^{2 k D}}{[2(D-1+\alpha)]^{2 n}} ; \tag{22}
\end{equation*}
$$

this can be rearranged to give

$$
\begin{gather*}
{[2(D-1+\alpha)]^{2 n} P_{D}(0,2 n ; \alpha)=\sum_{k=0}^{n} \frac{\alpha^{2 k}}{(k!)^{2}} \sum_{\sum_{i=1}^{D-1} k_{i}=n-k} \frac{(2 n)!}{\prod_{i=1}^{D-1}(k i!)^{2}}=} \\
=\sum_{k=0}^{n} \frac{\alpha^{2 k}}{(k!)^{2}} \frac{(2 n)!}{(2 n-2 k)!}[2(D-1)]^{2 n-2 k} P_{D-1}(0,2 n-2 k) . \tag{23}
\end{gather*}
$$

In particular, if $\alpha=1$,

$$
\begin{equation*}
[2 D]^{2 n} P_{D}(0,2 n)=\sum_{k=0}^{n} \frac{(2 n)!}{(2 n-2 k)!(k!)^{2}}[2(D-1)]^{2 n-2 k} P_{D-1}(0,2 n-2 k) . \tag{24}
\end{equation*}
$$

Denote with $G_{D}(\mathbf{r}, z ; \alpha)$ the Green's function for the lattice defined by the single-step probabilities (21) (so that $G_{D}(r, z ; 1)=G_{D}(r, z)$, and $G_{D}(r, z ; 0)=G_{D-1}(r, z)$): if one multiplies (23) times $z^{2 n}$ and sums over n one obtains
$G_{D}(0,2(D-1+\alpha) z ; \alpha)=$

$$
\begin{align*}
& =\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{\alpha^{2 k}}{(k!)^{2}} \frac{(2 n)!}{(2 n-2 k)!}[2(D-1)]^{2 n-2 k} P_{D-1}(0,2 n-2 k) z^{2 n}= \\
& =\sum_{k=0}^{\infty} \frac{\alpha^{2 k}}{(k!)^{2}} \sum_{n=k}^{\infty} \frac{(2 n)!}{(2 n-2 k)!}[2(D-1)]^{2 n-2 k} P_{D-1}(0,2 n-2 k) z^{2 n} \tag{25}
\end{align*}
$$

Since

$$
\begin{equation*}
\frac{(2 n)!}{(2 n-2 k)!} z^{2 n}=z^{2 k} \frac{d^{2 k}}{d z^{2 k}}\left(z^{2 n}\right) \tag{26}
\end{equation*}
$$

(25) becomes:

$$
\begin{align*}
& G_{D}(0,2(D-1+\alpha) z ; \alpha)= \\
& \quad=\sum_{k=0}^{\infty} \frac{\alpha^{2 k}}{(k!)^{2}} z^{2 k} \frac{d^{2 k}}{d z^{2 k}}\left[z^{2 k} \sum_{n=k}^{\infty}[2(D-1)]^{2 n-2 k} P_{D-1}(0,2 n-2 k) z^{2 n-2 k}\right]= \\
& \quad=\sum_{k=0}^{\infty} \frac{(\alpha z)^{2 k}}{(k!)^{2}} \frac{d^{2 k}}{d z^{2 k}}\left[z^{2 k} G_{D-1}(0,2(D-1) z)\right] \tag{27}
\end{align*}
$$

and, once again, if $\alpha=1$,

$$
\begin{equation*}
G_{D}(0,2 D z)=\sum_{k=0}^{\infty} \frac{z^{2 k}}{(k!)^{2}} \frac{d^{2 k}}{d z^{2 k}}\left[z^{2 k} G_{D-1}(0,2(D-1) z)\right] \tag{28}
\end{equation*}
$$

If $\mathbf{r} \neq \mathbf{0}$ one obtains, by similar manipulations, the following results:
a. if r is even (i.e. $\sum_{i=1}^{D} x_{i}=2 L$) then

$$
\begin{align*}
& {[2(D-1+\alpha)]^{2 n} P_{D}(r, 2 n ; \alpha)=} \\
& \quad=\sum_{k=x}^{n-L+x} \frac{\alpha^{2 k-x}}{k!(k-x)!} \frac{(2 n)!}{(2 n-2 k+x)!}[2(D-1)]^{2 n-2 k+x} P_{D-1}\left(r^{\prime}, 2 n-2 k+x\right) ; \tag{29}
\end{align*}
$$

and
b. if r is odd (i.e. $\sum_{i=1}^{D} x_{i}=2 L-1$) then

$$
[2(D-1+\alpha)]^{2 n+1} P_{D}(r, 2 n+1 ; \alpha)=
$$

$$
\begin{equation*}
=\sum_{k=x}^{n-L+x+1} \frac{\alpha^{2 k-x}}{k!(k-x)!} \frac{(2 n+1)!}{(2 n+1-2 k+x)!}[2(D-1)]^{2 n+1-2 k+x} P_{D-1}\left(r^{\prime}, 2 n+1-2 k+x\right), \tag{30}
\end{equation*}
$$

where $r=\left(x_{1}, \ldots, x_{D}\right)$ is a D-dimensional lattice vector as before, $r^{\prime}=$ $\left(x_{1}, \ldots, x_{D-1}\right)$ is a ($\mathrm{D}-1$)-dimensional lattice vector, and $x \equiv\left|x_{D}\right|$. The Green's functions are related by the formula

$$
\begin{equation*}
G_{D}(r, 2(D-1+\alpha) z ; \alpha)=\sum_{k=x}^{\infty} \frac{(\alpha z)^{2 k-x}}{k!(k-x)!} \frac{d^{2 k-x}}{d z^{2 k-x}}\left[z^{2 k-x} G_{D-1}\left(r^{\prime}, 2(D-1) z\right)\right], \tag{31}
\end{equation*}
$$

which generalizes (27) and, if $\alpha=1$,

$$
\begin{equation*}
G_{D}(r, 2 D z)=\sum_{k=x}^{\infty} \frac{z^{2 k-x}}{k!(k-x)!} \frac{d^{2 k-x}}{d z^{2 k-x}}\left[z^{2 k-x} G_{D-1}\left(r^{\prime}, 2(D-1) z\right)\right], \tag{32}
\end{equation*}
$$

which generalizes (28).

4. An application to the average number of distinct sites visited by a random walker.

The average number of distinct lattice sites visited by a random walker is an important statistics, relevant to trapping problems (see e.g. [5] and [8]): if S_{n} denotes the number of distict sites visited after n steps on a lattice without traps, and if c denotes the concentration of traps, then it is easy to see that the probability that the random walker survives trapping after n steps is (with the assumptions that traps are perfect absorbers and that the origin may also be a trap):

$$
\begin{equation*}
f_{n}=\left\langle(1-c)^{S_{n}}\right\rangle \tag{33}
\end{equation*}
$$

where the average is over all walks of n steps on the lattice without traps, and over all trap configurations. The calculation of these survival probabilities is a difficult mathematical problem which has attracted the attention of many researchers [8,9]; however it has been argued [8] that for very small concentrations the Rosenstock approximation

$$
\begin{equation*}
f_{n} \approx(1-c)^{<S_{n}>} \tag{34}
\end{equation*}
$$

is a sufficiently good approximation of (33), and therefore one may turn to the $<\mathrm{S}_{n}>$'s to estimate the survival probabilities.

Montroll and Weiss [10] showed that the generating function of the $\left\langle S_{n}>\right.$'s is related to the Green's function:

$$
\begin{equation*}
S_{D}(z)=\sum_{n=0}^{\infty}\left\langle S_{n}\right\rangle z^{n}=\frac{1}{(1-z)^{2} G_{D}(0, z)} \tag{35}
\end{equation*}
$$

then, using (20):

$$
\begin{align*}
S_{1}(z)= & \frac{1}{1-z} \sqrt{\frac{1+z}{1-z}}=1+2 z+\frac{5}{2} z^{2}+3 z^{3}+\frac{27}{8} z^{4}+\frac{15}{4} z^{5}+\ldots= \\
& =1+2 z+2.5 z^{2}+3 z^{3}+3.375 z^{4}+3.75 z^{5}+\ldots \tag{36}
\end{align*}
$$

Now, if one takes a simple random walk on a 2-dimensional lattice with single step probabilities

$$
\begin{equation*}
p_{x}=\frac{1}{2(1+\alpha)}, \quad \text { and } \quad p_{y}=\frac{\alpha}{2(1+\alpha)} \tag{37}
\end{equation*}
$$

one can use (27) to find an approximation for the Green function:

$$
\begin{equation*}
G_{2}(0, z ; \alpha)=\frac{1}{\sqrt{1-z^{2}}}-\frac{z^{2}}{\left(1-z^{2}\right)^{3 / 2}} \alpha+\frac{z^{2}\left(8+z^{2}\right)}{4\left(1-z^{2}\right)^{5 / 2}} \alpha^{2}-\frac{z^{2}\left(12+12 z^{2}+z^{4}\right)}{4\left(1-z^{2}\right)^{7 / 2}} \alpha^{3}+\ldots \tag{38}
\end{equation*}
$$

and then, from (35), after some tedious algebra, one obtains the generating function of the $\left\langle S_{n}\right\rangle$'s for an anisotropic 2-dimensional walk:

$$
\begin{equation*}
S_{2}(z ; \alpha)=\frac{1}{1-z} \sqrt{\frac{1+z}{1-z}}+\frac{z^{2}}{(1-z)^{2} \sqrt{1-z^{2}}} \alpha+\frac{z^{2}\left(3 z^{2}-8\right)}{4(1-z)^{2}\left(1-z^{2}\right)^{3 / 2}} \alpha^{2}+\ldots \tag{39}
\end{equation*}
$$

I have expanded $\mathrm{S}_{2}(\mathrm{z} ; \alpha)$, and the results of the expansion are compared in the figure with data from a Montecarlo program for 2 -dimensional simple random-walks with α $=0.05$. The figure can be better understood recalling a Tauberian theorem ([11] and [5]) which relates the large n behaviour of the $\left\langle S_{n}>\right.$'s to the divergence near $z=1$:
(39) shows that higher correction terms have an increasingly divergent behaviour near $\mathrm{z}=1$, so that higher order corrections become more and more important for large n's.

Figure: The average number of distinct sites visited by simple random-walks on 2 dimensional anisotropic lattices (with $\alpha=0.05$, see text) vs. the step number n. The data points have been joined with straight segments for greater clarity: the solid curve joins the data points obtained from a Montecarlo simulation (10^{5} random-walks have been generated), the dashed curve below the Montecarlo data shows $<S_{n}>$ for the 1dimensional simple random-walk, while the upper curves are obtained from (39), retaining terms respectively up to first order in α (dashed-dotted curve), to second order (short dashes) and to third order (dots).

5. Conclusions.

I have shown recurrence formulas for the probabilities $P_{D}(r, n)$ and the lattice Green's functions $G_{D}(r, z)$: the concept of dimensional recurrence for cubic lattices is
a natural one, and in the past other authors have proven similar formulas which display recurrence in integral forms (see e.g. [7] and [12]). However, I think that the present approach has two merits: the first is that it yields useful approximations for anisotropic lattices (as shown in section 4). The other is that it points to a rather direct way of obtaining the Green's functions from microscopic bases. While integral methods (like those presented in $[12,13]$) have given a deep understanding of the boson propagators (10) at least for some lattices, they have not had the same success with propagators of fermionic fields on lattices [14]; on the other hand random-walk Montecarlo methods have been successfully used to compute propagators for lattice QCD [3,4,14], and one may hope to formalize these results and obtain analytical information from combinatorial approaches similar to the present one.

I wish to end this Letter with a remark on the structure of the recurrence formulas: for large n's $\mathrm{P}_{\mathrm{D}}(\mathrm{r}, \mathrm{n})$ is well approximated by the gaussian distribution (19): if the single-step probabilities are as in (20), this gaussian is "compressed" along the Dth axis and has a disk-like shape. Consider now the assignment $p_{i}=\alpha^{\prime} p$ for $\mathrm{i}=1, \ldots, \mathrm{D}-1$ and $p_{D}=p$, then:

$$
\begin{equation*}
\mathrm{p}_{\mathrm{i}}=\frac{\alpha^{\prime}}{2\left(1+(\mathrm{D}-1) \alpha^{\prime}\right)} \quad \text { for } \mathrm{i}=1, \ldots, \mathrm{D}-1 \text {, and } \quad \mathrm{p}_{\mathrm{D}}=\frac{1}{2\left(1+(\mathrm{D}-1) \alpha^{\prime}\right)} \text {, } \tag{40}
\end{equation*}
$$

and one can find recurrence formulas just as before. However it is not necessary to work them out explicitly, because the substitution $\alpha^{\prime} \rightarrow \frac{1}{\alpha}$ changes (32) into (20), and therefore the recurrence formula for Green's functions becomes:
$G^{\prime}{ }^{\prime}\left(r, 2\left(1+(D-1) \alpha^{\prime}\right) z ; \alpha^{\prime}\right)=G_{D}(r, 2(D-1+\alpha) z ; \alpha)=$

$$
\begin{align*}
& =\sum_{k=x}^{\infty} \frac{(\alpha z)^{2 k-x}}{k!(k-x)!} \frac{d^{2 k-x}}{d z^{2 k-x}}\left[z^{2 k-x} G_{D-1}\left(r^{\prime}, 2(D-1) z\right)\right] \\
& =\sum_{k=x}^{\infty} \frac{(z / \alpha)^{2 k-x}}{k!(k-x)!} \frac{d^{2 k-x}}{d z^{2 k-x}}\left[z^{2 k-x} G_{D-1}\left(r^{\prime}, 2(D-1) z\right)\right] \tag{41}
\end{align*}
$$

where G_{D}^{\prime} is the Green's function defined by (32) and G_{D} is defined as in (30). Now $\alpha^{\prime}=1$ gives $G_{D}(r, 2 D z)$, while $G_{D}^{\prime}\left(r, 2\left(1+(D-1) \alpha^{\prime}\right) z ; \alpha^{\prime}\right)=G_{1}(x, 2 z)$ if $\alpha^{\prime}=0$. The gaussian (19) is now "elongated" along the D-th axis and if $\alpha^{\prime} \rightarrow 0$ it represents an "almost" one-dimensional diffusion process. The latter limit is important in some lattice formulations of gauge theories where space is "latticized" while time is "continuous" [14].
[1] F.J.Dyson: "General Theory of Spin-Wave Interactions", Physical Review 102 (1956) 1217-1244; and F.J.Dyson: "Thermodynamic Behavior of an Ideal Ferromagnet", Physical Review 102 (1956) 1230-1244
[2] A.A.Maradudin: "Some Effects of Point Defects on the Vibrations of Crystal Lattices", Reports on Progress in Physics 28 (1965) 331-380
[3] J.Kuti: "Stochastic Method for the Numerical Study of Lattice Fermions", Physical Review Letters 49 (1982) 183-186.
[4] I.Montvay: "The Sigma-Model with Wilson Lattice Fermions", Nuclear Physics B307 (1988) 389-416
[5] G.H.Weiss and R.J.Rubin: "Random Walks: Theory and Selected Applications", Advances in Chemical Physics 52 (1982), 363-505
[6] L.P.Kadanoff: "The application of renormalization group techniques to quarks and strings", Reviews of Modern Physics 49 (1977) 267-296
[7] W.A.Schwalm and M.K.Schwalm: "Extension Theory for Lattice Green Functions", Physical Review B37 (1988) 9524-9542
[8] J.W.Haus and K.W.Kehr: "Diffusion in Regular and Disordered Lattices", Physics Reports 150 (1987), 263-406
[9] see e.g.: W.Th.F.den Hollander: "Random Walks on Lattices with Randomly Distributed Traps I. The Average Number of Steps Until Trapping", Journal of Statistical Physics 37 (1984) 331-367
J.K.Anlauf: "Asymptotically Exact Solution of the One-Dimensional Trapping Problem", Physical Review Letters 52 (1984), 1845-1848, the deep meanings of the simple trapping model are also shown in Th.M.Nieuwenhuizen: "Trapping and Lifshiz Tails in Random Media, Self-Attracting Polymers, and the Number of Distinct Sites Visited: a Renormalized Instanton Approach in Three Dimensions.", Physical Review Letters 62 (1989), 357-360
[10] E.W.Montroll and G.H.Weiss: "Random Walks on Lattices II", Journal of Mathematical Physics $\underline{6}$ (1965), 167-181
[11] W.Feller: "An Introduction to Probability Theory and Its Applications", Volume II, 2nd edition, Wiley (New York, 1971)
[12] T.Morita and T.Horiguchi: "Analytic Properties of the Lattice Green Function", Journal of Physics A5 (1972) 67-77
[13] G.S.Joyce: "Lattice Green's Function for the Simple Cubic Lattice", Journal of Physics A5 (1972), L65-68
[14] J.B.Kogut: "An Introduction to Lattice Gauge Theory and Spin Systems", Reviews of Modern Physics 51 (1979) 659-713

