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1. { Introduction

Since many years it has been known that localized (non-dispersive) solutions exist

to the (homogeneous) wave equation[1], endowed with subluminal or Superluminal[2]

velocities.

Particular attention has been paid to the localized Superluminal solutions, which seem

to propagate not only in vacuum but also in media with boundaries[3], like normal-sized

metallic waveguides[4] and possibly optical �bers.

It is well known that such Superluminal Localized Solutions (SLS) have been experi-

mentally produced in acoustics[5], in optics[6] and recently in microwave physics[7].

However, all the analytical SLSs considered till now and known to us, with one excep-

tion[8], are superposition of Bessel beams with a frequency spectrum starting with � = 0

and suitable for low frequency regions. In this paper we shall set forth a new class of

SLSs with a spectrum starting at any arbitrary frequency, and therefore well suited for

the construction also of high frequency (microwave, optical,...) pulses.

2. { \V -cone" variables: A generalized bidirectional expansion

Let us start from the axially symmetric solution (Bessel beam) to the wave equation

in cylindrical co-ordinates:

 (�; z; t) = J0(k�) e
+ikzz e�i!t (1)

with the conditions

k
2 =

!
2

c2
� k

2
z ; k

2 � 0 ; (2)

where J0 is the zeroth-order ordinary Bessel function, and where (as usual) kz is the

longitudinal component of the wavenumber while k � k? is the wavenumber transverse

component magnitude. The second condition (2) excludes the non-physical solutions.
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It is essential to stress right now that the dispersion relation (2), with positive (but

not constant, a priori) k2, while enforcing the consideration of the truly propagating

waves only (with exclusion of the evanescent ones), does allow for both subluminal and

Superluminal solutions!; the latter being the ones of interest here for us. Conditions (2)

correspond in the (!; kz) plane to con�ning ourselves to the sector shown in Fig.1; that

is, to the region delimited by the straight lines ! = �ckz.

A general, axially symmetric superposition of Bessel beams (with � as spectral weight-

function) will therefore be:

	(�; z; t) =

Z
1

0

dk

Z
1

0

d!

Z +!=c

�!=c

dkz  (�; z; t) �(k �

r
!2

c2
� k2z) �(k; kz; !) : (3)

Notice that it is k � 0; ! � 0 and �!=c � kz � +!=c. The question of the negative kz

values entering expansion (3) will soon be considered below.

The base functions  (�; z; t) can be however rewritten as

 (�; �; �) = J0(k�) exp i[�� � ��] ;

where (�; �), which will substitute in the following for the parameters (!; kz), are

� �
1

2V
(! + V kz) ; � �

1

2V
(! � V kz) ; (4)

in terms of the new \V -cone" variables:

�
� � z � V t

� � z + V t
(5)

The present procedure is a generalization of the so-called \bidirectional decomposi-

tion" technique[9], which was previously devised for V = c only.

The \V -cone" of Fig.2a corresponds in the (!; kz) plane to the sector limited by the

straight-lines !�V kz = 0, that is, by the lines � = 0 and � = 0 (Fig.2b); while conditions

(2) become [let us put c = 1 whenever convenient, throughout this paper]:

k
2 = V

2(�+ �)2 � (�� �)2 � (�2 + �
2)(V 2 � 1) + 2(V 2 + 1)�� ; k

2 � 0 (2')
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Inside the allowed region shown in Fig.1, we can choose for simplicity the sector delimited

by the straight-lines ! = �V kz shown in Fig.2b, provided that V � 1.

Let us observe that integrating over the ranges �; � � 0 corresponds in eq.(3) to

integrating over kz between �!=V and +!=V . But we shall choose in eq.(3) spectral

weights �(k; kz ; !), and therefore spectral weights �(k; �; �) in eq.(3') below, such as to

either eliminate or make negligible the contribution from the negative values of kz , that

is, from the backwards moving waves: thus curing from the start the problem met by

the \bidirectional decomposition" technique in connection with the so-called non-causal

components. Therefore, our SLSs will all be physical solutions.

Let us recall also that each Bessel beam is associated with an (\axicone") angle �,

linked to its speed by the relations[10]:

tan � =
p
V 2 � 1; sin � =

p
V 2 � 1

V
; cos � =

c

V
; (6)

where V ! c when � ! 0, while V !1 when �! �=2.

Therefore, instead of eq.(3) we shall consider the (more easily integrable) Bessel beam

superposition in the new variables [with V � 1]

	(�; �; �) =

Z
1

0

dk

Z
1

0

d�

Z
1

0

d� J0(k�) e
i�� e�i���

� �
�
k �

p
(�2 + �2)(V 2 � 1) + 2(V 2 + 1)��

�
�(k; �; �)

(3')

where the integrations over �; � between 0 and 1 just correspond to the dashed region

of Fig.2b.

Let us now go on to constructing new Superluminal Localized Solutions for arbitrary

frequencies, various of them possessing �nite total energy.

3. { Some new Superluminal Localized Solutions for arbitrary frequencies

and/or with �nite total energy
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3.1 { The classical \X-shaped solution" and its generalizations.

Let us start by choosing the spectrum [with a > 0]:

�(�; �) = �(� � �
0) e�a� ; (7)

a > 0 and �0 � 0 being constants (related to the transverse and longitudinal localization

of the pulse).

In the simple case when �
0 = 0, one completely dispenses with the \non-causal"

(backwards-moving) components of the bidirectional Fourier-type expansion (3'). For the

sake of clarity, let us go back to examining Fig.2b: The �(�) factor in spectrum (7) does

actually imply the integrations over � and � in eq.(3') to run along the �-line only; i.e.,

along the � = 0 straight-line (where ! = +V kz). In this case, even more than in the

others, it is easy to verify that the group-velocity� of the present solution [cf. eq.(8) below]

is @!=@kz = 1= cos � � V > 1. Let us, then, choose �0 = 0, and observe that for � = 0

all the solutions 	(�; �; �) are actually functions only of � and � = z � V t. [Let us also

notice that in empty space such solutions 	(�; � = z � V t) can be transversely localized

only if V 6= c, because if V = c the function 	 has to obey the Laplace equation on the

transverse planes. Let us recall that in this paper we always assume V > 0].

In the present case, eq.(3') can be easily integrated over � and k by having recourse to

identity (6.611.1) of ref.[11], yielding

	X(�; �) =

Z
1

0

d�J0(��
p
V 2 � 1) e��(a�i�) =

= [(a� i�)2 + �
2(V 2 � 1)]

�1=2
;

(8)

which is exactly the classical X-shaped solution proposed by Lu & Greenleaf[12] in a-

coustics, and later on by others[12] in electromagnetism, once relations (6) are taken into

�Let us observe that the group velocity of the solutions considered in this paper can a priori be
evaluated through the ordinary, simple derivation of ! with respect to the wavenumber only for the
in�nite total energy solutions, as in the present case. However, for our SSP and SMPS solutions, below,
and in general for the �nite total energy Superluminal solutions, the group-velocity cannot be calculated
through that simple relation, since in those cases it does not even exist a one-to-one function ! = !(kz).
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account. See Fig.3a.

Many other SLSs can be easily constructed; for instance, by inserting into the weight

function (7) the extra factor �m, namely �(�; �) = �
m
�(�) exp[�a�], while it is still

�
0 = 0. Then an in�nite family of new SLSs is obtained (for m � 0), by using this time

identity (6.621.4) of the same ref.[11]:

	X;m(�; �) = (�i)m
dm

d�m

�
(a� i�)2 + �

2(V 2 � 1)
�
�1=2

(9)

which generalize[13] the classical X-shaped solution, corresponding to m = 0: namely,

	X � 	X;0. Notice that all the derivatives of the latter with respect to � lead to new

SLSs, all of them being X-shaped.

In the particular case m = 1, one gets the SLS

	X;1(�; �) =
�i (a� i�)

[(a� i�)2 + �2(V 2 � 1)]
3=2

(10)

which is the �rst derivative of the X-shaped wave, and is depicted in Fig.3b. One can

notice that, by increasingm, the pulse becames more and more localized around its vertex.

All such pulses travel, however, without deforming.

Solution (8) is suited for low frequencies only, since its frequency spectrum (exponen-

tially decreasing) starts from zero. One can see this for instance by writing eq.(7) in the

(!; kz) plane: by eqs.(4) one obtains

�(!; kz) = �

�
! � V kz

2V
� �0

�
exp[�a

! + V kz

2V
]

and can observe that �0 = 0 in the delta implies ! = V kz. So that the spectrum becomes

� = exp[�a!=V ], which starts from zero and has a width given by �! = V=a.

By contrast[13], when the factor �m is present, the frequency spectrum of the solutions

can be \bumped" in correspondence with any value !M of the angular frequency, provided

that m is large [or a=V is small]: in fact, !M results to be !M = mV=a. The spectrum,

then, is shifted towards higher frequencies (and decays only beyond the value !M).

Moreover, let us mention here that also in the spectra of the following pulses (consid-

ered in subsections 3.2 and 3.3 below) one can insert the �m factor; in fact, in correspon-

dence with the spectrum
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�(�; �) = �
m �0(�) e

�a�
; (7')

one obtains as further solutions the m-th order derivatives of the basic (m = 0) solution

below considered. This is due to the circumstance that our integrations over � (as in

eq.(3')) are always Laplace-type transformations. We shall not write them down explicitly,

however, for the sake of conciseness.

Di�erent SLSs can be obtained also by modifying (still with �0 = 0) the spectrum (7).

Some interesting solutions are reported in Appendix A.

Let us now construct SLSs more suited for high frequencies (always con�ning our-

selves to pulses well localized not only longitudinally, but also transversely).

3.2 { The Superluminal \Focus-Wave Modes" (SFWM).

Let us go back once more to spectrum (7), but examining now the general case with

�
0 6= 0. After integrating over k and �, eq.3') yields [a > 0; �0 > 0; V > c]:

	(�; �; �) = e�i�
0�

Z
1

0

d� J0

�
�

p
V 2(� + �0)2 � (�� � 0)2

�
e��(a�i�) : (11)

When releasing the condition �0 = 0 we are in need also of backwards-moving components

for the construction of our pulses, since they enter superposition (3') and therefore eq.(11).

In fact, the spectrum � = �(���0) exp[�a�] does obviously entail that � = �
0 and hence,

by relations (4), that ! = V kz+2V �0. This means (see Fig.4) that we are now integrating

along the continuous line, i.e., also over the interval V �0 � ! < 2V �0, or ��0 � kz < 0,

corresponding to the \non-causal" components. Nevertheless, we can obtain physical

solutions when making the contribution of that interval negligible, by choosing small

values of a� 0: so that the exponential decay of the weight � with respect to ! is very

slow. Actually, one can go from the (�,�) space back to the (!,kz) space by use of eqs.(4),

the weight being re-written (when �0 = �) as � = exp(�a!=V ) �exp(�a�0); wherefrom it

is clear thaty for a� 1 the contribution of the interval kz � 0 (or ! � 2V �0) overruns the

yOne can easily show that the condition a� 1 should be actually replaced with the condition a�
0 �
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kz < 0 contribution. Notice, incidentally, that the corresponding solutions are associated

with large frequency bandwidths and therefore to pulses with very short extension in space

and in time. Let us mention even now that the spectral weight � = exp[�a(!� V �0)=V ]
entails the frequency band-width

�! =
V

a
;

a relation that we shall �nd to be valid (at least approximately) for all our solutions. We

shall discuss this point in Sect.5 below.

An analytical expression for integral (11) can be easily found for small positive �0

values, when �02 � 0. Under such a condition we obtain, by using identity (6.616.1) of

ref.[11] and calling now X the classical[12] X-shaped solution (8)

X = X(�; �) � [(a� i�)2 + �
2(V 2 � 1)]

�1=2
; (12)

we obtain the newz SLSs [a > 0; �0 � 0; V � c]:

	SFWM(�; �; �) = e�i�
0�
X exp

�
�
0(V 2 + 1)

V 2 � 1

�
(a� i�)�X

�1
��

(13)

which for V ! c
+ reduce to the well known FWM (focus-wave mode) solutions[15],

traveling with speed c:

	FWM(�; �; �) =
e�i�

0�

a� i�
exp

�
�
�
0
�
2

a� i�

�
: (14)

Our solutions (13) are a generalization of them for V > c; we shall call eqs.(13) the Su-

perluminal focus wave modes (SFWM). See Fig.5. Such modes travel without deforming.

Let us emphasize that, when setting �0 > 0, the spectrum (7) results to be constituted

(cf. Fig.4) by angular frequencies ! � V �
0. Thus, our new solutions can be used to

1. In fact (see Fig.4), the non-causal interval is �!NC = V �
0, while the total spectral band-width is

�! = V=a, so that the non-physical components bring a negligible contribution to the solution in the
case of spectrum (7), provided that �!NC=�!� 1, which just means a�0 � 1.

zNotice that another, slightly di�erent solution |called the FXW| appeared however as eq.(**) in
ref.[14]
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construct high frequency pulses (e.g., in the microwave or in the optical regions): cf. also

subsect.5B below.

We are going now to build up suitable superpositions of 	SFWM(�; �; �) in order to get

�nite total energy pulses, in analogy with what is currently attempted[16] for the c-speed

FWMs.

3.3 { The Superluminal \Splash Pulses" (SSP).

In the case of the c-speed FWMs, in ref.[16] suitable superpositions of them were

proposed (the SPs and the \MPS pulses") which possess �nite total energy (even without

truncating them).

Let us analogously go on from our solutions (13) to �nite total energy solutions, by

integrating our SFWMs (13) over �0 :

	(�; �; �) �
Z

1

0

d� 0 B(� 0) e�i�
0�
X exp

�
�
0(V 2 + 1)

V 2 � 1

�
(a� i�)�X

�1
��

: (15)

where it must be still a � 1, while the weight-functions B(�0) must be bumped in

correspondence with small positive values of �0 since eq.(13) was obtained under the

condition �
02 � 0. In the following, for simplicity, we shall call �, instead of �0, the

integration variable.

First of all, let us choose in eq.(15) the simple weight-function [�0 � �]:

B(�) = e�b� (16)

with b � 0 for the above-named reasons. Let us recall that such weight (16) is the one

yielding in the V ! c
+ case the ordinary (c-speed) Splash Pulses[16]; and notice that this

choice is equivalent to inserting into eq.(3') the spectral weight

�(k; �; �) � e�a� e�b� : (7' ')

Our Superluminal Splash Pulses (SSP) will therefore be:
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	SSP(�; �; �) = X

Z
1

0

d� e��(b+i�) e�Y =
X

b+ i� � Y
; (17)

with

Y �
V
2 + 1

V 2 � 1

�
(a� i�)�X

�1
�
:

Let us repeat that our SSPs have �nite total energy, as one can easily verify; we shall

come back to this result also from a geometric point of view. They however get deformed

while traveling, and their amplitude decreases with time: see Figs.6a and 6b. It is worth

mentioning that, due to the form (7") of the SSP spectrum, our solution (17) can be

regarded as the �nite energy version of the classical X-shaped solution.

3.4 { The Superluminal \Modi�ed Power Spectrum" (SMPS) pulses.

In connection with eq.(15), let us now go on to a more general choice for the weight-

function:

�
B(�) = e�b(���0) for � � �0

B(�) = 0 for 0 � � < �0
(16')

which for V ! c
+ yields the ordinary (c-speed) \Modi�ed Power Spectrum" (MPS)

pulses[16]. Such a choice is now equivalent to inserting into eq.(3') for � � �0 the

spectrum

� = e�a� e�b(���0) for � � �0 : (7' ' ')

We then obtain the Superluminal Modi�ed Power Spectrum (SMPS) pulses as follows [for

�0 � 1]:

	SMPS(�; �; �) = eb�0 X

Z
1

�0

d� e�(b+i��Y )� = X
exp[(Y � i�)�0]

b� (Y � i�)
(18)
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in which the integration over � runs now from �0 (no longer from zero) to in�nity.

It is worthwhile to emphasize that our solutions (18), like solutions (17), possess a

�nite total energy.x Even if this is easily veri�ed, let us address the question from an

illuminating geometric point of view. Let us add that their amplitude too (as for the

SSPs) decreases with time: see Figs.7a and 7b.

With reference to Fig.8, let us observe that the in�nite total energy solutions X, in

eq.(12), and SFWM, in eq.(13), correspond to integrations along the � = 0 axis (i.e., the

�-axis) and the � = �0 straight-line, respectively; that is to say, correspond to a delta

factor, �(� � �0), in the spectrum (7), where �0 � �0.

In order to go on to the �nite total energy solutions (SMPS), eq.(18), we replaced the

delta factor with the function (16'), which is zero in the region above the � = �0 line,

while it decays[17] in the region below (as well as along) such a line. The same procedure

was followed by us for the solutions SSP, eq.(17), which correspond to the particular case

�0 = 0. The faster the spectrum decay takes place in the region below the � = �0 line

[i.e. b � 1], the larger the �eld depth{ of the corresponding pulse results to be: as we

shall see in Sect.4.2C. Let us add that, since b � 1, even in the present case the non-

causal components contribution becomes negligible provided that one chooses a�0 � 1;

in analogy with what we obtained in the previous SFWM case.

It seems important to stress also that, while the X and SSP solutions, eqs.(12) and (18),

mainly consist in low-frequency (Bessel) beams, on the contrary our solutions SFWM and

SMPS, eqs.(13) and (18), can be constituted by higher frequency beams (corresponding,

namely, to ! � V �0). This property can be exploited for constructing SLSs in the mi-

crowave or optics �elds, by suitable choices of the V and �0 values.

4. { Geometric description of the new pulses in the (!; kz) plane

xOne should recall that the �rst �nite energy solution, the MFXW, di�erent from but analogous to
our one, appeared as eq.(**) in ref.[14].

{The \depth of �eld" is the distance along which the pulse (approximately) keeps its shape, besides
its group-velocity; cf. refs.[16,2].
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4.1 { A preliminary analysis of the localized pulses.

Let us add some intuitive considerations about the localized solutions 	 to the wave

equation, which by our de�nition[18] must possess the property

	(x; y; z; t) = 	(x; y; z +�z0; t+
�z0

v
) (19)

v being the pulse propagation speed, that here can assume a priori any[1,2] value: 0 �

v < 1. Such a de�nition entails that the pulse \oscillates" while propagating, it being

required that it resumes (periodically) its shape only after each space interval �z0, that

is, with the time interval �t0 = �z0=v (cf. refs.[18,19]).

Let us write the Fourier-expansion of 	

	(x; y; z; t) =

Z
1

�1

d!

Z
1

�1

dkz 	(x; y; kz;!) e
ikzz e�i!t ; (19a)

functions 	(x; y; kz;!) and 	(x; y; kz;!) exp[i(kz�z0�!�z0=v)] being the Fourier trans-

forms (with respect to the variables z; t) of the l.h.s. and r.h.s. functions in eq.(19),

respectively; where we used the translation property

T [f(x+ a)] = eika T [f(x)]

of the Fourier transformations. From condition (19), we then get[18] the fundamental

constraint

! = vkz � 2n�
v

�z0
(20)

linking ! with kz. Let us explicitly mention that constraint (20) does not imply any

breakdown of the wave-equation validity. In fact, when inserting expression (19a) into

the wave equation, one gets |in cylindrical plane coordinates (�; �)| the physical base-

solution

12



	(�; �; kz;!) = J�(k�) cos(��) (19b)

with � an integer and

k
2 = !

2 � k
2
z � 0 : (19c)

Therefore, our constraint (20) is consistent with relations (19b), (19c), which followed

from the wave equation.

Relation (20) is important, since it clari�es the \spectral origin" of the various local-

ized solutions introduced in the past literature (e.g., for v = c), which originated from

superpositions performed either by running \along" the straight-lines (20) themselves, or

in terms of spectral weights favouring !; kz values not far from lines (20). In particular, in

our case, in which v � V > c, relation (20) brings in a formal further support of our pro-

cedures, as stated in Figs.2, 4 and 8. One may also notice that, when the pulse spectrum

does strictly obey eq.(20), the pulse depth of �eld is in�nite (for instance, the classical

X-shaped wave and the SFWM can be regarded as corresponding to eq.(20) with n = 0

and n = 1, respectively.k While, when the spectrum is only (well) localized in the (!; kz)

plane, near one of the lines (20), the corresponding pulse has a �nite �eld depth (as it is

the case for our SSP and SMPS solutions). The more \localized" the pulse spectrum is,

in the (!; kz) plane, in the vicinity of a line (20), the longer the pulse �eld depth will be.

We shall investigate all these points more in detail, in the next subsection.

4.2 { Spectral analysis of the new pulses.

Let us �rst recall that throughout this paper it is ! � 0, and that, whenever we deal

with Superluminal or luminal speeds V � c, we are con�ning ourselves (cf. Fig.2b) to the

region

�
!

V
� kz �

!

V
; [! � 0] : (21)

kOn a more rigorous ground, the classical X-shaped solution does actually correspond to eq.(20) with
�z0 ! 1. For such a reason, it does not oscillate while propagating, and travels rigidly. Analogously,
the SSPs will not oscillate: cf. subsect.4.2.
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We are going now to generalize, among the others, what performed in ref.[18] for the

V = c.

A) Generalized X-shaped waves | In the case of the classical X-shaped wave, the

spectrum �(�; �) = �(�) exp[�a�] corresponds, because of eqs.(4), to �(!; kz) = �(! �

V kz) � exp[�a(! + V kz)=(2V )], which imposes the linear constraint

! = V kz ; (20a)

starts from ! = 0; possesses the (frequency) width

�! =
V

a
;

and results to be bumped for low frequencies.

Notice that this spectrum does exactly lies along one of the straight-lines in Fig.4.

Actually, eq.(20a) agrees with eq.(20) for �z0 !1, in accord with the known fact that

the pulse moves rigidly.

In the case of the generalized X-pulses, while the straight-line (20a) remains unchanged

and the pulse go on being non-oscillating, the spectrum bump moves towards higher fre-

quencies with increasing m or/and V=a (cf. subsect.3.1).

B) Superluminal Focus Wave Modes | In the case of the SFWMs, the spectrum

�(�; �) = �(��� 0) exp[�a�] corresponds (because of eqs.(4)) to �(!; kz) = �(!�V kz �
2V �0)) � exp[�a(! + V kz)=(2V )], which imposes the linear constraint

! = V kz + 2V �0 : (20b)

The minimum value of ! is given (see Fig.4 and relation (21)) by the intersection of the

straight-lines (20b) and ! = �V kz . This spectrum starts from !min = V �
0 and possesses

the (frequency) width

14



�! =
V

a
:

Notice that, once more, the spectrum runs exactly along the line (20b). By comparing

eq.(20b) with eq.(20), one gets that for these oscillating solutions the periodicity space

and time intervals are

�z0 =
�

�0
; �t0 =

�

V �0
:

Let us recall from subsect.3.2 and Fig.4 that it must be a�0 � 1 in order to make neg-

ligible the non-causal component contribution (in the two-dimensional expansion). As

mentioned in subsect.3.2, the relation ! � V �
0 can be exploited for obtaining high fre-

quency SLSs.

C) Superluminal Splash Pulses | In the case of the SSPs, the spectrum �(�; �) =

exp[�b�] exp[�a�] corresponds (because of eqs.(4)) to �(!; kz) = exp[�b(!�V kz)=(2V )]�
exp[�a(! + V kz)=(2V )]. This time the spectrum is no longer exactly localized over one

of the lines (20); however, if we choose b � 1 and a � 1, such a choice together with

condition (21) implies �(!; kz) to be well localized in the neighborhood of the line

! = V kz ; (20c)

besides being almost exclusively composed of causal components. All this can be directly

inferred also from the form of �(�; �), in connection with Fig.8. The spectrum starts

from !min = 0, with the frequency width

�! '
V

a
:

Equation (20) can be compared with eq.(20c) only when b� 1; under such a condi-

tion, we obtain that �z0 !1. However, since b can be large but not in�nite, the pulse

is expected to be endowed in reality with a slowly decaying amplitude, as shown below

in subsect.5.2.
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D) Superluminal Modi�ed Power Spectrum Pulses | In the case of the SMPS pulses,

the spectrum is �(�; �) = 0 for 0 � � < �0, and �(�; �) = exp[b(� � �0)] exp[�a�] for
� � �0. Under the condition b � 1 it is � ' �0, that is to say, the spectrum is well

localized (as it follows from eqs.(4)) in the vicinity of the straight-line

! = V kz + 2V �0 : (20d)

To enforce causality, we choose (as before) also a�0 � 1. Like in the SFDW pulse case,

the spectrum starts from !min = V �0, with the frequency width

�! '
V

a
:

Once more, in the case when b � 1, one can compare eq.(20) with eq.(20d), obtaining

�z0 ' �=�0 and �t0 ' �=(V �0). Under the condition b � 1, the pulse is expected

to possess a long depth of �eld, and propagate along it (in an oscillating way) with a

maximum amplitude almost constant: we shall look more in detail at this behaviour in

subsect.5.3.

5. { Some exact (Superluminal localized) solutions, and their �eld depth

To inquiring more in detail into the �eld depth of our SLSs, we can con�ne ourselves

to the propagation straight-line � = 0. Then, we can �nd exact analytic solutions holding

for any value of �0, without having to assume �0 to be small, as we had on the contrary

to assume for the SFWM, the SST and the SMPS solutions (see Sect.3, subsections 1, 2,

3). In fact, one is confronted with a simple integration of the type

	(� = 0; �; �) =

Z
1

0

d�

Z
1

0

d� e�i�� ei�� �(�; �) : (3' ')

Let us �rst study the in�nite total energy solutions: namely, our SFWMs (skipping the
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generalized X-type solutions).

5.1 { The case of the Superluminal Focus Wave Modes.

In the case of the SFWMs, solution (11) may be integrated for � = 0, without imposing

the small �0 � �
0 approximation.�� In fact, by choosing � like in eq.(7), one obtains

	SFWM(� = 0; �; �) = e�i�0�
Z

1

0

d� ei�� e�a� = e�i�0� (a� i�)�1 (11a)

whose square magnitude j	j2 = (a2+�2)�1 reveals that 	SFWM is endowed with an in�nite

depth of �eld.

Due to the linearity of the wave equation, both the real and the imaginary part of

eq.(11a), as well as of all our (complex) solutions, are themselves solutions of the wave

equation. In the following we shall con�ne ourselves to investigating the behaviour of

the real part.

In the case of eq.(11a) it is

Re [	SFWM(� = 0; �; �)] =
a cos(�0�) + � sin(�0�)

a2 + �2
: (11b)

The center C of such a pulse (where the pulse reaches its maximum value, M , oscillating

in space and time) corresponds to z = V t, that is, to � = 0 and � = 2z; its value being

MSFWM =
cos(2�0z)

a
: (11c)

Notice that: (i) at C one meets the maximum value M of the whole three-dimensional

pulse: (ii) quantity M is a periodic function of z (and t), with \wavelength" �z0 (and

oscillation period �t0) given by

�z0 =
�

�0

; �t0 =
�

V �0

; (11d)

��Also in the case of the SMPS pulses, below, we shall arrive at analytical solutions without any need
of imposing the condition that �0 � �

0 be small.
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respectively: in agreement with what anticipated in subsect.4.2-B.

The delta function entering our spectrum (7), entailing that � = �0, requires that

! = V kz + 2V �0 (22)

which is nothing but the straight-line � = �0 of Fig.8; this fact implying by the way (as

we already saw) and in�nite �eld depth, in accordance with the previous considerations

in subsect.3.4.

By comparing eq.(22) with the important \localization constraint" (20), with n = 1,

we just obtain the value �z0 of eq.(11d). In other words, the previously got relations

(11d) are exactly what needed for the localization properties (non-dispersiveness) of our

SFWMs.

Finally, let us examine the longitudinal localization of our oscillating beams. For

simplicity, let us analyse the \dispersion" of the beam when its amplitude is maximal;

let us therefore skip considering the oscillations and go on to the pulse magnitude: one

gets for the pulse half-height full-width the value D = 2
p
3a in the case of the magnitude

itself, and

D = 2a (23)

in the case of the square magnitude. Let us adhere to the latter choice in the following,

due to a widespread use.

5.2 { The �nite total energy solutions.

Let us now go on to the �nite total energy solutions:

a) The case of the Superluminal Splash Pulses | In the case of the SSPs with � = 0,

one has to insert into eq.(3' ') the spectrum (7' '), namely � = exp[�a�] exp[�b�]. By
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integrating, we obtain

	SSP(� = 0; �; �) = [(a� i�)(b+ i�)]
�1
; (17a)

whose real part is

Re [	SSP(� = 0; �; �)] =
ab+ ��

(ab+ ��)2 + (a� � b�)2
: (17b)

Let us explicitly observe that the chosen spectrum, by virtue of eqs.(4), entails that

these solutions (17a,b) do not oscillate, which correspond to �z0 !1 and �t0 !1 in

eqs.(20): in agreement with what anticipated in subsect.4.2-C. Actually, the SSPs are

the �nite energy version of the classical X-shaped pulses.

The maximum value M of eq.(17b) (a not oscillating, but slowly decaying only, solu-

tion) still corresponds to putting z = V t, that is, to setting � = 0 and � = 2z:

MSSP =
b

a
�

1

b2 + 4z2
: (17c)

Initially, for z = 0; t = 0, we have M = (ab)�1. If we now de�ne the �eld-depth Z as

the distance over which the pulse's amplitude is 90% at least of its initial value, then we

obtain the depth of �eld

ZSSP =
b

6
(24)

which shows the dependence of Z on b, namely, the dependence of Z on the spectrum

localization in the surroundings of the straight-line ! = V kz: Cf. also subsect.3.3.

At last, the longitudinal localization will be approximately given by

D � 2a ; (25)

namely, it is still given (for a� 1 and b� 1) by eq.(23). Notice that, since solution (17a)

does not oscillate, the same will be true for its real part, eq.(17b), as well as for the square

magnitude of eq.(17a): as it can be straightforwardly veri�ed. Of course, equation (25)
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holds for t = 0. During the pulse propagation, the longitudinal localization D increases,

while the amplitudeM decreases. By simple but lengthy calculations, one can verify that

the D-increase rate is approximately equal to the M -decrease rate; so much so we obtain

(practically) the same �eld depth, eq.(24), when requesting the longitudinal localization

to su�er a limited increase (e.g., by 10% only).

b) The case of the Superluminal Modi�ed Power Spectrum pulses | In the case of

the SMPS pulses with � = 0, one has to insert into eq.(3' ') the spectrum (7' ' '), namely

� = e�a� e�b(���0), with � � �0. By integration, one gets

	SMPS(� = 0; �; �) = e�i�0� [(a� i�)(b+ i�)]
�1
; (18a)

whose real part is easily evaluated. These pulses do oscillate while traveling. Their �eld

depth, then calculated by having recourse to the pulse square magnitude, happens still

to be

ZSMPS =
b

6
(26)

like in the SSP case. Even the longitudinal localization of the square amplitude results

approximately given, for t = 0, by

D � 2a (27)

as in the previous cases.

The �eld depth (26) depends only on b. However, the behaviour of the propagating

pulse changes with the �0-value change, besides with b's. Let us examine the maximum

amplitude of the real part of eq.(18a), which for z = V t writes (when � = 0 and � = 2z):

MSFWM =
1

ab

cos(2�0z) + 2[z=b] sin(2�0z)

1 + 4[z=b]2
: (18b)

Initially, for z = 0; t = 0, one has M = (ab)�1 like in the SSP case.
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From eq.(18b) one can infer that:

(i) when z=b� 1, namely, when z < Z, eq.(18b) becomes

MSMPS '
cos(2�0z)

ab
; [for z < Z] (28)

and the pulse does actually oscillate harmonically with wavelength �z0 = �=�0 and

period �t0 = �=(V �0), all along its �eld depth: In agreement with what anticipated in

subsect.4.2-D.

(ii) when z=b > 1, namely, when z > Z, eq.(18b) becomes

MSMPS '
sin(2�0z)

ab

1

2 [z=b]
[for z > Z] (28')

Therefore, beyond its depth of �eld, the pulse go on oscillating with the same �z0, but

its maximum amplitude decays proportionally to z (the decay coe�cient being b=2).

Last but not least, let us add the observation that results of this kind may �nd ap-

plication in the other �elds in which an essential role is played by a wave-equation (like

acoustics, seismology, geophysics, relativistic quantum physics, and gravitational waves,

possibly).

Acknowledgements

The authors are grateful, for stimulating discussions and kind cooperation, to

C.E.Becchi, R.Collina, R.Colombi, G.C.Costa, P.Cotta-Ramusino, F.Fontana, L.C.Kretly,

K.Z.N�obrega, G.Salesi, A.Shaarawi and J.W.Swart, as well as J.Madureira and

M.T.Vasconselos.

21



APPENDIX A

Further families of \X-type" Superluminal localized solutions

As announced in subsect.3.1, let us mention in this Appendix that one can obtain

new SLSs by considering for instance the following modi�cations (still with �0 = 0 of the

spectrum (7), with a, d arbitrary constants:

�(k; �; �) = �(�) J0(2d
p
�) e�a� (A.1a)

�(k; �; �) = �(�) sinh(�d) e�a� (A.1b)

�(k; �; �) = �(�) cos(�d) e�a� (A.1c)

�(k; �; �) = �(�)
sin�d

�
e�a� (A.1d)

Let us call X, as in eq.(8), the classical X-shaped solution

X �
�
(a� i�)2 + �

2(V 2 � 1)
� 1

2 :

One can obtain from those spectra the new, di�erent Superluminal localized solutions,

respectively:

	(�; �) = X � J0(�d2
p
V 2 � 1 X2)�

� exp [�(a� i�) d2X2] ;

(A.2a)

got by using identity (6.6444) in ref.[11];

	(�; �) =
2d(a � i�)

p
2(X�2 + d2)

(X�2 + d2)� 4d2(a� i�)2
; (A.2b)

for a > jdj, by using identity (6.668.1) of ref.[11];
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	(�; �) =

"
X

�2 � d
2 +

p
(X�2 � d2)2 + 4d2(a� i�)2

2[(X�2 � d2)2 + 4d2(a� i�)2]

# 1

2

(A.2c)

by using identity (6.751.3) of ref.[11]; and

	(�; �) = sin�1 2d

�q
X�2 + d2 + 2�d

p
V 2 � 1 +

+

q
X�2 + d2 � 2�d

p
V 2 � 1

�
;

(A.2d)

for a > 0 and d > 0, by using identity (6.752.1) of ref.[11].

Let us recall that, due to the choice �0 = 0 and the consequent presence of a �(�) factor

in the weight, all such solutions are completely physical, in the sense that they e don't get

any contribution from the non-causal components (i.e., from waves moving backwards).

In fact, these new solutions are functions of �; � only (and not of �). In particular,

solutions (A.2b), (A.2c), (A.2d), as well as others easily obtainable, are functions of �

via quantity X only. This may suggest to go on from the variables (�; �) to the variables

(X; �) and write down em the wave equation itself in the new variables: Some related

results and consequences will be exploited elsewhere.
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Figure captions

Fig.1 { Geometrical representation, in the plane (!; kz), of our conditions (2): see the text.

It is essential to notice that the dispersion relation (2), with positive (but not constant,

a priori) k2, while enforcing the consideration of the truly propagating waves only (with

exclusion of the evanescent ones), does allow for both subluminal and Superluminal solu-

tions; the latter being the ones of interest for us. Conditions (2) correspond to con�ning

ourselves to the sector delimited by the straight lines ! = �ckz.

Figs.2 { Inside the region shown in Fig.1 (which excludes the evanescent regime), we can

choose the sector shown in Fig.2a, provided that V is Superluminal (V � c). Fig.2b

shows the same sector, chosen by us, in the (!; kz) plane.

Fig.3 { In Fig.3a it is represented (in arbitrary units) the square magnitude of the \clas-

sical", X-shaped Superluminal Localized Solution (SLS) to the wave equation[12], with

V = 5c and a = 0:1 m: cf. eqs.(8) and (6). An in�nite family of SLSs however exists,

which generalize the classical X-shaped solution; the Fig.3b depicts the �rst of them (its

�rst derivative) with the same parameters: see the text and eq.(10). The successsive

solutions in such a family are more and more localized around their vertex. Quantity �

is the distance in meters from the propagation axis z, while quantity � is the \V -cone"

variable (still in meters) � � z � V t, with V � c. Since all these solutions depend on

z only ia the variable �, they propagate \rigidly", i.e., without distortion (and are called

\localized", or non-dispersive, for such a reason). In this paper we assume propagation

in the vacuum (or in a homogeneous medium).

Fig.4 { When releasing the condition �0 = 0 (see the text), which excluded the \backwards-

traveling" components, one has to integrate in eq.(11) along the half-line ! = V kz + �
0,

namely, also along the \non-causal" interval V �0 < ! < 2V �0. We can obtain physical

solutions, however, by making negligible the contribution of the unwanted interval, i.e.,

by choosing small values of a. This can be even more easily seen in the (!; kz) plane.

Fig.5 { Representation of our Superluminal Focus Wave Modes (SFWM), eq.(13), which

are a generalization of the ordinary FWMs. The depicted pulse corresponds to V = 5c,
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a = 0:001 m; � 0 = 1=(100m), and to arbitrary time t (since these solutions too travel

without deforming). Such solutions correspond to high frequency (microwave, optical,...)

pulses: see the text. The meaning of �, �, etc., is given in the caption of Fig.3.

Figs.6 { Representation of our Superluminal Splash Pulses (SSP), eq.(17). They are

suitable superpositions of SFWMs (cf. Fig.5), so that their total energy is �nite (even

without any truncation). They however get deformed while propagating, since their am-

plitude decreases with time. In Fig.6a we represent, for t = 0, the pulse corresponding

to V = 5c, a = 0:001 m, and b = 200 m. In Fig.6b it is depicted the same pulse after

having traveled 50 meters.

Figs.7 { Representation of our Superluminal Modi�ed Power Spectrum (SMPS) pulses,

eq.(18). Also these beams possess �nite total energy, and therefore get deformed while

traveling. Fig.7a depicts the shape of the pulse, for t = 0, with V = 5c, a = 0:001 m,

b = 100 m, and �0 = 1=(100m). In Fig.7b it is shown the same pulse after a 50 meters

propagation.

Figs.8 { From a geometric point of view, our in�nite total energy SLSs, i.e., the X-

solutions, eq.(12), and the SFWMs, eq.(13), correspond |see the text| to integrations

along the � = 0 axis, or �-axis, and the � = �
0 straight-line, respectively. In order to go

on to the �nite total-energy SLSs, we had to replace the �(� � �0) factor in the spectrum

(7) with the function (16'), which is di�erent from 0 in the region along and below the

� = �
0 line and suitably decays therein. The faster the spectrum decays (below and along

the � = �
0 line), the larger the �eld depth of the pulse results to be. In such a manner we

obtained the SMPSs, eq.(18), as well as the SSPs, which just correspond to the particular

case �0 = 0.
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