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ABSTRACT
The low transport current in granular High T, superconductors is undoubtely
attributed to the presence of weak links between grains. Magnetization and
critical current measurements at very low field indicates that this low transport
current behaves as expected from a critical state model.
In this paper we show that a simple linear model of the granular system, based
on an array of Josephson Junctions and holes, can explain the existence of the

critical state regime and shows dynamical effects, which have consequences even
at low frequency, allowing for instance to explain the flux flow resistance of these
materials.

1. Introduction.

Most of the High T. superconductors are easily prepared in the form of
granular aggregates by a sintering process. In such systems the grains have good
superconducting properties and below some low critical field H.; present a com-
plete Meissner effect. The surface of separation between the grains is the weak
point for the transport current, showing a critical current orders of magnitude
lower than the grains. Anyway the material as a whole still shows superconduct-
ing properties. The junctions between the grains are superconducting weak links
and show Josephson character, as nicely demonstrated in [1]. Even in the mate-



rials with high density a number of voids is left between the grains and we must

consider these holes as an important part in studiing the low field behaviour of
these materials. To enphasize this aspect we prefer to model the system as an
array of SQUIDs, rather than a network of junctions [2].

The system is truly tridimensional and with a very high disorder. We expect
that in such a complex network nor the current can follow a regular straight path
nor the field can be described by a twodimensional map.

However in this paper we use a simple, onedimensional and regular model
to show the possibility to describe such a system by a macroscopic critical state
model, and to analize also the dynamic of the flux inside the material.

A further simplification is also introduced, by treating the junctions as point-
like, and so we can only obtain a macroscopic behaviour equivalent to the Bean
model [3]. The effect of finite junction length in the same system has been treated
in [4].

A linear array of Josephson junctions has been studied by Yamashita et al.

[5] by means of a mechanical analog. Pinning has been detected but the critical
state has not been searched. Networks of junctions in two dimensions have been
studied by many authors [6,7], but all of them have neglected the effect of the
self field and by this choice they where not able to obtain information about the
existence of a critical state in the system.

Our linear model describes a real system called quantum flux shuttle which
has been studied to develop shift registers in Josephson computers [8]. For these
devices it is necessary to work with well separated non interacting fluxons and a
piling up of fluxons as in a critical state regime must be avoided.

2. The one dimensional SQUID array.

A linear array of SQUIDs will describe two ideal superconducting electrodes
connected at discrete points by Josephson Junctions, which we consider in the
following pointlike. A finite area remains in between two adjacent junctions and
the two electrodes and the whole system can be seen as a multihole SQUID.

This linear array of josephson junctions separated by voids is described by
the discrete sine-Gordon equation, to which we must add a dissipative term:

. ) 0
Prt1 =2 P+ Pnot = Voo + B - sin(pn) + 7o (1)
ot ot
The phase ¢, is the phase difference between the two superconducting electrodes
at the junction n and its increment between adjacent junctions is proportional to
the magnetic flux in the hole. The coefficients v , 8 and 7 are given by:

T = Ho C Shote (20.)
5 - LSl o
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where C' and R are the junction capacitance and shunt resistance and I, is the
maximum Josephson current; Spole is the hole area and pg Shote is equivalent to
the self inductance of the loop encircling the hole. Both I,,, C, R and L are
calculated per unit length along the field direction.

Considering granular YBCO we can assume a grain size of 10 um, hole areas
ranging from Shote = 3 X 3pm? to 1 x 1uym?, and J, = = 2004/cm? at 77 K to
15K A/cm? at 4.2 K giving I,, = 20 <+ 15004/m. We obtain a resistance R =
10~°Q/m , starting from a typical re51st1v1ty of 1mQcm. The capacitance C is
about 1. 1078 F for an oxide barrier 50 A thick, but can be orders of magnitude
lower for S-N-S junctions.

In the static case the equation reduces to:
Pnt1 — 2 Pn+Pn_1 =B sin(p,) (3)

The solution of this equation resemble closely the analogous case of an uniform
junction, but the discretness in space is the cause of pinning and will allow the
system to stay in a critical state.

As in the continuous case ( see Owens and Scalapino [9] ) we can find a group
of solutions with zero internal field. These consists of a regular array of fluxon -
antifluxon pairs. We can label these solution by their period N and by the number
M of ® — @ pairs contained in this period. Of course the period cannot be smaller
than N =2 with M =1.

The solutions with nonzero ( positive ) internal field are given by a regular
array of fluxons.

In this case the average internal field is given by f = M/N where N is the
period of the solution and M the number of fluxons in this period.

These two classes of solutions resemble closely the ﬁeld profiles found in the
case of a continuous junction if the field is low ( f < 3 ) and 8 < 27 . The

half width of a fluxon is given by Asrray = 8~ 7 at low Bs but it should tend
asymptotically toward ~ .25 even for 8 — oo because at high 3s a flux quantum
will be contained in a single hole ( for fluxons centered on the hole itself ). If the
fluxon is centered on a junction it will be shared between two holes and its half
width will tend to .5 . This dependence of Agprey on B is shown in figure 1.

Moreover, the solutlon w1th f # 0 will degenerate at f = — in a constant
field profile ( hp, = 3 ). For —3 < f < 0 the field is given by the negatlve of the
previously found solutlon The field profiles at any f can be obtained from those
at —— <f<1i 2 by summing an integer K to the solutions previously found .

hf=hi"K 1K (4)

The phase can be obtained by adding a linear term K - n to the restricted zone
solution while the current is periodic in field ( I{ = I;~¥ ). Even the zero field
solution can be extended including solutions with K fluxons per hole plus an array
of fluxon - antifluxon pairs.



3. Flux pinning.

While in an homogeneous infinite junction a static fluxon can stay in equi-
librium at every z, the discrete array has preferred sites ( the holes ) in which the
fluxon will be in stable equilibrium.

The energy density of an array of junctions and holes consists of two terms:
a magnetic one e,, due to the magnetic field in the hole and e; coming from the
current flowing in the junction. The total energy density ( in reduced units ) is
given by:

(‘Pn — ‘)on—l)2

e=en+ey= T+ﬂ-(1—cos((pn)) (5)

The reduced energy of an insulated fluxon is obtained by integrating in space this
energy density.

The fluxon energy has a minimum when the fluxon is centered in an hole
and a maximum when it is centered on a junction. The energy difference between
these two cases is the energy barrier the fluxon has to overcame to jump from one
hole to the next one.

The value of this barrier energy has been calculated as a function of 8 and
its behaviour is shown in Fig. 2.

The barrier energy decreases steeply when 3 decreases below ~ 2.. We will
see later thath also the critical current decreases strongly at about the same value.

The B values for granular YBCO with the standard parameters given before,
ranges from 8,,;, ~ .08 to Baga. ~ 50.

The pinning energy can be obtained from the reduced energy equation 5 by:

Lgrain Qo ?

AE = () ‘Ae=a-Ae (6)
Ko * Shole 2p0

In a typical granular sample with holes of area 4.107'2m? and a grain size of 10.um

the costant a is 2.1071? joules.

Comparing the barrier energy with the termal energy KT we can see that at
77. K the termal energy overcomes the pinning energy at 8 ~ 1. while at 4.2 K
the same crossing happens at 8 ~ .5.

The energy barrier has been calculated for an insulated fluxon at zero internal
field and zero field gradient. This energy is Uy(0), the pinning energy at zero field.

Unfortunaly we cannot calculate exactly this same energy if f # 0 and/or a
field gradient exists.

When an internal field and a field gradient exist, it is quite difficult to asso-
ciate an energy barrier to the movement of a single fluxon, or to find the pinning
force acting on it. In fact the whole flux distribution is correlated and many dif-
ferent flux distributions can share almost equal local field and field gradient but
have different stability with respect to a fluxon displacement.



4. Critical state.

The search for a critical state regime consists in finding the solutions of
our equation with the maximum magnetic field gradient. The solution cannot be
obtained by treating a single fluxon, because the pinning strenght depends on field
in a periodic way and we must calculate the field gradient over one field period.
The same conditions are reproduced every time one more fluxon is present in every
cell of the array.

To simplifie the writing we express from now on 8 and ¢ in units of 27 :

__ﬂ __ P
ﬂ—ﬂ ‘P—2,7r (7)

It is very simple to find a critical state profile when B has an integer value.
If 8 = K the phase @, of the junction will be given by

_ n(n+1) 1
‘Pn—K' 9 +4 (8)

which gives an uniform critical current I.. =K.

If B > 1 we can find solutions with a critical current I, = Int(ﬁ) and a
phase given by

. Int!ﬂ-!
_ ., n(n+1) asin( 3)

but we must verifie if this critical current is the maximum one. Indeed in this case
any junction will carry an uniform current lower than its maximum.

When we have 8 < 1 it is not possible to have an homogeneous current in
the array. However we want to show that a critical state regime still exists.

We must first of all define the critical current itself by deciding over which
length we must average the local current and the choice can be that to consider a
field period. Indeed we can find a state with a field gradient in the array with the
following characteristics:

1) The current in the junctions is periodic in space with a period Ty and with

as an average value given by a rational number (I) = M/N.

2) Thefield has alinear gradient plus a periodic correction with the same period.
3) The phase is quadratic in space plus a periodic correction.

To obtain these solutions we can split the reduced phase in a quadratic term
¢, and a periodic one §¢p,,.

The quadratic term can be written as:

s n(M-n+M-N+2-.L)

= 1
2 TN (10)

The phase correction 8y, can be obtained from the Sine Gordon equation with
periodic boundary conditions. The period Ty is equal to N. We obtain the
following equation where the coefficient a, and b, are both periodic.



§pnt1 — 2605 + bpn_1 =8 - (an - cos(2m8pn) + by - sin(2wbpy)) — M/N (11)

with

an = sin(2myy},) and bn = cos(2mpy,) (12)
dpn being periodic, the average over one period of the current in the array doc?s
not depend on the solution found and can be obtained simply from the quadratic
term ¢,,.

By changing the parameter L in the sequence @, we can shift the field profile
in space. The profile will shift of one complete cell if L changes by M. By a
proper choice of L we can find sequences af a,, and b,, which are both periodic and
symmetrical. If the solution of equation 11 is symmetrical too we get a symmetrical
current distribution and an antisymmetrical field profile.

Depending on N and M the symmetry point can be an hole or a junction.
In the former case the field at this hole will be a multiple of M while in the latter
the holes adjacent to the central junction will have fields above and below M by
an equal amount. A second simmetry point is found at the center of the sequence
( again on a junction or on an hole ).

The search for the critical state solution requires to find the maximum av-
erage current in the array as a function of 8. The same result can be obtained
by looking for the minimum f value which allows solutions of equation 11 at any
rational value of J. ( = (I)_ ).

The numerical procedure consists in solving the system of trascendal equa-
tions given by equation 11 for n = 0 + N — 1 with the constraints

bp_1=bpN_1 and SN = by (13)

For any J. and any # we can find more than one solution of the system of equations.
Starting from high B values we can find numerically some of this solutions and
then we reduce gradually the 8 using the previously found solutions as a starting
point for the new case to help convergence. At some intermediate points more and
more solutions does not converge anymore and we are left with two solutions wich
at Bmin coincide. Moreover we note that at Bmin the solutions are symmetrical.

This solutions has been found for a number of J. ranging from 1/36 to 8/9
and J, vs f is shown in fig. 3.

Even a few solutions with J. > 1 and # > 1 are shown in the same figure.

The main result of such a calculation is that we could not find a regular curve
to describe the critical current versus 8 behaviour. This is due to the difficulty
to accomodate an integer number of fluxon in a finite number of holes. However
we can show that the current density is almost everywhere lower than B? save at
B = M and at some special points (ie Jc=1/2,1/3,2/3).

The morfology of the field profile is complex and we can find a regular trend
only in same regions. In figure 4 and 5 we show the field profiles at f,,;, and
Je =1/N. In figure 4 a and 4 b we observe that the field gradient has a minimum
near to the symmetry point where the flux is an integer multiple of ®, and in
particular at low J.s we see individual fluxons gathered around &, /2. In figure
5 we show the field profiles with J. near 1. We can observe in the curves having
higher J. that the current is near its maximum in almost all the junctions.



5. The build-up and the evolution of the critical state

The previous solutions will not solve the real problem of a finite sample
with arbitrary boundary conditions. The periodic solutions can assume only a
finite number of values at the sample ends. Moreover in a sample with externally
applied field we expect a reversal of the current in the sample center and even in
a sample with transport current alone we must find solutions with J = J, and
J = 0. in different places.

We want to show that the critical state is attained for any cycle of field
and current, that regions with no current and with positive and negative current
density can coexist and that the critical current density will assume the maximum
value which has been previously calculated.

To get this result we must solve the system of time dependent equations
given in formula 1 with boundary conditions for the external field at the sample
sides ( By = By = B,,, for magnetization or By = —By =1 /N for simulation of
transport current ).

Bez¢ or I will depend on time and the evolution of the field profile can be
obtained, together with the total internal field ( magnetization case ) or the voltage
on the sample ( transport current case ).

We rewrite here the system of equation 1 with the phase normalized to 2,
B = B/(27) and the time normalized to a characteristic time given by

To =7 (14a)

The coeflicient of the dissipative term becomes

7 =n/vy (145)
The resulting equation is:

9?p = . _ _
Pnt1 —2- Pn + Pn—1 = a::n +,3 g 37""'(2 7l"Pn) +7

8pn

or (15)

The time evolution of the internal field has a time scale which is given by 74 and
the parameters governing this evolution are the hysteresis parameter 3 and the
damping constant .

In a HTSC material with standard grain size, density and junctions properties
we can assume ay = 1072¢+2.102 and a damping parameter 5 = 10~13 + 1012,
So the time scale is 79 = 10713 +4-.1071% and the reduced damping factor 77 ranges
from 10. to 30.

If the external field ( or current ) variation is very slow compared with 1y we
get a quasi static solution which will consist of a sequence of stable field profiles
and sudden transitions in between. This behaviour is obtained only in the case of
damping factor 77 > .

We solved equation 15 for a number of S values ranging from .35 to 2. with
the boundary conditions describing a transport current. The results correspond
exactly to a critical state solution and we can get the critical current density in
the sample. These data are shown in figure 6.



The J, vs B curve is almost identical to that presented in figure 3 and obtained
from periodic solutions in an infinite sample.

In figure 7 we show a number of field profiles for different B and in figure
8 some profiles at different times during a magnetization cycle obtained by the
numerical simulation. It is clear that the field profiles are almost identical to
the corresponding ones of the periodic case, even if in the present case the field
gradient is coexisting with zones at zero field or with an opposite gradient. So the
Bean model of the critical state is followed very well by our system.

In the case of system simulating a sample with transport current we can
obtain the electric field along the sample (‘or the electric potential ) by:

90
v=— (16)
This potential shows a sequence of spikes in correspondence with the entrance of
a new flux quantum in the sample. The time width of such spikes is of the order
of 4.
When simulating magnetization a similar phenomenon is observed. The in-
ternal flux, which is obtained from:

®; _ _
5 = PN — @0 (17)
0

follows the standard curve expected from the Bean model, but the separated en-
trance of any fluxon is seen as steps of one flux quantum.

The damping parameter causes even larger effects on the overall behaviour
at larger times. We can observe that equation 15 is a nonlinear discrete wave
equation with a damping term. When 7 is large and the time variation is slow
we can neglect the ¢,, term such that the remaining equation acquires the form
of a diffusion equation. On the contrary for low 7 values the wave character of
the equation predominates. This last situation is unlikely in real samples with the
physical parameters given before.

In the case of high damping the flux enters or escape from the sample with
some delay and the profile reachs only asimptotically the linear profile of the static
solution. From our numerical simulation we obtain that only if the field applied
to the sample changes with a rate lower than

aBezt
ot

= Shote o ngz (18)

the field evolution is quasi-static. Significant transient effects can be seen only at
microwave frequencies.

This empirical formula can be explained by the fact that a fluxon will move
in the array traveling a cell length in a time 7 and the increase of the flux on the
side of the sample by a flux quantum corresponds to the entrance of N, fluxons



which must travel IV,/2 cells to reach an equilibrium point. N, is the number of
cells which are reached by the magnetic field ( penetration depth ).

The change of the hysteresis cycle due to different damping factors at very
high frequency is shown in figure 9.

7. Flux flow

When a superconducting sample with a finite critical current density and
which follows the critical state model is completely penetrated by the transport
current it will develop a finite voltage even in steady state conditions because of
the flux flow phenomenon.

Indeed the current density in the sample will be anywhere equal to the critical
current density and no static solution can be found for a total current greater than
I. = J. - w where w is the sample width.

In our model of a linear SQUID array we must observe that the current
density in the array is equal to the critical one obtained by equation 11 even if
current has not fully penetrated the sample. When the critical current is reached
the periodic solutions we have found will extend over the whole array. To look
for a current higher than the critical means to search at a fixed B a solution with
Je higher than that shown in figure 3, which is of course impossible. But time
dependent solutions of equation 1 are possible even for J > J..

These solutions are composed by a phase component increasing linearly in
time, which will be seen as a finite voltage over the sample and in a movement of
fluxons traveling from one to the other side of the sample itself.

The sample potential increases linearly for I > I. with a dynamic flux flow
resistance equal to R. At the same time the flow velocity of the fluxons increases.
This nonlinear resistive curve is shown in figure 10. The noise in the curves is due
to a non complete filtering of the spikes due to the fluxon entrance.

6. Conclusions

In this paper we have shown that the transport current and the magnetic
field behaviour of a granular superconducting system can be described by a critical
state model and that this model will derive directly from an elementary description
of the system as an array of Josephson Junctions separated by holes. To obtain
such a result we had not to include any distribution of the junctions or holes
properties.

The overall critical current density depends on the critical current current
of the Josephson Junctions forming the array, but is lower than it, save at some
special points, and show a complex behaviour which has been related to a coherent
pinning of the fluxons. Such a structure can be easily averaged by a statistical
distribution of the cell parameters.
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We considered not only static effects, but even the dynamic behaviour of the
system. A damping coefficient has been introduced, which at high frequencies can
give additional losses beyond the hysteretic ones. A critical rate of field change
for quasi-static behaviour has been also suggested.

The simulation of a sample carrying a transport current brings to the devel-
opment of a flux flow resistance at currents higher than the critical one.

References

1. P. Chaudhari, J. Mannhart, D. Dimos, C. C. Tsuei, J. Chi, M. M. Oprysko
and M. Scheurmann, Phys. Rev. Lett. 60 ( 1988 ) 1653

2. V. Calzona, M.R. Cimberle, C. Ferdeghini, F. Pupella, M. Putti, C. Rizzuto,
A. Siri and R. Vaccarone, Cryogenics 30 ( 1990 ) 569

3. C. P. Bean, Rev. Mod. Phys. 36 ( 1964 ) 31

4. R. Vaccarone, Proc. Jrd National Meeting on High Temperature Supercon-
ductivity, Feb. 12-14, 1990, Genoa, Italy, p. 346

5. T. Yamashita and L. Rinderer, J. Low Temp. Phys. 21 ( 1975 ) 153

. A. Giannelli and C. Giovannella, Proc. §rd National Meeting on High Tem-

perature Superconductivity, Feb. 12-14, 1990, Genoa, Italy, p. 358

7. C. J. Lobb, D. W. Abraham and M. Tinkham, Phys. Rev. B 27 (1983) 150

8. T. A. Fulton,R. C. Dynes and P. W. Anderson, Proc. IEEE 61, ( 1973 ),28

9. C. S. Owen and D. J. Scalapino, Phys. Rev. 164 (1967) 538

(=]



11

3.2

2.4

AGI’I’QY
»

1.6
l

(1t 1 I | I S | | L1 1 1 I | Y W | l | N

0 08 16 24 32 4
1/vV6

FIGURE 1.

The dependence of the penetration depth in an array of SQUIDs ), ., on
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junction (' A.; ) are given.

N
o
o | ‘ Sant
o~ i
v O
< - .
0 ,
oI .
(@) i “
<t -.
o
o N *
1-7‘|l||lll'llllllllIIIIII
O
0 0.5 1 1.5 2 2.5
B/
FIGURE 2.

The reduced barrier energy of an insulated fluxon Ae versus 8 /2.
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The critical current of an array of SQUIDs as a function of 4. The line
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FIGURE 4.
The field profiles in the array at rational values of the critical current density:
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Two examples of flux flow resistance at different 7.



