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Abstract 
The convex hull of any subset of vertices of an n-dimensional hypercube contains 

no other vertex of the hypercube. This result permits the application of some theorems 
of n-dimensional geometry to digital feedforward neural networks. Also, the 
construction of the convex hull is proposed as an alternative to more traditional 
learning algorithms. 

1. Introduction 

Feed-forward neural networks are relatively simple [1] but nevertheless can 

calculate any boolean function of their inputs given a sufficiently high number of 

"hidden" neurons. 

In what follows we consider feed-forward networks with: 

• digital neurons (i.e. neurons may only take the values 0 or 1), 

one hidden layer, 

one output neuron, 

learning done by examples presentation. 

This kind of network is completely described by the network topology and by the set 

of weights (and threshold) of each neuron and has been extensively studied by Minsky 

and Papert [2] in the case of nets with no hidden layers. 

The states of the n input neurons may be taken to be the coordinates of vector in an 

n-dimensional space: in this case every possible configuration of the input neurons 



corresponds to a vertex of an n-dimensional hypercube of side 1. The set of 

"acceptable" input patterns is thus a subset of the family of hypercube vertices. 

The set of weights and the threshold associated to a given hidden-neuron define a 

hyperplane in this n-space: the hyperplane partitions space into two half-spaces, and 

the hidden-neuron outputs 1 if the input configuration is in the "positive" half-space 

and 0 otherwise (this labelling is obviously arbitrary). 

The typical learning problem is to synthesize a network that is capable of 

reproducing a given set of examples. The learning process thus yields a set of 

hyperplanes. Obviously one hyperplane will suffice if and only if the given sets are 

linearly separable: in this case the perceptron algorithm of Rosenblatt (8) will 

recursively adjust its only hyperplane position until separation is achieved. 

In the general case one does not even know how many hyperplanes will be needed 

(not to mention their position) and the search becomes combinatorially difficult. Th is 

is the source of the known problems of local minima in the back-propagation 

algorithm (1) where one tries to minimize the number of errors produced by a fixed 

number of hyperplanes by changing their orientation. 

The tiling algorithm proposed by Mezard and Nadal [3] addresses the problem of 

the unknown number of hyperplanes needed to separate the sets: it continues to add 

neurons (hyperplanes) in several layers until an exact solution is found (by "exact 

solution" one means a solution which acts properly on a subset of the - supposedly 

very large - set of "acceptable" input states: this means that the hyperplanes of the 

network select all the given examples but usually also other vertices of the 

hypercube) . These departures from the "exact" solution are (rather vaguely) 

associated to the process of "generalization" in learning because there is the hope that 

the hyperplanes perform the selection on the basis of some sensitive criteria and tha t 

the generalization will be meaningful: this is also one of the most fascinating features 

of the whole process. Nevertheless it is clear that this process is not controlled and 

that generalizing properties can be quite "surprising". Carnevali and Patarnello [6) 

addressed quantitatively the problem_ 

In what follows we show that one can construct a convex hull that contains all and 

only the wanted vertices. This convex hull is the "smallest" convex polytope that 

"contains" all the "acceptable" input patterns: this is - in a way - a desirable 

property , even if it yields no "generalization" at all. The theorem is simple and 

intuitive, but it allows us to use the large body of knowledge on convex polytopes to 

draw some other interesting conclusions. 
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2. Convexity and some of its consequences. 

We consider the set H of the 2n vertices of an n-dimensional hypercube and the 

subset {xs} 1 H of vertices that we want to select; we also define the complementary 

set {xc! = H - {xs}. 

Theorem: the convex hull of any subset {xs} of vertices of an n-dimensional 

hypercube contains no other vertices of the hypercube. 

The hypercube itself and a half-space are both convex sets. Each point Xc of the 

complementary set can be cut off the hypercube by intersecting it with a half-space I . 

Since the intersection of two convex sets is a convex set at each pass we produce a new 

convex se\. At the end of the process we are left with a convex set with no elements of 

the complementary set i.e. we have built a convex set S such that {xs} 1 Sand 

{xc! 9 S = 0. This proves that there is a convex set that contains all and only the 

initial vertices: but Conv{xs} the convex 

intersection of all the convex sets 

{xc! 9 Conv{xs} = 0 .• 

hull of {xs} is - by definition - the 

that contain {xs!. therefore 

For all its Simplicity, this theorem is not obvious : e.g. figure 12.3 at page 195 in 

the last edition of Minsky and Papert's famous book [2] (where the sets are shown to 

be non-convex) is somehow misleading. 

Corollary: the selected vertices {xs} are the extreme points of Conv{xs}. 

In fact if Xo E (xs). it can be cut off the convex hull by a half-space as in the 

previous proof, while leaving all the other points: then Xo cannot be a convex 

combination of the other points, therefore Xo is an extreme point2. Moreover if the 

lOne can take the vertices of the hypercube to be 0-1 vectors and take - without 
loss of generality - the origin (0,0, ... ,0) as the vector to be discarded. If we let 
Xl, ... , xn be the coordinates, then the half-space Xl +x2+ ... +xn ~ A­

(0 < A- ~ 1) selects all the other vertices of the hypercube while discarding the 
origin. 

2 Let x I, ... , x k be k n-dimensional vectors: then A I X I + ... + An X n with 
Al + ... + An = 1 and Ai ~ 0, is a convex combination of these vectors (see, e.g. 
[11]) . A convex combination of extreme points in a convex set spans the whole set. 
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convex hull had any other extreme point, it could likewise be cut off, yielding another, 

"smaller", convex set, against the hypothesis that the original set is the convex hull.. 

Since the convex hull is also the intersection of the half-spaces determined by its 

supporting hyperplanes, if we go back to neural networks we see immediately how to 

build a feedforward neural netwo rk with the property of selecting all and only the 

given examples. This network has just one hidden layer and each of its hidden neurons 

is associated to one of the supporting hyperplanes (facets) of the convex hull. The 

output layer performs the logical AND of all the neurons of the hidden layer. The output 

of this net is 1 if and only if all the hidden neurons of the layer output 1 i.e. if and only 

if the input state is in the convex hull defined by the examples. 3 

A relevant question concerns the number of facets (i.e. of hidden neurons) of the 

convex hull : a partial answer can be given using McMullen's Upper Bound Theorem on 

the maximum number of facets of a convex polytope ([7] and [11]). For a convex 

polytope with m points in n-dimensional space the theorem yields the asymptotic 

L r:!.J 
m 2 

estimate (when m » n » 1) -- for the maximum number of facets. 
L~J! 

One expects, in view of the high degree of symmetry of the hypercube, that the 

number of facets of the convex hull of a random subset of its vertices be substantially 

smaller than the upper bound quoted here ; still it can be used to make some estimates. 

It is reasonable to assume that in practice the number of hidden neurons never 

exceeds some power nk of the number n of input neurons, then the network has 

(if m »n» 1) 

hidden neurons and using logarithms and Sti rling's approximation for factorials 

3 The co mplementary network (i.e. that with opposite output function) can be 
easily built starting from the convex hull of the complement of our initial set. The two 
nets are logically equivalent and one can choose the one using the less hidden neurons 
(i.e. the convex hull with less faces) . . 
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and for n »1 this gives 
n 

m ~ 2e ~ 0.18 n for the minimum number of patterns 

that such a network can store. 

It is interesting to remark that some well-understood network models (compatible 

with the hypothesis (# of hidden neurons) ~ nk) can store no more than m ~ a n 

examples, with a ~ 0.2 (e.g. [9]) . 

As we mentioned in the introduction , simple perceptrons must deal with the linear 

separability of disjoint sets of "positive" and "negative" examples: as we have seen 

they can both be enclosed in their convex hulls. That the sets of examples are almost 

never linearly separable can be seen from a theorem of FOredi [10) who proved that 

the probability that the hypercube centre belongs to the interior of convex hull of a 
1 

random subset of m hypercube vertices in n-dimensional space is [1 . O(Tn)) when 

n »1 and m > 2n. 

When translated to our present context, this means that given any two sets of more 

than 2n examples, their convex hulls contain a common point with probability 

approaching 1 for large n, therefore the two sets are almost always linearly 

inseparable, i.e. a simple perceptron with n inputs has almost always . for 

sufficiently large example sets - a bad performance. 

3. Practical considerations. 

We have seen that constructing the convex hull "replaces learning", but how good 

is all this for practical purposes? To compute the convex hull of a set of m points in 

general position in n-dimensional space there are known, good, algorithms (see [4) 
n 

and [5)). One of them requires, in the worst cases, a time of the order O(m
L

2".i+ l) and a 

space of the same order of magnitude. This algorithm works in incremental mode: it 

starts by making the convex hull of two points and then it adds points and recalculates 

the updated convex hull. This structure seems to fit quite nicely with the needs of 

neural networks learning. 

The construction of the convex hull is a solution to the problem of learning: if one 

compares it to more traditional learning algorithms one notices that: 
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• it is free from problems of convergence; 

it adapts the size of the network to the problem and it does not get stuck into local 

minima; 

every example has to be given only once; 

• it generates an exact (in the sense described before) solution that is a clear, 

intuitive, geometrical figure of simple interpretation, though it is not 

necessarily the most "economical"; 

• it does not produce any unknown, random, generalization but given the simple 

geometrical structure of the solution it allows to add known , understandable, 

generalization properties . 

We remark that the "training time" for the convex hull algorithm is at worst of 
n 

L -J+l .. 
the order O(m 2 ): this IS an upper bound, but already better than the performance 

of many "biologically motivated" algorithms that scale like O( [c(n)]m ) (c(n) is some 

parameter which depends on the network architecture, see e.g. [12]) 

The worst-case behaviour derived from McMullen 's theorem also suggests a highly 

non-linear behaviour for the growth of the number of facets (i.e. hidden neurons). 

Even if that were mitigated by the hypercube symmetry it is reasonable to expect a 

polynomial law like am~ (with ~s L~J, a = a(n) ) for the (average) number of facets: 

this, in turn, suggests a way to devise a more "economical" network. If one splits the 

set of examples into k subsets of approximately ~ examples each, one can again 

recover all the examples by AND-ing for each of the resulting k convex sets and 

thereafter OR-ing the k results. In this way one constructs a network with two hidden 

layers that still performs the same task as the original network and has a total of 

approximately k+k a (~J neurons in the first and second hidden layers. By deriving 

with respect to k one finds that the minimum for the combined number of neurons in , 
the first and second layer is obtained for k = (a(~-1 ))~ m. If 

asymptotic behaviour from McMullen 's theorem (a = -'- ~ 
(~)' 

m m 
k = 2e = 5 .4 

n n 
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4. Conclusions. 

We have related the problems of feed-forward neural networks to the theory of n­

dimensional convex polytopes. We have considered a simple network architecture with 

n inputs and we have shown that it can store at least O.1Bn patterns: this bound -

derived from geometry - is remarkably similar to bounds in other network 

architectures. We have also shown that simple perceptrons are "almost always" 

inefficient. Finally, we have put forward what we believe to be a novel algorithm to 

build feed-forward networks. On the basis of general considerations, it appears to be a 

promising alternative to traditional learning algorithms. A forthcoming paper will 

report on practical results . 
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