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Abstract
We study the phenomenon of one-dimensional non-resonant tunnelling through two

successive potential barriers, separated by an intermediate free region ℜ , by analyzing the
relevant solutions to the Schroedinger equation. We find that the total traversal time does not
depend not only on the barrier widths (the so-called "Hartman effect"), but also on the ℜ  width:
so that the effective velocity in the region ℜ , between the two barriers, can be regarded as infinite.
This agrees with the results known from the corresponding waveguide experiments, which
simulated the tunnelling experiment herein considered due to the formal identity between the
Schroedinger and the Helmholtz equation.
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In this note we are going to show that —when studying an experimental setup with

two rectangular potential barriers (Fig.1)— the (total) phase tunneling time through the

two barriers does not depend on the barrier widths nor on the distance between the barri-

ers.

Let us consider the (quantum-mechanical) stationary solution for the one-dimensional

(1D) tunnelling of a non-relativistic particle, with mass m and kinetic energy E =

�h
2
k
2
=2m = 1

2
mv

2, through two equal rectangular barriers with height V0 (V0 > E)

and width a, quantity L � a � 0 being the distance between them. The Schrödinger

equation is

�
�h
2

2m

@
2

@x2
 (x) + V (x) (x) = E  (x) ; (1)

where V (x) is zero outside the barriers, while V (x) = V0 inside the potential barriers. In

the various regions I (x � 0), II (0 � x � a), III (a � x � L), IV (L � x � L + a) and

V (x � L+ a), the stationary solutions to eq.(1) are the following
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 I = e+ikx +A1R e
�ikx
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h
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 IV = A1T

h
�2 e
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 V = A1TA2T eikx ;
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(2b)

(2c)

(2d)

(2e)

where � �
q
2m(V0 � E)=�h, and quantities A1R, A2R, A1T, A2T, �1, �2, �1 and �2 are

the reflection amplitudes, the transmission amplitudes, and the coefficients of the “evanes-

cent” (decreasing) and “anti-evanescent” (increasing) waves for barriers 1 and 2, respec-

tively. Such quantities can be easily obtained from the matching (continuity) conditions:
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Figure 1: The tunneling process, through two successive potential barriers, considered in
this paper. We show that the (total) phase tunneling time through the two barriers does
not depend on the barrier widths nor on the distance between the barriers.
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 IV(L+ a) =  V(L + a)
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Equations (3-6) are eight equations for our eight unknowns (A1R, A2R, A1T, A2T,

�1, �2, �1 and �2). First, let us obtain the four unknowns A2R, A2T, �2, �2 from eqs.(5)

and (6) in the case of opaque barriers, i.e., when �a!1:

3



8>>>>>>>>>>>><
>>>>>>>>>>>>:

�2 �! eikL
2ik

ik � �
(7a)

�2 �! eikL�2�a
�2ik(ik + �)

(ik � �)2
(7b)

A2R �! e2ikL
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Then, we may obtain the other four unknowns A1R, A1T, �1, �1 from eqs.(3) and

(4), again in the case �a!1; one gets for instance that:

A1T = �e
�2�a 4i�k

(�� ik)2
A (8)

where

A �
2�k

2�k cos k(L � a) + (�2 � k2) sin k(L� a)
(9)

results to be real; and where, it must be stressed,

� � arg

 
ik + �

ik � �

!

is a quantity that does not dependon a or on L. This is enough for concluding that the

phase tunnelling time (see, for instance, refs.[1-3])
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does not dependon L+ a (it being actually independent both of a and of L).

This result does not onlyconfirm the so-called “Hartman effect”[1,3] for the two

single barriers —i.e., the independence of the tunnelling time from the barrier widths—,

but it does alsoextend such an effect by implying the total tunnelling time to be indepen-

dent even of L (see Fig.1)! This can be regarded as a further, impressive evidence of the

fact that the quantum systems behave as non-local.

The tunnelling-time independence from the width (a) of each one of the two barriers

is itself a generalization of the Hartman effect, and can be a priori understood —following

refs.[4,5]— on the basis of the reshaping phenomenon which takes place inside a barrier.
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With regard to the even more interesting tunnelling-time independence from the dis-

tance L� a between the two barriers, it can be understood on the basis of the interference

between the wavesoutcoming from the first barrier (region II) and traveling in region III

and the wavesreflected from the second barrier (region IV) back into the same region

III. Such an interference has been shown[3] to cause an “advancement” (i.e., an effective

acceleration) on the incoming waves; a phenomenon quite similar to the advancement

expected even in region I. Namely, passing to the wavepacket language, we noticed in

ref.[3] that the arriving wavepacket does interfere with the reflected waves that start to

be generated as soon as the packet forward tail reaches the (first) barrier edge; in such a

way that (already before the barrier) the backward tail of the initial wavepacket decreases

—for destructive interference with those reflecred waves— at a larger degree than the for-

ward one. This simulates an increase of the average speed of the entering packet: hence,

the effective (average) flight-time of the approaching packet from the source to the barrier

does decrease.

So, the phenomena of reshaping and “advancement” (inside the barriers and to the

left of the barriers) can qualitatively explain why the tunnelling-time is independent of the

barrier widths and of the distance between the two barriers. It remains impressive, nev-

ertheless, that in region III —where no potential barrier is present, the current is non-zero

and the wavefunction is oscillatory,— the effective speed (or group-velocity) is practically

infinite. After some straightforward but rather bulky calculations, one can moreover see

that the same effects (i.e., the independence from the barrier widths and from the distances

between the barriers) are still valid for any number of barriers, with different widths and

different distances between them.

Finally, let us mention that the known similarity between photon and (nonrelativis-

tic) particle tunneling[3-7] implies our previous results to hold also for photon tunnelling

through successive “barriers”: For example, for photons in presence of two successive

band gap filters, or two suitable gratings. Experiments should be easily realizable; while

indirect experimental evidence seems to come from papers as [8].

At the classical limit, the (stationary) Helmholtz equation for an electromagnetic

wavepacket in a waveguide is known to be mathematically identical to the (stationary)
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Schroedinger equation for a potential barrier;� so that, for instance, the tunnelling of a

particle through and under a barrier can be simulated[3-7,9-11] by the traveling of evanes-

cent waves along an undersized waveguide. Therefore, the results of this paper are to be

valid also for electromagnetic wave propagation along waveguides with a succession of

undersized segments (the “barriers”) and of normal-sized segments. This agrees with cal-

culations performed, within the classical realm, directly from Maxwell equations[10,11],

and has already been confirmed by a series of “tunnelling” experiments with microwaves:

see refs.[9] and particularly [12].
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�These equations are however different (due to the different order of the time derivative) in the time-
dependent case. Nevertheless, it can be shown that they still have in common classes of analogous solutions,
differing only in their spreading properties[3,7].
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