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1 Introduction.

The study of tunnelling started with the discovery of �-decay, which was followed

by Lord Rutherford's investigations and, in 1928, by Gamow's quantum-mechanical de-

scription[1]. Much later, from the Fifties onwards, tunnelling experiments in solid state

physics (such as those with tunnelling junctions[2], tunnelling diodes[3] and tunnelling

microscopes[4]) were performed and theoretically analyzed.

The study of the tunnelling times has a long history too. The problem of the de�nition

of a tunnelling time was mentioned at the beginning of the Thirties[5,6]. Then, it remained

almost ignored until the Fifties or Sixties, when it was faced the more general question

of de�ning a quantum-collision duration[7-18]: a question that, in its turn, had been put

aside since the Twenties, after Pauli's works[19] stressing the impossibility of introducing a

self-adjoint operator for Time in quantum mechanics. Among the �rst attempts to regard

time as a quantum-mechanical observable, let us recall refs.[20-26] and, in particular, the

clari�cation that such a problem received during the Seventies and Eighties in refs.[27-29].

Reviews about time as a quantum observable (which results to be a maximal hermitian

operator, even if it is not selfadjoint) canonically conjugated to energy, can be found

in refs.[29-31]. [Let us mention that a series of new papers recently appeared[32-39,

and refs. therein], examining the properties of the time operator in quantum mechanics:

however, all such papers seem to ignore the Naimark theorem[40] which is on the contrary

an essential mathematical basis for refs.[27-31].] �

Recently, developments in various �elds of physics and especially the advent of high-

speed electronic devices, based on tunnelling processes, revived the interest in the tun-

nelling time analysis, whose relevance had been previously apparent in nuclear physics only

(�-radioactivity and, afterwards, nuclear sub-barrier �ssion, fusion, proton-radioactivity,

etc.). So that, in recent years, a number of theoretical reviews appeared[41-49]. With re-

gard to experiments on tunnelling times, the great di�culty with actual measurements for

particles was due to the too small values of the related tunnelling times (see, for instance,

refs.[50-55]). Till when the simulation of particle tunnelling by microwave and laser-light

tunnelling allowed some very interesting measurements[56-60] of \tunnelling times"; such

a simulation being based on the known mathematical analogy between particle and photon

tunnelling: Which becomes evident when comparing[61-65] the stationary Schroedinger

equation, in presence of a barrier, with the stationary Helmholtz equation for an electro-

magnetic wavepacket in a waveguide.

In the more interesting time-dependent case, however, the Schroedinger and Helmholtz

equations are no longer identical: a problem that was left open, and that one cannot

forget. Another question that has to be faced is the introduction of an operator for Time

in quantum mechanics and in quantum electrodynamics. Below (in Sects.9-10) we shall

�The Naimark theorem (1940) states that a non-orthogonal spectral decomposition of a maximal her-

mitian operator can be approximated, with a weak convergence, by an orthogonal spectral decomposition

with any desired accuracy degree.
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tackle with such problems, as well as with the physical interpretation of some photon

tunnelling experiments.

Returning to the question of the theoretical de�nition of the tunnelling time for par-

ticles, there is not yet a general agreement about such a de�nition[41-49]; some reasons

being the following: (i) The problem of de�ning tunnelling times is closely connected

with the more general de�nition of the quantum-collision duration, and therefore with

the fundamental fact that Time in some cases is just a parameter (like x), but in some

other cases is a (quantum) physical observable (like x̂); (ii) The motion of particles inside

a potential barrier is a quantum phenomenon, that till now has been devoid of any direct

classical limit; (iii) There are essential di�erences among the initial, boundary and ex-

ternal conditions assumed within the various de�nitions proposed in the literature; those

di�erences have not been analyzed yet.

Following ref.[49], we can divide the existing approaches into a few groups, based |

respectively| on: 1) a time-dependent description in terms of wavepackets; 2) averages

over a set of kinematical paths, whose distribution is supposed to describe the particle

motion inside a barrier; 3) the introduction of a new degree of freedom, constituting

a physical clock for the measurements of tunnelling times. Separately, it stands by

itself the dwell time approach. The latter has ab initio the presumptive meaning of the

time during which the incident 
ux has to be maintained, to provide the accumulated

particle storage in the barrier[9,49]. The �rst group contains the so-called phase times

(�rstly mentioned in [7,8] and applied to tunnelling in refs.[66,67]), the times related to

the motion of the wavepacket spatial centroid (considered for generic quantum collisions

in refs.[17,18] and in particular for tunnelling in [68,69]), and �nally the Olkhovsky{

Recami (OR) method[48,70,71] (based on the generalization of the time durations de�ned

for atomic and nuclear collisions in refs.[11,29,30]), which adopts averages over 
uxes

pointing in a well-de�ned direction only, and has recourse to a quantum operator for

Time.

The second group contains methods utilizing the Feynman path integrals[72-75], the

Wigner distribution paths[76,77], and the Bohm approach[78].

The methods with a Larmor clock[79] or an oscillating barrier[80,81] pertain to the

third group.

In our opinion, basic self-consistent de�nitions of tunnelling durations (mean values,

variances, and so on) should be worked out in a way similar to the one followed when de�n-

ing in quantum mechanics other physical quantities (like distances, energies, momenta,

etc.): namely, by utilizing the properties of time as a quantum observable. One ought

then choose a time operator, canonically conjugated to the energy operator; and take ad-

vantage of the equivalence between the averages performed in the time and in the energy

representation,y with adequate weights (measures). For such de�nitions, it is obviously

necessary to abandon any descriptions in terms of plane waves, and to have rather re-

yAn equivalence still following from the Naimark[40] theorem!
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course to wavepackets and to the time-dependent Schroedinger equation: As it is actually

typical in the quantum collision theory (see, e.g., the third one of refs.[10]). Afterwards,

one will �nally operate within the framework of conventional quantum mechanics; and,

within this framework, it will be possible to show (as we shall do) that every known

de�nition of tunnelling time is |at least in some suitable asymptotic regions| either a

particular case of the most general de�nition, or a de�nition valid (not for tunnelling but)

for some accompanying process.

The necessary formalism, and the consequent de�nitions, will be introduced in Sect.2

below. In Sects.3�5 we shall brie
y compare one another the various existing approaches.

In Sect.6 we shall discuss some peculiarities of the tunnelling evolution. In Sect.7 we

shall show the Hartman{Fletcher e�ect to be valid for all the known expressions of the

mean tunnelling times. The short Sect.8 will present a new \two-phase description"

of tunnelling, which is convenient for media without absorption and dissipation, as well

as for Josephson junctions. In Sect.9 we investigate the analogies between the (time-

dependent) Schroedinger equation, in presence of a quantum barrier, and the (time-

dependent) Helmholtz equation for an electromagnetic wavepacket in a waveguide, and

discuss the \tunnelling" experiments with microwaves. In Sect.10 we go on to study the

tunnelling times in the optical \tunnelling" experiments based on frustrated total internal

re
ection. In Sect.11, a short note follows on the reshaping (and reconstruction) phenom-

ena, in connection with a possible formulation of the principle of \relativistic causality"

which is valid also when the tunnelling velocities are actually Superluminal. Finally, in

Sect.12, some conclusions are presented, together with some prospective considerations

for the near future.

2 A quantum operator for Time as the starting point

for de�ning the tunnelling durations. The OR

formalism.

We con�ne ourselves to the simple case of particles moving only along the x-direction,

and consider a time-independent barrier located in the interval (0; a): See Fig.1, in which

a larger interval, (xi; xf), containing the barrier region, is also indicated. [We shall

call region II the barrier region, region I the (initial) one on its left, and region III the

(�nal) one on its right]. Following the known de�nition of duration of a collision |set

forth �rstly in ref.[11], then in [27,29,30] and afterwards generalized in [48,71]| we can

eventually de�ne the mean value ht�(x)i of the time t at which a particle passes through

position x (travelling in the positive or negative direction, respectively :

ht�(x)i =

R
1

�1
tJ�(x; t)dtR

1

�1
J�(x; t)dt

(1)
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and the variance D � �2 of that time distribution:

D t�(x) =

R
1

�1
t2J�(x; t)dtR

1

�1
J�(x; t)dt

� [ht�(x)i]
2 ; (2)

J�(x; t) representing the positive or negative values, respectively, of the probability 
ux

density J(x; t) = Re[(i�h=m)	(x; t)@	y(x; t)=@x] of a wavepacket 	(x; t) evolving in time;z

namely J�(x; t) � J �(�J). Let us repeat that, with appropriate averaging weights,

the (canonically conjugate) time and energy representations are equivalent in the sense

that: h:::it = h:::iE. Below, for the sake of simplicity, we shall omit the index t in

all expressions for h:::it. Let us also re-emphasize that the mentioned equivalence is

a consequence of the existence in quantum mechanics of a unique operator for time:

which, even if not self-adjoint (i.e., with a uniquely de�ned but non-orthogonal spec-

tral decomposition)[19,20], is however (maximal) hermitian; it is represented by the time

variable t in the t�representation for square-integrable space-time wavepackets, and, in

the case of a continuum energy spectrum, by �i�h@=@E in the E�representation, for the

Fourier-transformed wavepackets (provided that point E = 0 is eliminated[29b], i.e. for

wavepackets with moving back-tails and, of course, nonzero 
uxes; one can notice that

states with zero energy E would not play any role, anyway, in collision experiments).[27-

31]

Let us stress that this Olkhovsky-Recami (OR) approach is just a direct consequence

of conventional quantum mechanics. From the ordinary probabilistic interpretation of

�(x; t) and from the well-known continuity equation

@�(x; t)

@t
+
@J(x; t)

@x
= 0 ;

it follows also in this (more general) case that the two weights w+ and w�

w+(x; t) = J+(x; t)

�Z
1

�1

J+(x; t) dt

��1

w�(x; t) = J�(x; t)

�Z
1

�1

J�(x; t) dt

��1
;

can be regarded as the probabilities that our \particle" passes through position x during a

unit time{interval centred at t (in the case of forward and backward motion, respectively).

zLet us mention that one could measure the quantities J�, at least in principle, via the following ex-

perimental set-up: (i) for measuring J+, one can have recourse to two detectors, the �rst one measuring

the incident 
ux Jin, while the second one |su�ciently far away, but still located before the barrier|

measures the same incoming 
ux (at the new position) in delayed coincidence with the former measure-

ment; analogously, (ii) to measure J�, the �rst detector will measure the re
ected 
ux JR, while the

second one measures the same (re
ected) 
ux in advanced coincidence with the former.
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Actually, for those time intervals for which J = J+ or J = J�, one can rewrite the

continuity equation as follows:

@�>(x; t)

@t
= �

@J+(x; t)

@x

@�<(x; t)

@t
= �

@J�(x; t)

@x
;

respectively. These relations can be considered as formal de�nitions of @�>=@t and

@�<=@t. Let us now integrate them over time from �1 to t; we obtain:

�>(x; t) = �
Z t

�1

@J+(x; t
0)

@x
dt0

�<(x; t) = �
Z t

�1

@J�(x; t
0)

@x
dt0

with the initial conditions �>(x;�1) = �<(x;�1) = 0. Then, let us introduce the

quantities

N>(x;1; t) �
Z

1

x
�>(x

0; t) dx0 =
Z t

�1

J+(x; t
0) dt0 > 0

N<(�1; x; t) �
Z x

�1

�<(x
0; t) dx0 = �

Z t

�1

J�(x; t
0) dt0 > 0 ;

which have the meaning of probabilities for our \particle" to be located at time t on
the semi-axis (x;1) or (�1; x) respectively, as functions of the 
ux densities J+(x; t) or

J�(x; t), provided that the normalization condition
R
1

�1
�(x; t)dx = 1 is ful�lled. The

r.h.s.'s of the last couple of equations have been obtained by integrating the r.h.s.'s of

the above expressions for �>(x; t) and �<(x; t) and by adopting the boundary conditions

J+(�1; t) = J�(�1; t) = 0. Now, by di�erentiating N>(x;1; t) and N<(�1; x; t) with

respect to t, one obtains:

@N>(x;1; t)

@t
= J+(x; t) > 0

@N<(x;�1; t)

@t
= � J�(x; t) > 0 :

Finally, from our last four equations one can infer that:
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w+(x; t) =
@N>(x;1; t)=@t

N>(x;�1;1)

w�(x; t) =
@N<(x;�1; t)=@t

N<(�1; x;1)
;

which justify the aforementioned probabilistic interpretation of w+(x; t) and w�(x; t). Let

us notice, incidentally, that our approach does not assume any ad hoc postulate.

Our previous OR formalism is therefore enough for de�ning mean values, variances

(and other \dispersions") related with the duration distributions of various collisions,

including tunnelling. For instance, for transmissions from region I to region III we have

h�T(xi; xf )i = ht+(xf )i � ht+(xi)i (3)

D �T(xi; xf ) = D t+(xf ) + D t+(xi) (4)

with �1 < xi � 0 and a � xf <1. For a mere tunnelling process, one has

httun(0; a)i = ht+(a)i � ht+(0)i (5)

and

D �tun(0; a) = D t+(a) + D t+(0) : (6)

For penetration (till a point xf inside the barrier region II), similar expressions hold for

h�pen(xi; xf )i and D �pen(xi; xf ), with 0 < xf < a. For re
ections at generic points,

located in regions I or II, with xi � xf < a, one has

h�R(xi; xf)i = ht�(xf )i � ht+(xi)i (7)

and

D �R(xi; xf ) = D t�(xf) + D t+(xi) (8)

Let us repeat that these de�nitions hold within the framework of conventional quantum

mechanics, without introducing any new physical postulates.

In the asymptotic cases, when jxij >> a, it is:

h� asT (xi; xf )i = ht(xf )iT � ht(xi)iin (3a)

and

h� asT (xi; xf )i = h�T(xi; xf )i+ ht+(xi)i � ht(xi)iin (9)

7



where h:::iT and h:::iin are averages over the 
uxes corresponding to  T = AT exp(ikx)

and to  in = exp(ikx), respectively. For initial wavepackets of the form

	(x; t) =
Z

1

0

G(k � k) exp (i(kx� Et)=�h)dk

(where E = �h2k2=2m;
R
1

0
jG(k � k)j2dE = 1; G(0) = G(1) = 0; k > 0; k being the

value corresponding to the peakx of G) and for su�ciently small energy (or momentum)

spreads, when Z
1

0

�njGATj
2dE �

Z
1

0

�njGj2dE

with n = 0; 1; � � �hk=m, one gets:

h� as
T
(xi; xf )i = h�Ph

T
(xi; xf)iE ; (10)

where

h:::iE =

Z
1

0

dE�jG(k � k)j2:::=
Z

1

0

�jGj2dE :

The quantity

�Ph
T
(xi; xf ) = (1=�)(xf � xi) + �h d(argAT)=dE (11)

is the transmission phase time obtained by the stationary-phase approximation. In the

same approximation, and when it is small the contribution of D t+(xi) to the variance

D �T(xi; xf) (that can be realized for su�ciently large energy spreads, i.e. for spatially

short wavepackets), we obtain:

D �T(xi; xf ) = �h2[h(@jATj=@E)
2iE=hjATj

2iE (12)

In the opposite case of very small energy spreads, i.e., quasi-monochromatic particles, the

expression (12) becomes just that part of D t+(xf ) and D tT(xi; xf) which is due to the

barrier presence.

In the limit jGj2 ! �(E � E), when it is E � �h2k
2

=2m, the equation (10) does yield

the ordinary phase time, without averaging. For a rectangular barrier with height V0 and

�a >> 1 (where � � [2m(V0 � E)]1=2=�h), the expressions (10) and (12) for xi = 0 and

xf = a transform, in the same limit, into the well-known expressions

�Ph
tun

!
2

�k
(11a)

(see ref.[66], and also [48,49]), and

xFor real tunnelling, with under-barrier energies, one should actually multiply the weight amplitude

G by a cuto� function, which in the case of a rectangular barrier with height V0 is simply �(E � V0).
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(D �Ph
tun
)1=2 !

ak

�
; (12a)

respectively. It should be noticed that our eq.(12a) coincides with one of the Larmor

times[79] and with the B�uttiker-Landauer time[80], as well as with the imaginary part of

the complex time in the Feynman path-integral approach (see also ref.[82]).

Recently G.Nimtz stressed the importance of the simple relation (11a), that he heuristi-

cally veri�ed, and called it a \universal property" of tunnelling times. Actually, eqs.(11a)

and (12a) can strongly help clarifying many of the current discussions about tunnelling

times. Let us add, incidentally, that recent theoretical work by Abolhasani and Gol-

shani[71], which regards the OR approach as giving the most natural de�nition for a

transmission time within the standard interpretation of quantum mechanics, conludes

that the best times that could be obtained in Bohmian mechanics are the same as OR's.

For a real weight amplitude G(k � k), when ht(0)i >in= 0, from (9) we obtain

h�tun(0; a)i = h�Phtuni � ht+(0)i : (13)

By the way, if the experimental conditions are such that only the positive-momentum

components of the wavepackets are recorded, i.e., �exp;+	(xi; :t) = 	in(xi; :t), quantity

�exp;+ being the projector onto the positive-momentum states, then for any xi in the

range (�1; 0) and xf in the range (a;1) it will be:

h�T(xi; xf )iexp = h�Ph
T
(xi; xf)iE (10a)

and

h�tun(0; a)iexp = h�Ph
tun
iE ; (13a)

since ht(0)iexp = ht(0)iin.

The main criticism, by the authors of refs.[49,64] and also [78,83], of any approach to

the de�nition of tunnelling times in which a spatial or temporal averaging over moving

wavepackets is adopted, invokes the lack of a causal relationship between the incoming

peak or \centroid" and the outgoing peak or \centroid". It was already clear in the

Sixties (see, for instance, ref.[18]) that such criticism is valid only when �nite (not asymp-

totic) distances from the interaction region are considered. Moreover, that criticism

applies more to attempts like the one in ref.[69] (where it was looked for the evolution

of an incoming into an outgoing peak), than for our de�nitions of collision, tunnelling,

transmission, penetration, re
ection (etc.) durations: In fact, our de�nitions for the mean

duration of any such processes do not assume that the centroid (or peak) of the incident

wavepacket directly evolves into the centroid (or peak) of the transmitted and re
ected

packets. Our de�nitions are simply di�erences between the mean times referring to the

passage of the �nal and initial wavepackets through the relevant space-points, regardless

9



of any intermediate motion, transformation or reshaping of those wavepackets... At last,

for each collision (etc.) process as a whole, we shall be able to test the causality condition.

Actually, there is no a single general formulation of the causality condition, which be

necessary and su�cient for all possible cases of collisions (both for nonrelativistic and

relativistic wavepackets). The simplest (or strongest) nonrelativistic condition implies

the non-negativity of the mean durations. This is, however, a su�cient but not necessary

causality condition.{ Negative times (advance phenomena) were revealed even near

nuclear resonances, distorted by the nonresonant background (see, in particular, ref.[30]);

similarly, \advance" phenomena can occur also at the beginning of tunnelling (see Sect.6

below).

Generally speaking, a complete causality condition should be connected not only with

the mean time duration, but also with other temporal properties of the considered process.

For example, the following variant could seem to be more realistic: <<The di�erence

te�A (xi; xf ) = te�f � te�i , between the e�ective arrival-instant of the 
ux at xf and the

e�ective start-instant of the 
ux at xi, is to be non-negative (where A = T, pen, tun,...)>>;

where the e�ective instants are de�ned as te�f � ht(xf)i + �[t(xf )], and te�i � ht(xi)i �

�[t(xi)], the standard deviations being of course �[t(xf )] = [D t(xf )]
1=2; �[t(xi)] =

[D t(xi)]
1=2; so that:

te�
A
(xi; xf) � te�f � te�i = ht(xf )i � ht(xi)i+ �[t(xf )] + �[t(xi)] :

But this condition too is su�cient but not necessary, because often wavepackets are

represented with in�nite and not very rapidly decreasing forward-tails... More realistic

formulations of the causality condition for wavepackets (with very long tails) will be

presented in Sect.8.

{In fact, let us recall that: (i) all the ordinary causal paradoxes seem to be solvable[84] within Special

Relativity, when it is not restricted to subluminal motions only; (ii) nevertheless, whenever it is met an

object O travelling at Superluminal speed, negative contributions ought to be expected to the tunnelling

times[85]: and this should not to be regarded as unphysical[84]. In fact, whenever the object O overcomes

the in�nite speed with respect to a certain observer, it will afterwards appear to the same observer as its

anti-object O travelling in the opposite space direction[84]. For instance, when going on from the lab to

a frame F moving in the same direction as the particles or waves entering the barrier region, the objects

O penetrating through the �nal part of the barrier (with almost in�nite speed[86]) will appear in the

frame F as anti-objects O crossing that portion of the barrier in the opposite space{direction[84]. In the

new frame F , therefore, such anti-objects O would yield a negative contribution to the tunnelling time:

which could even result, in total, to be negative. What we want to stress here is that the appearance

of such negative times is predicted by Relativity itself, on the basis of the ordinary postulates[84-86].

From the theoretical point of view, besides refs.[85,86,84], see also refs.[87]. From the (quite interesting!)

experimental point of view, see refs.[88].
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3 The meaning of the mean dwell time.

As it is known[89] (see also ref.[71]), the mean dwell time can be presented in two

equivalent forms:

h�Dw(xi; xf )i =

R
1

�1
dt
R xf
xi
j	(x; t)j2dxR

1

�1
Jin(xi; t)dt

(14)

and

h�Dw(xi; xf )i =

R
1

�1
tJ(xf ; t)dt�

R
1

�1
tJ(xi; t)dtR

1

�1
Jin(xi; t)dt

; (140)

with �1 < xi � 0 and a � xf < 1. Let us observe that in the �rst de�nition,

eq.(14), of the mean dwell time, in integrating over t it is used a weight di�erent from the

one introduced by us in Sect.2. Let us comment on the meaning of the weight function

(the \measure"). Taking into account the relation
R
1

�1
Jin(xi; t)dt =

R
1

�1
j	(x; t)j2dx,

which follows from the continuity equation, one can easily see that the weight of eq.(14)

is dP (x; t) = j	(x; t)j2dx =
R
1

�1
j	(x; t)j2dx , which has the well-known quantum-

mechanical meaning of probability for a particle to be localized, or to dwell, in the spatial

region (x; x + dx) at the instant t, independently of the motion direction. Then, the

integrated quantity P (x1; x2; t) =
R x2
x1
j	(x; t)j2dx =

R
1

�1
j	(x; t)j2dx , has the meaning

of probability of �nding the particle inside the spatial interval (xi; xf) at the instant t

(see also ref.[90]).

The equivalence of relations (14) and (14') is a consequence of the continuity equation

which links the probabilities associated with the two processes: \dwelling inside" and

\passing through" the interval (xi; xf ). However, we can note that the applicability of

the integrated weight P (x1; x2; t) for the time analysis (in contrast with the space analysis)
is limited, since it allows calculating the mean dwell times only, but not their variances.

Taking into account that J(xi; t) = Jin(xi; t) + JR(xi; t) + Jint(xi; t) and J(xf ; t) =
JT(xf ; t) (where Jin, JR and JT correspond to the wavepackets 	in(xi; t), 	R(xi; t) and
	T(xf ; t), which have been constructed in terms of the stationary wave functions  in,  R =

AR exp(�ikx) and  T, respectively), and that for Jint (originating from the interference

between 	in(xi; t) and 	R(xi; t)) it holds

Jint(x; t) = Re(i�h=m)[	in(x; t) @	
�

R
(x; t)=@x +	R(x; t) @	

�

in
(x; t)=@x]

and Z
1

�1

Jint(xi; t)dt = 0

we eventually obtain the interesting relation

h�Dw(xi; xf)i = hT iEh�T(xi; xf)i+ hR(xi)iEh�R(xi; xf)i (15)
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with hT iE = hjATj
2�iE=h�iE, hR(xi)iE = hRiE + hr(xi)i, hRiE = hjARj

2�iE=h�iE,

hT iE + hRiE = 1, and with

hr(x)i =

R
1

�1
[J+(x; t)� Jin(x; t)]dtR

1

�1
Jin(xi; t)dt

:

We stress that hr(x)i is negative and tends to 0 when x tends to �1.

When 	in(xi; t) and 	R(xi; t) are well separated in time, i.e. hr(x)i = 0, one obtains

the simple well-known[33] weighted average rule:

h�Dw(xi; xf )i = hT iE h�T (xi; xf)i+ hRiE h�R(xi; xf )i (16)

For a rectangular barrier with �a >> 1 and quasi-monochromatic particles, the ex-

pressions (15) and (16) with xi = 0 and xf = a transform into the known expressions

h�Dw(xi; xf)i = h�hk=�V0iE ; (15a)

(were we took account of the interference term hr(x)i), and

h�Dw(xi; xf)i = h2=��iE ; (16a)

(where the interference term hr(x)i is now equal to 0).

When AR = 0, i.e. the barrier is transparent, the mean dwell time (14),(14') is

automatically equal to

h�Dw(xi; xf)i = h�T(xi; xf )i : (17)

It is not clear, however, how to de�ne directly the variances of the dwell-time distribu-

tions. The approach proposed in ref.[91] seems rather arti�cial, with its abrupt switching

on of the initial wavepacket. It is possible to de�ne the variances of the dwell-time dis-

tributions indirectly, for example by means of relation (15), when basing ourselves on the

standard deviations �(�T), �(�R) of the transmission-time and re
ection-time distribu-

tions.

4 A brief analysis of the Larmor and B�uttiker-

Landauer \clock" approaches

One can realize that the introduction of additional degrees of freedom as \clocks" may

distort the true values of the tunnelling time. The Larmor clock uses the phenomenon

of the change of the spin orientation (the Larmor precession and spin-
ip) in a weak

homogeneous magnetic �eld superposed to the barrier region. If initially the particle is

polarized in the x direction, after the tunnelling its spin gets small y and z components.

The Larmor times �Lay;T and �Laz;T are de�ned by the ratio of the spin-rotation angles [on

12



their turn, de�ned by the y� and z� spin components] to the (precession and rotation)

frequency[13,14,79]. For an opaque rectangular barrier with �a >> 1, the two expressions

were obtained:

h�Lay;tuni = h�Dw(xi; xf )i = h�hk=�V0iE (18)

and

h�Laz;tuni = hma=�hkiE : (19)

In refs.[48,82] it was noted that, if the magnetic �eld region is in�nitely extended, the

expression (18) just yields |after having averaged over the small energy spread of the

wavepacket| the phase tunnelling time, eq.(11a).

As to eq.(19), it refers in reality not to a rotation, but to a jump to \spin-up" or

\spin-down" (spin-
ip), together with a Zeeman energy-level splitting[49,79]. Due to

the Zeeman splitting, the spin component parallel to the magnetic �eld corresponds to

a higher tunnelling energy, and hence the particle tunnels preferentially to that state.

This explains why the tunnelling time �Laz;tun entering eq.(19) depends only on the absolute
value jATj (or rather on djATj=dE), and coincides with expression (12a).

The B�uttiker-Landauer clock[49,80,81] is connected with the oscillation of the barrier

(absorption and emission of \modulation" quanta), during tunnelling. Also in this case

one can realize (for the same reasons as for h�Laz;tuni) that the coincidence of the B�uttiker-
Landauer time with eq.(12a) is connected with the energy dependence of jATj.

5 A short analysis of the kinematical-path ap-

proaches

The Feynman path-integral approach to quantum mechanics was applied in [72-75]

to evaluate the mean tunnelling time (by averaging over all the paths that have the

same beginning and end points) with the complex weight factor exp[iS(x(t))=�h], where
S is the action associated with the path x(t). Such a weighting of the tunnelling times

implies the appearance of real and imaginary components[49]. In ref.[72] the real and

imaginary parts of the complex tunnelling time were found to be equal to h�Lay;tuni and to

-h�Laz;tuni, respectively. An interesting development of this approach, its instanton version,

is presented in ref.[75]. The instanton-bounce path is a stationary point in the Euclidean

action integral. Such a path is obtained by analytic continuation to imaginary time of

the Feynman-path integrands (which contain the factor exp(iS=�h)). This path obeys a

classical equation of motion inside the potential barrier with its sign reversed (so that it

actually becomes a well). In ref.[75] the instanton bounces were considered as real physical

processes. The bounce duration was calculated in real time, and was found to be in good

agreement with the one evaluated via the phase-time method. The temporal density of

13



bounces was estimated in imaginary time, and the obtained result |in the phase-time

approximation limit| coincided with the tunnelling-time standard deviation (as given

by eq.(12)). Here one can see a manifestation of the equivalence (in the phase-time

approximation) of the Schroedinger and Feynman representations of quantum mechanics.

Another de�nition of the tunnelling time is connected with the Wigner path distribu-

tion[76,77]. The basic idea of this approach, reformulated by Muga, Brouard and Sala,

is that the tunnelling-time distribution for a wavepacket can be obtained by considering

a classical ensemble of particles with a certain distribution function, namely the Wigner

function f(x; p): so that the 
ux at position x can be separated into positive and negative

components:

J(x) = J+(x) + J�(x) (20)

with J+ =
R
1

0
(p=m)f(x; p)dp and J� = J � J+. They formally obtained the same

expressions (3) and (5), for the transmission, tunnelling and penetration durations, as in

the OR formalism, provided that J� replaces our J�. The dwell time decomposition,

then, takes the form

h�Dw(xi; xf )i = hT iE h�T(xi; xf )i+ hRM(xi)iE h�R(xi; xf )i (21)

with RM(x) =
R
1

0
jJ�(x; t)jdt. Asymptotically, hRM(x)i tends to our quantity hRiE and

eq.(21) takes the form of the known \weighted average rule" (16).

One more alternative is the stochastic method for wavepackets in ref.[92]. It also leads

to real times, but its numerical implementation is not trivial[93].

In ref.[83] the Bohm approach to quantum mechanics was used to choose a set of

classical paths which do not cross each other. The Bohm formulation, on one side, can

be regarded as equivalent to the Schroedinger equation[94], while on the other side can

perhaps provide a basis for a nonstandard interpretation of quantum mechanics[49]. The

expression obtained in ref.[83] for the mean dwell time is not only positive de�nite but

also unambiguously distinguishes between transmitted and re
ected particles:

�Dw(xi; xf) =
Z

1

0

dt
Z xf

xi

j	(x; t)j2dx = T �T(xi; xf ) +R �R(xi; xf) (22)

with

�T(xi; xf ) =
Z

1

0

dt
Z xf

xi

j	(x; t)j2�(x� xc)dx=T (23)

�R(xi; xf) =
Z

1

0

dt
Z xf

xi

j	(x; t)j2�(xc � x)dx=T (24)

where T and R are the mean transmission and re
ection probability, respectively. The

\bifurcation line" xc = xc(t), which separates the transmitted from the re
ected trajec-

tories, is de�ned through the relation
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T =

Z
1

�1

dtj	(x; t)j2�(x� xc)dx : (25)

Let us add that two main di�erences exist between this (Leavens') and our formalism:

(i) a di�erence in the temporal integrations (which are
R
1

0
dt and (

R
1

�1
dt, respectively),

that sometimes are relevant; and (ii) a di�erence in the separation of the 
uxes, that we

operate \by sign" (cf. eqs.(1),(2)) and here it is operated by the line xc:

J(x; t) = [J(x; t)]T + [J(x; t)]R (26)

with [J(x; t)]T = J(x; t) �(x� xc(t)), [J(x; t)]R = J(x; t) �(xc(t)� x).

6 Characteristics of the tunnelling evolution

The results of the calculations presented in ref.[71], within the OR formalism, show

that: (i) the mean tunnelling time does not depend on the barrier width a for su�ciently

large a (\Hartman e�ect"); (ii) the quantity h�tun(0; a)i decreases when the energy in-

creases; (iii) the value of h�pen(0; x)i rapidly increases for increasing x near x = 0 and

afterwards tends to saturation (even if with a very slight, continuous increasing) for values

near x = a; and (iv) at variance with ref.[95], no plot for the mean penetration time of

our wavepackets presents any interval with negative valuesk, nor with negative slop for

increasing x.
In Fig.2 the dependence of the values of h�tun(0; a)i on a is presented for gaussian wave

packets

G(k � k) � C exp[�(k � k)2=(2�k)2]

and rectangular barriers with the same parameters as in ref.[95]: namely, V0 = 10 eV;

E = 2:5, 5, and 7.5 eV with �k = 0:02 �A
�1

(curves 1a, 2a, 3a respectively); and E = 5

eV with �k = 0:04 �A
�1

and 0:06 �A
�1

(curves 4a, 5a, respectively). On the contrary, the

curves for ht+(a)i, corresponding to di�erent energies and di�erent �k, are all practically
superposed to the single curve 6. Moreover, since h�Ph

tun
i depends only very weakly on

a, the quantity h�tun(0; a)i depends on a essentially through the term ht+(0)i (see curves

1b�5b).

Let us emphasize that all these calculations show that ht+(0)i assumes negative values
(see also [96]). Such \acausal" time-advance is a result of the interference between the

incoming waves and the waves re
ected by the barrier forward edge: It happens that the

re
ected wavepacket cancel out the back edge of the incoming-wavepacket, and the larger

the barrier width, the larger is the part of the incoming-wavepacket back edge which is

kSee, however, footnotek)
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extinguished by the re
ected waves, up to the saturation (when the contribution of the

re
ected-wavepacket becomes almost constant, independently of a). Since all ht+(0)i are

negative, eq.(13) yields that the values of h�tun(0; a)i are always positive and larger than

h�Ph
tun
i. In connection with this fact, it is worthwhile to note that the example with a

classical ensemble of two particles (one with a large above-barrier energy and the other

with a small sub-barrier energy), presented in ref.[93], does not seem to be well-grounded,

not only because that tunnelling is a quantum phenomenon without a direct classical

limit, but, �rst of all, because ref.[93] overlooks the fact that the values of ht+(0)i are

negative.

Let us mention that the last calculations by Zaichenko[96] (with the same parameters)

have shown that such time-advance is noticeable also before the barrier front (even if near

the barrier front wall, only). He found also negative values of h�pen(xi; xf )i, for instance,

for xi = �a=5 and xf in the interval 0 to 2a=5: but this result too is not acausal, because

the last equation of Sect.2 (for example) is ful�lled in this case.

7 On the general validity of the Hartman{Fletcher

e�ect (HE)

We called[48] \Hartman{Fletcher e�ect" (or for simplicity \Hartman e�ect", HE) the

fact that for opaque potential barriers the mean tunnelling time does not depend on the

barrier width, so that for large barriers the e�ective tunnelling{velocity can become arbi-

trarily large. Such e�ect was �rst studied in refs.[66,67] by the stationary-phase method

for the one-dimensional tunnelling of quasi-monochromatic nonrelativistic particles; where

it was found that the phase tunnelling time

�Ph
tun

= �h d(argAT + ka)=dE (27)

(which equals themean tunnelling time h�tuni when it is possible to neglect the interference
between incident and re
ected waves outside the barrier[48]) was independent of a. In

fact, for a rectangular potential barrier, it holds in particular that AT = 4ik�[(k2 �

�2)D� + 2ik�D+]
�1 exp[�(� + ik)a], with D� = 1� exp(�2�), and that �Phtun = 2=(��)

when �a >> 1.

Now we shall test the validity of the HE for all the other theoretical expressions

proposed for the mean tunnelling times. Let us �rst consider the mean dwell time

h�Dw
tun
i, ref.[89], the mean Larmor time h�Lay;tuni,[79,13] and the real part of the complex

tunnelling time obtained by averaging over the Feynman paths Re�Ftun, ref.[72], which all

equal �hk=(�V0) in the case of quasi-monochromatic particles and opaque rectangular bar-

riers: One can immediately see[61] that also in these cases there is no dependence on the

barrier width, and consequently the HE is valid. As to the OR nonrelativistic approach,
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developed in refs.[48,71,96], the validity of the HE for the mean tunnelling time can be

inferred directly from the expression

httuni = ht+(a)i � ht+(0)i = h�Ph
tun
iE � ht+(0)i ; (28)

it was moreover con�rmed by the numerous calculations performed in the same set of

papers[48,71,96] for various cases of gaussian wavepackets (see also Sect.6 above).

Let us now consider, by contrast, the second Larmor time[69]

�Lz;tun =
�h[h(@jATj=@E)

2i

hjATj2i]1=2
; (29)

the B�uttiker-Landauer time �B�Ltun ,[80] and the imaginary part of the complex tunnelling

time Im�Ftun,[72] obtained within the Feynman approach, which too are equal to eq.(29):

They all become equal to a�=(�h�), i.e., they all are proportional to the barrier width

a, in the opaque rectangular-barrier limit;[61] so that the HE is not valid for them!

However, it was shown in ref.[48] that these last three times are not mean times, but merely

standard deviations (or \mean square 
uctuations") of the tunnelling-time distributions,

because they are equal to [Ddyn�tun]
1=2, where Ddyn�tun is that part of D t+(xf ) [or

analogously of D tT(xi; xf )] which is due to the barrier presence and is de�ned by the

simple equation Ddyn �tun = D �tun � D t+(0), where D�tun = h� 2
tun
i � h�tuni

2 and

h� 2tuni = h[t+(a) � ht+(0)i]
2i + D t+(0). In conclusion, the former three times are not

connected with the peak (or group) velocity of the tunnelling particles, but with the

spread of the tunnelling velocity distributions.

All these results are obtained for transparent media (without absorption and dissi-

pation). As it was theoretically demonstrated in ref.[97] within nonrelativistic quantum

mechanics, the HE vanishes for barriers with high enough absorption. This was con�rmed

experimentally for electromagnetic (microwave) tunnelling in ref.[98].

The tunnelling through potential barriers with dissipation will be examined elsewhere.

Here let only add a comment. From some papers[99], it seems that the integral pene-

tration time, needed to cross a portion of a barrier, in the case of a very long barrier starts

to increase again |after the plateau corresponding to in�nite speed| proportionally to

the distance. This is due to the contribution of the above-barrier frequencies (or energies)

contained in the considered wavepackets, which become more and more important as the

tunnelling components are progressively damped down. In this paper, however, we refer

to the behaviour of the tunnelling (or, in the classical case, of the evanescent) waves.
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8 The Two-phase description of tunnelling

Let us mention also a new description of tunnelling which can be convenient for trans-

parent media, and also for Josephson junctions. In such a representation the transmission

and re
ection amplitudes have been rewritten[100,61] (for the same external boundary

conditions in Fig.1) in the form

AT = i Im (exp(i'1)) exp(i'2 � ika); AR = Re (exp(i'1)) exp(i'2 � ika) ; (30)

where the phases '1 and '2 are typical parameters for the description of a two-element

monodromic matrix S, or of a two-channel collision matrix S; with elements S00 = S11 =

AT and S01 = S10 = AR and with the unitarity condition [i; j; k = 0; 1]

�1

j=0SijS
�

jk = �ik :

In particular, for rectangular potential barriers it is '1 = arctanf2�=[(1 +

�2) sinh(�a)]g, and '2 = arctanf� sinh(�a)=[sinh2(�a=2) � �2 cosh2(�a=2)]g, with

� = �=k and �2 = �20 � k2, it being �0 = [2�V0]
1=2=�h. In terms the the phases

'1 and '2, the expressions for �Ph
tun

and �Lz;tun = �B{L
tun

acquire the following form:

�Ph
tun

= �h
@(argAT + ka)

@E
= �h

@('2)

@E
; �Lz;tun = �B{L

tun
= �h

@'1
@E

cot('1) : (31)

So, one can see that in the opaque barrier limit the phases '2, or '1, enter into the play
only when the considered times are dependent on a, or independent of a, respectively.

For the times h�Dwtun i = h�Lz;tuni, one obtains in this formalism a complicated expression,

which can be represented[61] only in terms of both '1 and '2.
In the presence of absorption, both phases become complex and hence the formulae

(31) become much more lengthy, and in general depend on a with a violation of the HE,

in accordance with refs.[97,98].

9 Time-dependent Scr�odinger and Helmholtz equa-

tions: Similarities and distinctions between their

solutions.

The formal analogy is well-known between the (time-independent) Schroedinger equa-

tion in presence of a potential barrier and the (time-independent) Helmholtz equation for

a wave-guided beam; this was the basis for regarding the evanescent waves in suitable

(\undersized") waveguides as simulating the case of tunnelling photons. We want here

to study analogies and di�erences between the corresponding time-dependent equations.
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Let us mention, incidentally, that a similar analysis for the relativistic particle case was

performed for instance in refs.[101,102].

Here we shall deal with the comparison of the solutions of the time-dependent

Schroedinger equation (for nonrelativistic particles) and of the time-dependent Helmholtz

equation for electromagnetic waves. In the time-dependent case such equations are no

longer mathematically identical, since the time derivative appear at the �st order in the

former and at the second order in the latter. We shall take advantage, however, of a

similarity between the probabilistic interpretation of the wave function for a quantum

particle and for a classical electromagnetic wavepacket (cf., e.g., refs.[103]); this will be

enough for introducing identical de�nitions of the mean time instants and durations (and

variances, etc.) in the two cases (see also refs.[104,105]).

Concretely, let us consider the Helmholtz equation for the case of an electromagnetic

wavepacket in the hollow rectangular waveguide, with an \undersized" segment, depicted

in Fig.3 (with cross section a�b in its narrow part, it being a < b), which was largely

employed in experiments with microwaves[56]. Inside the waveguide, the time-dependent

wave equation for any of the vector quantities ~A; ~E; ~H is of the type

� ~A�
1

c2
@2 ~A

@t2
= 0 (32)

where ~A is the vector potential, with the subsidiary gauge condition div ~A = 0, while
~E = �(1=c)@ ~A=@t is the electric �eld strength, and ~H = rot ~A is the magnetic �eld

strength. As is known (see, for instance, refs.[106-108]), for boundary the conditions

Ey = 0 for z = 0 and z = a

Ez = 0 for y = 0 and y = b (33)

the monochromatic solution of eq.(32) can be represented as a superposition of the fol-

lowing waves (for de�niteness we chose TE-waves):

Ex = 0

E�

y = E0 sin (kzz) cos (kyy) exp [i(!t�
x)]

E�

z = �E0(ky=kz) cos (kzz) sin (kyy) exp [i(!t�
x)] ; (34)

with k2z + k2y + 
2 = !2=c2 = (2�=�)2, kz = m�=a, ky = n�=b, m and n being integer

numbers. Thus:


 = 2�[(
1

�
)2 � (

1

�c
)2]1=2; (

1

�c
)2 = (

m

2a
)2 + (

n

2a
)2 (35)
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where 
 is real (
 = Re 
) if � < �c, and � is imaginary (� = Im �) if � > �c. Similar

expressions for � were obtained for TH-waves[56,107].

Generally speaking, any solution of eq.(32) can be written as a wavepacket constructed

from monochromatic solutions (34), analogously to what hold for any solution of the

time-dependent Schroedinger equation. Without forgetting that in the �rst-quantization

scheme, a probabilistic single-photon wave function can be represented[103,109] by a

wavepacket for ~A: which in the case of plane waves writes for example

~A(~r; t) =
Z
k>0

d3~k

k
~�(~k) exp (i~k�~r � ikct) (36)

where ~r � (x; y; z); ~�(~k) =
P

2

i=1 �i(
~k) ~ei(~k); ~ei�~ej = �i;j; ~ei�~k = 0; i; j = 1; 2 (or

i; j = y; z if ~k�~r = kxx); k = j~kj; k = !=c; and �i(~k) is the amplitude for the photon

to have momentum ~k and polarization ~ei, so that j�i(~k)j
2d~k is then proportional to the

probability that the photon have a momentum between ~k and ~k + d~k in the polarization

state ~ei. Though it is not possible to localize a photon in the direction of its polarization,

nevertheless, for one-dimensional propagation it is possible to use the space-time prob-

abilistic interpretation of eq.(36) along the axis x (the propagation direction)[109,105].

This can be realized from the following. Usually one does not have recourse directly to

the probability density and probability 
ux density, but rather to the the energy density

s0 and the energy 
ux density sx; they however do not constitute a 4-dimensional vector,

being components of the energy-momentum tensor. Only in two dimensions their conti-

nuity equation[103] is Lorentz invariant!; we can write down it (for one space dimension)

as:

@s0=@t + @sx=@x = 0 ; (37)

where

s0 = [ ~E�� ~E + ~H�� ~H]=8�; sx = c Re[ ~E�� ~H]x=2� (38)

and the axis x is the motion direction (i.e., the mean momentum direction) of the

wavepacket (36). As a normalization condition one can identify the integrals over space

of s0 and sx with the mean photon energy and the mean photon momentum, respec-

tively. With this normalization, which bypasses the problem of the impossibility of a

direct probabilistic interpretation in space of eq.(36), we can de�ne by convention as

�em dx =
S0 dxR
S0 dx

; S0 =
Z
s0 dydz (39)

the probability density for a photon to be localized in the one-dimensional space interval

(x; x+ dx) along the axis x at time t, and as
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Jem;x dx =
SxdxR
Sxdx

; Sx =
Z
sx dydz (40)

the 
ux probability density for a photon to pass through point x (i.e., through the plane

orthogonal at x to the x-axis) during the time interval (t; t + dt); on the analogy of

the probabilistic quantities ordinarily introduced for particles. The justi�cation, and

convenience, of such de�nitions are also supported by the coincidence of the wavepacket

group velocity with the velocity of the energy transportation, which was established for

electromagnetic plane-waves packets in the vacuum; see, e.g., ref.[110]. For a de�nition

of group velocity in the case of evanescent waves, see Appendix B in ref.[111].

In conclusion, the solution (36) of the time-dependent Helmholtz equation (for relativistic

electromagnetic wavepackets) is quite similar to the plane-wave packet solution of the

time-dependent Schroedinger equation (for non-relativistic quantum particles), with the

following di�erences:

(i) the space-time probabilistic interpretation of eq.(36) is valid only in the one-

dimensional space case, at variance with the Schroedinger case. It is interesting that

the same conclusion holds for waveguides or transparent media, when re
ections and tun-

nellings can take place; in particular, for the waveguides depicted in Fig.3, and for optical

experiments (with frustrated total re
ection)[51,52] in the case, e.g., of a double prism

arrangement;

(ii) the energy-wavenumber relation for non-relativistic particles (corresponding to selfad-

joint, linear Hamiltonians) is quadratic: for instance, in vacuum it is E = �h2k2=2m; this

leads to the fact that wavepackets do always spread. By contrast, the energy-wavenumber

relation for photons in the vacuum is linear: E = �hck; and therefore there is no spreading.

On the analogy of conventional nonrelativistic quantum mechanics, one can de�ne from

eq.(40) the mean time at which a photon passes through point (or plane) x as[48,105]:

ht(x)i =
Z

1

�1

t Jem;xdt =

R
1

�1
t Sx(x; t)dtR

1

�1
Sx(x; t)dt

(41)

(where, with the natural boundary conditions �i(0) = �i(1) = 0, we can use in the

energy E = �hck representation the same time operator already adopted for particles

in nonrelativistic quantum mechanics; and hence one can prove the equivalence of the

calculations of ht(x)i, D t(x), etc., in both the time and energy representations).

In the case of 
uxes which change their signs with time we can introduce also for

photons, following refs.[48,71], the quantities Jem;x;� = Jem;x �(�Jem;x) with the same

physical meaning as for particles. Therefore, suitable expressions for the mean values and

variances of propagation, tunnelling, transmission, penetration, and re
ection durations

can be obtained in the same way as in the case of nonrelativistic quantum mechanics for

particles (just by replacing J with Jem). In the particular case of quasi-monochromatic

wavepackets, by using the stationary-phase method (under the same boundary conditions

21



considered in Sect.2 for particles), we obtain for the photon phase tunnelling time the

expression

�Phtun;em =
2

c�em
(42)

,

for L�em >> 1, quantity L being the length of the undersized waveguide (cf. Fig.3).

Eq.(42) is to be compared with eq.(11a). From eq.(42) we can see that when L�em > 2,

the e�ective tunnelling velocity

�Ph
tun;em =

L

�Phtun;em
(43)

is Superluminal, i.e., larger than c. This result agrees with all the known experimental

results performed with microwaves (cf., e.g., refs. [56,65,98]).

10 Tunnelling times in frustrated total internal re-


ection experiments

Some results of optical experiments with tunnelling photons were described in ref.[60a],

where it was considered the scheme here presented in Fig.4a. A light beam passes from

a dielectric medium into an air slab with width a. For incidence angles i greater than

the critical angle ic of total internal re
ection, most of the beam is re
ected, and a small

part of it tunnels through the slab. Here tunnelling occurs in the x direction, while the

wavepacket goes on propagating in the z direction. Its peak, which is emerging from

the second interface, has undergone a temporal shift, which is equal to the mean phase

tunnelling time h�Phtun, and a spatial shift D along z. Since it is natural to assume that the
propagation velocity �z along y is uniform during tunnelling, then

D = �zh�
Ph

tuni (44)

so that the mean phase time can be simply obtained by measuring D.

Since tunnelling imposes also a change in the mean energy (or wavenumber) of a

wavepacket, and the plane wave components with smaller incident angle are better trans-

mitted than those with larger incidence angles, then the emerging beam su�ers an angular

deviation �i, that can be interpreted as a beam mean-direction rotation during tunnelling.

And hence, by taking into account formulas (12)-(12a) and Sect.4, we can conclude that

�i and the quantity h�Laz;tuni = (D �Ph
tun
)1=2 are proportional to each other:

�i = 
h�Laz;tuni (45)
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where 
 is the rotation frequency which was calculated in ref.[60a]. So, the time h�Laz;tuni =

(D �Ph
tun
)1=2 too can be simply obtained by measuring �i. Both these times characterize

the intrinsic properties of the tunnelling process, under the conditions imposed on the

wavepackets (which were described in Sect.2).

Let us remark that the conclusion of the authors of ref.[60a] about the fact that the

mean phase time h�Ph
tun
i was inadequate as a de�nition of the tunnelling time is not true,

because they describe the wave function in the air slab by the evanescent term exp (��x)
only, instead of considering the superposition � exp (��x) + � exp (�x) of evanescent and

anti-evanescent waves. It is important to recall that such a superposition of decreasing

and increasing waves |normally used in the case of particle tunnelling| is necessary to

obtain a resulting non-zero 
ux!.[48]

With such a correction, one can see that the very small values of h�Ph
tun
i (about 40

fs) obtained in the experiment[60a] for a = 20 � imply for the tunnelling photon a

Superluminal peak velocity of about 5�1010 cm/s.

But in the double-prism arrangement, it was predicted by Newton, and preliminarly

con�rmed 250 years later by F.Goos and H.H�anchen, that the re
ected and transmitted

beams are also spatially shifted with respect to what expected from geometrical optics

(cf. Fig.4b). Recent rather interesting esperiments have been performed by Haibel et

al.[60c], who discovered a strong dependence of the mentioned shift on the beam width

and especially on the incidence angle.

11 A remark on reshaping

The Superluminal phenomena, observed in the experiments with tunnelling photons

and evanescent electromagnetic waves[56-60], generated a lot of discussions on relativis-

tic causality[112-120]. This revived an interest also in similar phenomena that had been

previously observed in the case of electromagnetic pulses propagating in dispersive me-

dia[88,121,122]. On the other side, it is well-known since long that the wavefront velocity

(well de�ned when the pulses have a step-function envelope or at least an abruptly raising

forward edge) cannot exceed the velocity of light c in vacuum[108,123]. Even more, the

(Sommerfeld and Brillouin) precursors |that many people, even if not all, believe to be

necessarily generated together with any signal generation| are known to travel exactly at

the speed c in any media (for a recent approach to the question, see ref.[124]). Such phe-

nomena were con�rmed by various theoretical methods and in various processes, includ-

ing tunnelling[102,112-113,125]. Discussions are presently going on about the question

whether the signal velocity has to do with the previous speed c of with the group veloc-

ity.[125,124] Another point under discussion is whether the shape of a realistic wavepacket

must possess, or not, an abruptly raising forward edge.[102,115-118].

A simple way of understanding the problem, in a \causal" manner, might consist in

explaining the Superluminal phenomena during tunnelling as simply due to a \reshaping",
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with attenuation, of the pulse, as already attempted (at the classical limit) in refs.[100-

102]: namely, the later parts of an incoming pulse are preferentially attenuated, in such

a way that the outcoming peak appears shifted towards earlier times even if it is nothing

but a portion of the incident pulse forward tail[57]. In particular, the following scheme is

compatible with the usual idea of causality: If the overall pulse attenuation is very strong

and, during tunnelling, the leading edge of the pulse is less attenuated than the trailing

edge, then the time envelope of the outcoming (small) 
ux can stay totally beneath the

initial temporal envelope (i.e., the envelope of the initial pulse in the case of free motion

in vacuum).[116-120] And, if AT depends on energy much more weakly than the initial

wavepacket weight-factor, then the spectral expansion, and hence the geometrical form,

of the transmitted wavepacket will be practically the same as the spectral expansion, and

the form, of the entering wavepacket (reshaping). By contrast, if the dependence of AT on

energy is not weak, the pulse form and width can get strongly modi�ed (\reconstruction").

The very de�nition of causality seems to be in need of some careful revision[126].

Various, possible (su�cient but not necessary) \causality conditions" have been actually

proposed in the literature. For our present purposes, let us mention that an acceptable,

more general causality condition (allowing the time envelope of the �nal 
ux, J�n, to
arrive at a point xf � a even earlier than that of the initial pulse) might be for example

the following one:

Z t

�1

[Jin(xf ; �)� J�n;+(xf ; �)]d� � 0 ; �1 < t <1 ; xf � a : (46)

It simply requires that, during any (upper limited) time interval, the integral �nal 
ux

(along any direction) does not exceed the integral \initial" 
ux which would pass through

the same position xf in the case of free motion; although one can �nd �nite values of t1
and t2 (�1 < t1 < t2 <1) such that

R t2
t1
[Jin(xf ; �)� J�n;+(xf ; �)]d� < 0.

But other conditions for causality can of course be proposed; namely:

R t0
�1

tJ�n;+(xf ; �)d�R t0
�1

J�n;+(xf ; �)d�
�

R t0
�1

tJin(xf ; �)d�R t0
�1

Jin(xf ; �)d�
� 0 ; (46a)

where t0 is the instant corresponding to the intersection (after the �nal-peak appearance)

of the time envelopes of those two 
uxes. Relation (46a) simply means that there is a

delay in the (time averaged) appearance at a certain point xf > a of the forward part of

the �nal wavepacket, with respect to the (time averaged) appearance of the forward part

of the initial wavepacket in the case that it freely moved (in vacuum). Conditions (46)

and (46a) are rather general.

It is curious that, without violating such causality conditions, a piece of information,

by means of a (low-frequency) modulation of a (high-frequency) carrying wave, can be

transmitted |even if with a strong attenuation| with a Superluminal group velocity.
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12 Tunnelling through successive barriers

Let us �nally study the phenomenon of one-dimensional non-resonant tunnelling

through two successive opaque potential barriers[128], separated by an intermediate free

region R, by analyzing the relevant solutions to the Schroedinger equation. We shall �nd

that the total traversal time does not depend not only on the opaque barrier widths (the

so-called \Hartman e�ect"), but also on the R width: so that the e�ective velocity in the

region R, between the two barriers, can be regarded as in�nite. This agrees with the

results known from the corresponding waveguide experiments, which simulated the tun-

nelling experiment herein considered due to the formal identity between the Schroedinger

and the Helmholtz equation.

Namely, in this Section we are going to show that |when studying an experimental

setup with two rectangular opaque potential barriers (Fig.5)| the (total) phase tunneling

time through the two barriers does depend neither on the barrier widths nor on the

distance between the barriers.[128]

Let us consider the (quantum-mechanical) stationary solution for the one-dimensional

(1D) tunnelling of a non-relativistic particle, with mass m and kinetic energy E =

�h2k2=2m = 1

2
mv2, through two equal rectangular barriers with height V0 (V0 > E) and

width a, quantity L�a � 0 being the distance between them. The Schr�odinger equation

is

�
�h2

2m

@2

@x2
 (x) + V (x) (x) = E  (x) ; (47)

where V (x) is zero outside the barriers, while V (x) = V0 inside the potential barriers. In
the various regions I (x � 0), II (0 � x � a), III (a � x � L), IV (L � x � L+ a) and V

(x � L+ a), the stationary solutions to eq.(47) are the following

8>>>>>>><
>>>>>>>:

 I = e+ikx + A1R e
�ikx

 II = �1 e
��x + �1 e

+�x

 III = A1T

h
eikx + A2R e

�ikx
i

 IV = A1T

h
�2 e

��(x�L) + �2 e
+�(x�L)

i
 V = A1T A2T e

ikx ;

(48a)

(48b)

(48c)

(48d)

(48e)

where � �
q
2m(V0 � E)=�h, and quantities A1R, A2R, A1T, A2T, �1, �2, �1 and �2 are the

re
ection amplitudes, the transmission amplitudes, and the coe�cients of the \evanes-

cent" (decreasing) and \anti-evanescent" (increasing) waves for barriers 1 and 2, respec-

tively. Such quantities can be easily obtained from the matching (continuity) conditions:

8><
>:
 I(0) =  II(0)
@ I

@x

�����
x=0

=
@ II

@x

�����
x=0

(49a)

(49b)
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8><
>:
 II(a) =  III(a)
@ II

@x

�����
x=a

=
@ III

@x

�����
x=a

(50a)

(50b)

8><
>:
 III(L) =  IV(L)
@ III
@x

�����
x=L

=
@ IV
@x

�����
x=L

(51a)

(51b)

8><
>:
 IV(L+ a) =  V(L + a)
@ IV

@x

�����
x=L+a

=
@ V

@x

�����
x=L+a

(52a)

(52b)

Equations (49-52) are eight equations for our eight unknowns (A1R, A2R, A1T, A2T,

�1, �2, �1 and �2). First, let us obtain the four unknowns A2R, A2T, �2, �2 from eqs.(51)

and (52) in the case of opaque barriers, i.e., when �a!1:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

�2 �! eikL
2ik

ik � �
(53a)

�2 �! eikL�2�a
�2ik(ik + �)

(ik � �)2
(53b)

A2R �! e2ikL
ik + �

ik � �
(53c)

A2T �! e��ae�ika
�4ik�

(ik � �)2
(53d)

Then, we may obtain the other four unknowns A1R, A1T, �1, �1 from eqs.(49) and

(50), again in the case �a!1; one gets for instance that:

A1T = �e�2�a
4i�k

(�� ik)2
A (54)

where

A �
2�k

2�k cos k(L� a) + (�2 � k2) sin k(L� a)

results to be real; and where, it must be stressed,

� � arg

 
ik + �

ik � �

!
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is a quantity that does not depend on a and on L. This is enough for concluding that the

phase tunnelling time (see, for instance, refs.[42,48,66,67,70,128])

�phtun � �h
@ arg

h
A1TA2Te

ik(L+a)
i

@E
= �h

@

@E
arg

"
�4ik�

(ik � �)2

#
; (55)

while depending on the energy of the tunnelling particle, does not depend on L + a (it

being actually independent both of a and of L).

This result does not only con�rm the so-called \Hartman e�ect"[48,66,67,70,128] for

the two opaque barriers |i.e., the independence of the tunnelling time from the opaque

barrier widths|, but it does also extend such an e�ect by implying the total tunnelling

time to be independent even of L (see Fig.5): something that may be regarded as a

further evidence of the fact that quantum systems seem to behave as non-local.[128-

131,88,87,71,48] It is important to stress, however, that the previous result holds only for

non-resonant (nr) tunnelling: i.e., for energies far from the resonances that arise in region

III due to interference between forward and backward travelling waves (a phenomemon

quite analogous to the Fabry-P�erot one in the case of classical waves). Otherwise it is

known that the general expression for (any) time delay � near a resonance at Er with

half-width � would be � = �h�[(E � Er)
2 + �2]�1 + �nr.

The tunnelling-time independence from the width (a) of each one of the two opaque

barriers is itself a generalization of the Hartman e�ect, and can be a priori understood

|following refs.[57,62] (see also refs.[64,55])| on the basis of the reshaping phenomenon

which takes place inside a barrier.

With regard to the even more interesting tunnelling-time independence from the dis-

tance L�a between the two barriers, it can be understood on the basis of the interference

between the waves outcoming from the �rst barrier (region II) and traveling in region III

and the waves re
ected from the second barrier (region IV) back into the same region III.

Such an interference has been shown[48,70,131] to cause an \advance" (i.e., an e�ective

acceleration) on the incoming waves; a phenomenon similar to the analogous advance

expected even in region I. Namely, going on to the wavepacket language, we noticed in

ref.[48,70,131] that the arriving wavepacket does interfere with the re
ected waves that

start to be generated as soon as the packet forward tail reaches the (�rst) barrier edge: in

such a way that (already before the barrier) the backward tail of the initial wavepacket de-

creases |for destructive interference with those re
ected waves| at a larger degree than

the forward one. This simulates an increase of the average speed of the entering packet:

hence, the e�ective (average) 
ight-time of the approaching packet from the source to the

barrier does decrease.

So, the phenomena of reshaping and advance (inside the barriers and to the left of the

barriers) can qualitatively explain why the tunnelling-time is independent of the barrier

widths and of the distance between the two barriers. It remains impressive, nevertheless,

that in region III |where no potential barrier is present, the current is non-zero and the
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wavefunction is oscillatory,| the e�ective speed (or group velocity) is practically in�nite.

Loosely speaking, one might say that the considerd two-barriers setup is an \(intermedi-

ate) space destroyer". After some straightforward but rather bulky calculations, one can

moreover see that the same e�ects (i.e., the independence from the barrier widths and

from the distances between the barriers) are still valid for any number of barriers, with

di�erent widths and di�erent distances between them.

Finally, let us mention that the known similarity between photon and (nonrelativistic)

particle tunneling[48,57,61,62,70,132; see also 55,64,130] implies our previous results to

hold also for photon tunnelling through successive \barriers": For example, for photons

in presence of two successive band gap �lters: like two suitable gratings or two photonic

crystals. Experiments should be easily realizable; while indirect experimental evidence

seems to come from papers as [129,121].

At the classical limit, the (stationary) Helmholtz equation for an electromagnetic

wavepacket in a waveguide is known to be mathematically identical to the (stationary)

Schroedinger equation for a potential barrier;�� so that, for instance, the tunnelling of

a particle through and under a barrier can be simulated[48,70,58-62,86,132-134] by the

traveling of evanescent waves along an undersized waveguide. Therefore, the results of

this paper are to be valid also for electromagnetic wave propagation along waveguides

with a succession of undersized segments (the \barriers") and of normal-sized segments.

This agrees with calculations performed, within the classical realm, directly from Maxwell

equations[130,86,134,135], and has already been con�rmed by a series of \tunnelling" ex-

periments with microwaves: see refs.[58-60,133] and particularly [116,136].

13 Conclusions and prospects

I. A basic physical formalism for determining the collision and tunnelling times for

nonrelativistic particles and for photons seems to be now available:

(1) We have found selfconsistent de�nitions for the mean times and durations of various

collision processes (including tunnelling), together with the variances of their distribu-

tions. This was achieved by utilizing the properties of time, regarded as a quantum

observable (in quantum mechanics and in quantum electrodynamics).

(2) Such de�nitions seem to work rather well, at least for large (asymptotic) distances

between initial wavepackets interaction region, and for �nite distances between interaction

region and �nal wavepackets. In these cases the phase-time, the clock and the instanton

approaches yield results which happen to coincide either with the mean duration or with

the standard deviation [square root of the duration-distribution variance] forwarded by

��These equations are however di�erent (due to the di�erent order of the time derivative) in the time-

dependent case. Nevertheless, it can be shown that they still have in common classes of analogous

solutions, di�ering only in their spreading properties[48,70,61, and 131].
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our own formalism. And the (asymptotic) mean dwell time results to be the average

weighted sum of the tunnelling and re
ection durations: cf. eq.(16).

Notice that formulae (4), (6), (8) can be rewritten in a uni�ed way (in terms of the

mean square time durations) as follows:

h[�N(xi; xf )]
2i = [h�N(xi; xf)i]

2 +D�N(xi; xf ) (56)

with D�N(xi; xf) = D ts(xf ) + D t+(xi), where N may mean T or tun or pen or R, etc.,

and s = +;�: more precisely, s = � in the case of re
ection and s = + in the remaining

cases. Relations (56) can be further on rewritten in the following equivalent forms:

h[�N(xi; xf)]
2i = [hts(xf)� t+(xi)i]

2 +Dts(xi) : (56a)

We can now see that the square phase duration [h�Ph
T
i]2 + D �Ph

T
, and the square hybrid

time [�Lay;tun)
2 + (�Laz;tun)

2]2 introduced by B�uttiker[79], as well as the square magnitude of

the complex tunnelling time in the Feynman path-integration approach, are all examples

of mean square durations. Notice that the Feynman approach (in the case of its instanton

version) and the B�uttiker hybrid time (in the case of an in�nite extension of the magnetic

�eld) coincide with the mean square phase duration.

By the way, our present formalism has been already applied and tested in the time

analysis of nuclear and atomic collisions for which the boundary conditions are experimen-

tally and theoretically assigned in the region, asymptotically distant from the interaction

region, where the incident (before collision) and �nal (after collision) 
uxes are well sep-

arated in time, without any superposition and interference. And it has been supported

by results (see, in particular, refs.[29,30] and references therein) such as:

(i) the validity of a correspondence principle between the time-energy QM commutation

relation and the CM Poisson brackets;

(ii) the validity of an Ehrenfest principle for the average time durations;

(iii) the coincidence of the quasi-classical limit of our own QM de�nitions for time dura-

tions (when such a limit exists; i.e. for above-barrier energies) with analogous well-known

expressions of classical mechanics;

(iv) the direct and indirect experimental data on nuclear-reaction durations, in the range

10�21 � 10�15 s, and the compound-nucleus level densities extracted from those data.

Let us mention that for a complete extraction of the time-durations from indirect

measurements of nuclear-reaction durations it is necessary to have at disposal correct

de�nitions not only of the mean durations but also of the duration variances[30], as

provided by our formalism.

At last, let us recall that such a formalism provided also useful tools for resolving some

long-standing problems related to the time-energy uncertainty relation[29,30].

II. In order to apply the present formalism to the cases when one considers not only

asymptotic distances, but also the region inside and near the interaction volume, we had

29



to revise the notion of weighted average (or integration measure) in the time representa-

tion, by adopting the two weights J�(x; t)dt when evaluating instant and duration mean

values, variances, etc., for a moving particle, and the third weight dP (x; t) or P (x1; x2; t)dt

when calculating mean durations for a \dwelling" particle. And in terms of these three

weights we can express all the di�erent approaches proposed within conventional quantum

mechanics, including the mean dwell time, the Larmor-clock times, and the times given

by the various versions of the Feynman path-integration approach: Namely, we can put

them all into a single non-contradictory scheme on the basis of our formalism, even for a

particle inside the barrier.

The same three weights can be used also in the analogous quantum-mechanical for-

malism for the space analysis of collision and propagation processes (see also [18]).

III. Our 
ux separation into J+ and J� is not the only procedure to be possible

within conventional quantum mechanis (and quantum electrodynamics), although it is

the only non-coherent 
ux separation known to us avoiding the introducing of any new

postulates. In fact, one can also adopt the \coherent wavepacket separation" into positive

and negative momenta, which has a clear meaning outside the barrier, but is obtainable

only via a mathematical tool like the momentum Fourier expansion inside the barrier.

Such a separation can be transformed into an \incoherent 
ux separation" by exploiting

the postulate of the measurement quantum theory about the possibility of describing the

measurement conditions in terms of the corresponding projectors: that is to say, of the

projectors �exp;� onto positive-momentum and negative-momentum states, respectively

[cf. eq.(13a), Sect.2]. There are also 
ux separation schemes within nonstandard versions

of quantum theory (cf., e.g., Sect.5). However, whatever separation scheme we choose,

we have to stick to at least two necessary conditions:

(A) each normalized 
ux component must possess a probabilistic meaning, and

(B) the standard 
ux expressions, well-known in quantum collision theory, must be re-

covered in the asymptotically remote spatial regions.

In brief, with regard to the region inside and near a barrier, at least four kinds of

separation procedures for the wavepacket 
uxes do exist, which satisfy the previous con-

ditions:

(i) The OR separation J = J++J�, with J� = J �(�J), which was obtained from the con-

ventional continuity equation for probability (i.e., from the time-dependent Schroedinger

equation) without any new physical postulates or any new mathematical approxima-

tions[71]. The asymptotic behaviour, e.g., of the obtained expressions was tested by

comparison with other approaches and with the experimental results[48]; see also point

(v) below.

(ii) The separation proposed here, i.e., J = Jexp;++Jexp;� (quantities Jexp;� being the 
uxes

which correspond to �exp;�(x; t), respectively), is also a consequence of the conventional

probability continuity equation, provided that it is accepted the wave-function reduction
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postulate of ordinary quantum measurement theory. It corresponds to the adoption of

\semi-permeable" detectors, which are open for particles arriving from one direction only.

The asymptotic behaviour of the expressions, obtained on the basis of this separation,

coincides with that yielded by (i).

(iii) Relation (20) was obtained in the Muga-Brouard-Sala approach, within the physi-

cally clear \incoherent 
ux separation" of positive and negative momenta, but with the

additional introduction of the Wigner-path distributions.

(iv) Relation (26) was obtained in the Leavens' approach, on the basis of an incoherent 
ux

separation of the trajectories of particles to be transmitted from particles to be re
ected,

via the introduction of the nonstandard Bohm interpretation of quantum mechanics.

The 
ux separation schemes (i), (iii) and (iv) yield asymmetric expressions for the

mean dwell time near a barrier [equations (15), (21) and (22)-(25), respectively], appar-

ently due to the right-left asymmetry of the boundary conditions: we have incident and

re
ected wavepackets on the left, and only a transmitted wavepacket on the right. The

separation procedure (ii) yields the symmetric expression (16) for the mean dwell time

even near a barrier.

IV. In Sect.7 we have shown that (in the absence of absorption and dissipation) the

Hartman e�ect is valid for all the mean tunnelling times, while it does not hold only for

the quantities that at a closer analysis did not result to be tunnelling times, but rather

tunnelling-time standard deviations.

Let us recall at this point that only the sum of increasing (evanescent) and decreasing

(anti-evanescent) waves corresponds to a non-zero stationary 
ux. Considering such a

sum is standard in quantum mechanics, but not when studying evanescent waves (the

analogue of tunnelling photons) in classical physics. On the contrary, that sum should

of course be taken into account also in the latter case, obtaining non-zero (stationary)


uxes.

In any case, it is interesting to notice that in the non-stationary case, even evanescent

waves alone, or anti-evanescent waves alone, correspond separately to non-zero 
uxes.

Even more, from the general expression of a non-stationary wave packets inside a bar-

rier, one can directly see that, e.g., evanescent waves (considered alone) seem to �ll up

instantaneously the entire barrier as a whole!; this being a further evidence of the non-

local phenomena which take place during sub-barrier tunnelling. Even stronger examples

of non-locality have been met by us in Sect.12 above: cf. eq.(55). Some numerical

evaluations[86,98,126], based on Maxwell equations only, showed that analogous phe-

nomena occur for classical evanescent waves in under-sized waveguides (\barriers"), as

con�rmed by experience. / Let us recall, at last, that even Superluminal localized (non-

dispersive, wavelet-type) pulses which are solutions to the Maxwell equations have been

constructed[130], which are not evanescent but on the contrary propagate without distor-

tion along normal waveguides.
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V. In connection with Sects.2, 6 and 11, let us recall that the requirement that the

values of the collision, propagation, tunnelling duration be positive is a su�cient but not

necessary causality condition. Therefore we have not got a unique general formulation

of the causality principle which is necessary for all possible cases. In Sect.2 and 11 some

new formulations of the causality condition heve been by us just proposed.

VI. The phenomena of reshaping, which were dealt with in Sect.9, as well as the

\advance" which takes place before the barrier entrance (discussed in Sect.6) are closely

connected with the (coherent) superposition of incoming and re
ected waves. Moreover,

the study of reshaping (or reconstruction) and of the advance phenomenon can be of help,

by themselves, in understanding the problems connected with Superluminal phenomena

and the de�nition of signal velocity[115-120].

VII. In the case of tunnelling through two successive opaque barriers (cf. Fig.5), we

strongly generalized the Hartman e�ect, by showing in Sect.12 that far from resonances

the (total) phase tunneling time through the two opaque barriers |while depending on

the energy| is independent not only of the barrier widths, but even of the distance be-

tween the barriers: So that the e�ective velocity in the free region, between the two

barriers, can be regarded as in�nite.

VIII.We mentioned in Sect.8 that the two-phase description of tunnelling can be con-

venient for media without absorption and dissipation, and also for Josephson junctions.

IX. The OR formalism, as presented in this paper, permits in principle to study the

time evolution of collisions in the Schroedinger and Feynman representations (which lead,

by the way, to the same results). An interesting attempt was undertaken in ref.[140] to

a selfconsistent description of a particle motion, by utilizing the Feynman representation

and comparing their method with the OR formalism (in its earlier version, presented in

ref.[48]), even if skipping the separation J = J+ + J� .

There is one more possible representation, equivalent to Schroedinger's and Feynman's,

for investigating the collision and tunnelling evolution. Let us recall that in quantum the-

ory to the energy E there correspond the two operators i�h@=@t and the hamiltonian

operator. Their duality is well represented by the Schroedinger equation H	 = i�h@	=@t.
A similar duality does exist in quantum mechanics for time: besides the general form

�i�h@=@E, which is valid for any physical systems (in the continuum energy spectrum

case), it is possible to express the time operator T̂ (which is hermitian, and also maximal

hermitian[27,18,19], even if not self-adjioint) in terms of the coordinate and momentum

operators[25,30,141,142], by utilizing the commutation relation [T̂ ; Ĥ] = i�h. So that one

can study the collision and tunnelling evolutions via the operator T̂ by the analogous

equation T̂	 = t	, particularly for studying he in
uence of the barrier shape on the

tunnelling time[30].
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X. In Sect.9 the analogy between tunnelling processes of photons (in �rst quantiza-

tion) and of non-relativistic particles has been discussed and clari�ed, and it was moreover

shown that the properties of time as an observable can be extended from quantum me-

chanics to one-dimensional quantum electrodynamics. On the basis of this analogy, in

Sects.9 and 10 a selfconsistent interpretation of the photon tunnelling experiments, de-

scribed in refs.[56,60], was presented.

XI. At last, let us mention that for discrete energy spectra, the time analysis of the

processes (and, particularly, in the case of wavepackets composed of states bound by

two well potentials, with a barrier between the wells) is rather di�eent from the time

analysis of processes in the continuous energy spectra. For the former, one may use the

formalism[30,31] for the time operator in correspondence with a discrete energy spectrum:

and the durations of the transitions from one well to the other happen to be given by the

Poincar�e period 2��h=dmin, where dmin is the highest common factor of the level distances,

which is determined by the minimal level splitting caused by the barrier and hence depends

on the barrier traversal probability at the relevant energies[143].

One can expect that the time analysis of more complicated processes, in the quasi-

discrete (resonance) energy regions, with two (or more) well-potentials, such as the pho-

ton ot phonon-induced tunnellings from one well to the other, could be performed by a

suitable combination and generalization of the methods elaborated for continuous and

discrete energy spectra.
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