
Sezione di Milano


ISTITUTO NAZIONALE DI FISICA NUCLEARE

INFN/FM –00/01
10 Marzo 2000

Localized Superluminal Solutions to Maxwell Equations
Propagating Along a Normal-Size Waveguide(†)

M. Zamboni Rached1, E. Recami2, F. Fontana3

1 Dep.to de Física, Universidade Estadual de Campinas, SP, Brazil
2 INFN–Sezione di Milano, Italy,

 Facoltà di Ingegneria, Università Statale di Bergamo, Dalmine (BG), Italy,
DMO–FEEC and CCS, State University of Campinas, Campinas, S.P., Brazil

3 R&D Sector, Pirelli Cavi, Milan, Italy

Abstract

We show that localized (non–evanescent) solutions to Maxwell equations exist, which
propagate without distortion along normal waveguides with Superluminal speed.
tion.

PACS.: 03.50.De; 41.20.Jb; 03.30.+p; 84.40.Az; 42.82.Et

Keywords: Wave guides; Localized solutions to Maxwell equations; Superluminal waves;
Bessel beams; Limited–dispersion beams; Electromagnetic wavelets; X–shaped
waves; Evanescent waves; Electromagnetism; Microwaves; Optics; Special
Relativity

Published by SIS–Pubblicazioni
Laboratori Nazionali di Frascati

                                          
(†)

 Electronic Lanl Arquives # physics/0001039. Work partially supported by CAPES (Brazil), and by INFN,

MURST and CNR (Italy). E-mail address for contacts: Recami@mi.infn.it



1. { Introduction: Localized solutions to the wave equations

Already in 1915 Bateman[1] showed that Maxwell equations admit (besides of the

ordinary planewave solutions, endowed in vacuum with speed c) of wavelet-type solutions,

endowed in vacuum with group-velocities 0 � v � c. But Bateman's work went practically

unnoticed. Only few authors, as Barut et al.[2], followed such a research line; incidentally,

Barut et al. constructed even a wavelet-type solution travelling with Superluminal group-

velocity[3] v > c.

In recent times, however, many authors discussed the fact that all (homogeneous)

wave equations admit solutions with 0 < v < 1: see, e.g., Donnelly & Ziolkowski[4],

Esposito[4], Vaz & Rodrigues[4]. Most of those authors con�ned themselves to investi-

gate (sub- or Super-luminal) localized non-dispersive solutions in vacuum: namely, those

solutions that were called \undistorted progressive waves" by Courant & Hilbert. Among

localized solutions, the most interesting appeared to be the so-called \X-shaped" waves,

which |predicted to exist even by Special Relativity in its extended version[5]| had been

mathematically constructed by Lu & Greenleaf[6] for acoustic waves, and by Ziolkowski

et al.[7], and later Recami[8], for electromagnetism.

Let us recall that such \X-shaped" localized solutions are Superluminal (i.e., travel

with v > c in the vacuum) in the electromagnetic case; and are \super-sonic" (i.e., travel

with a speed larger than the sound-speed in the medium) in the acoustic case. The �rst

authors to produce X-shaped waves experimentally were Lu & Greenleaf[9] for acoustics,

and Saari et al.[10] for optics.

Notwithstanding all that work, still it is not yet well understood what solutions (let

us now con�ne ourselves to Maxwell equations and to electromagnetic waves) have to

enter into the play in many experiments.

2. { About evanescent waves

Most of the experimental results, actually, did not refer to the abovementioned local-

ized, sub- or Super-luminal, solutions, which in vacuum are expected to propagate rigidly

(or almost rigidly, when suitably truncated). The experiments most after fashion are, on
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the contrary, those measuring the group-velocity of evanescent waves[cf., e.g., refs.11,12].

In fact, both Quantum Mechanics[13] and Special Relativity[5] had predicted tunnelling

wavepackets (tunnelling photons too) and/or evanescent waves to be Superluminal.

For instance, experiments[12] with evanescent waves travelling down an under-

sized waveguide revealed that evanescent modes are endowed with Superluminal group-

velocities[14].

A problem arises in connection with the experiment in Fig.1, with two \barriers" 1

and 2 (i.e., segments of undersized waveguide). In fact, it has been found that for suitable

frequency bands the wave coming out from barrier 1 goes on having a practically in�nite

speed, and crosses the intermediate normal-sized waveguide 3 in zero time[15]. Even if

this can be theoretically understood by looking at the relevant transfer function (see the

computer simulations, based on Maxwell equations only, in refs.[16,17]), it is natural to

wonder what are the solutions to Maxwell equations that can travel with Superluminal

speed in a normal waveguide (where one normally meets ordinary propagating |and not

evanescent| modes)...

Namely, the dispersion relation in undersized guides is !2 � k2 = �
2, so that the

standard formula v ' d!=dk yields a v > c group-velocity[17,18]. However, in normal

guides the dispersion relation becomes !2 � k2 = +
2, so that the same formula yields

values v < c only.

We are going to show that actually localized solutions to Maxwell equations propa-

gating with v > c do exist even in normal waveguides; but their group-velocity v cannot

be given#1 by the approximate formula v ' d!=dk. One of the main motivations of

the present note is just contributing to the clari�cation of this question.

3. { About some localized solutions to Maxwell equations.

Let us start by considering localized solutions to Maxwell equations in vacuum. A

theorem by Lu et al.[19] showed how to start from a solution holding in the plane (x; y)

for constructing a threedimensional solution rigidly moving along the z-axis with Super-

#1 Let us recall that the group-velocity is well de�ned only when the pulse has a clear bump in space;
but it can be calculated by the approximate, elementary relation v ' d!=dk only when some extra
conditions are satis�ed (namely, when ! as a function of k is also clearly bumped).
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luminal velocity v. Namely, let us assume that  (�; t), with � � (x; y), is a solution of

the 2-dimensional homogeneous wave equation:

�
@2x + @2y �

1
c2
@2t
�
 (�; t) = 0 : (1)

By applying the transformation � ! � sin �; t ! t � (cos �=c) z, the angle � being

�xed, with 0 < th < �=2, one gets[19] that  (� sin �; t � (cos �=c) z) is a solution to

the threedimensional homogeneous wave-equation

�
r

2 � 1
c2
@2t
�
 
�
� sin �; t� cos �

c
z
�
= 0 : (2)

The mentioned theorem holds for the vacuum case, and in general is not valid when

introducing boundary conditions. However we discovered that, in the case of a bidimen-

sional solution  valid on a circular domain of the (x; y) plane, such that  = 0 for j�j = 0,

the transformation above leads us to a (three-dimensional) localized solution rigidly trav-

elling with Superluminal speed v = c= cos � inside a cylindrical waveguide; even if the

waveguide radius r will be no longer a, but r = a= sin � > a. We can therefore obtain

an undistorted Superluminal solution propagating down cylindrical (metallic) waveguides

for each (2-dimensional) solution valid on a circular domain. Let us recall that, as well-

known, any solution to the scalar wave equation corresponds to solutions of the (vectorial)

Maxwell equations (cf., e.g., ref.[8] and refs. therein).

For simplicity, let us put the origin O at the center of the circular domain C, and

choose a 2-dimensional solution that be axially symmetric  (�; t), with � = j�j, and

with the initial conditions  (�; t = 0) = �(�), and @ =@t = �(�) at t = 0.

Notice that, because of the transformations

� =) � sin � (3a)

t =) t �
cos �

c
z ; (3b)

the more the initial  (�; t) is localized at t = 0, the more the (threedimensional) wave

 (� sin �; t � (cos �=c)z will be localized around z = vt. It should be also emphasized
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that, because of transformation (3b), the velocity c goes into the velocity v = c=cos� > c.

Let us start with the formal choice

�(�) =
�(�)

�
; �(�) � 0 : (4)

In cylindrical coordinates the wave equation (1) becomes

�
1

�
@��@� �

1

c2
@2t

�
 (�; t) = 0 ; (1')

which exhibits the assumed axial symmetry. Looking for factorized solutions of the type

 (�; t) = R(�)�T (t), one gets the equations @2t T = �!2T and (��1@�+@2�+!
2=c2)R = 0,

where the \separation constant" ! is a real parameter, which yield the solutions

T = A cos!t + B sin!t

(5)

R = C J0(
!

c
�) ;

where quantities A;B;C are real constants, and J0 is the ordinary zero-order Bessel

function (we disregarded the analogous solution Y0(!�=c) since it diverges for � = 0).

Finally, by imposing the boundary condition  = 0 at � = a, one arrives at the base

solutions

 (�; t) = J0(
kn
a
�) (An cos!nt + Bn sin!nt) ; � �

!

c
a ; (6)

the roots of the Bessel function being

�n =
!na

c
:

The general solution for our bidimensional problem (with our boundary conditions)

will therefore be the Fourier-type series

	2D(�; t) =
P
1

n=1 J0(
�n
a
�) (An cos!nt + Bn sin!nt) : (7)
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The initial conditions (4) imply that
P
AnJ0(�n�=a) = �(�)=�, and

P
BnJ0(�n�=a) =

0, so that all Bn must vanish, while An = 2[a2J21 (�n)]
�1; and eventually one gets:

	2D(�; t) =
P
1

n=1

�
2

a2J21 (�n)

�
J0(

�n
a
�) cos!nt ; (8)

where !n = �nc=a.

Let us explicitly notice that we can pass from such a formal solution to more physical

ones, just by considering a �nite number N of terms. In fact, each partial expansion will

satisfy (besides the boundary condition) the second initial condition @t = 0 for t = 0,

while the �rst initial condition gets the form �(�) = f(�), where f(�) will be a (well)

localized function, but no longer a delta-type function. Actually, the \localization" of

�(�) increases with increasing N . We shall come back to this point below.

4. { Localized waves propagating Superluminally down (normal-sized) waveg-

uides.

We have now to apply transformations (3) to solution (8), in order to pass to

threedimensional waves propagating along a cylindrical (metallic) waveguide with radius

r = a= sin �. We obtain that Maxwell equations admit in such a case the solutions

	3D(�; z; t) =
P
1

n=1

�
2

a2J21 (�n)

�
J0(

�n
a
� sin �) cos

�
�n cos �

a
(z �

c

cos �
t)

�
(9)

where !n = �nc=a, which are sums over di�erent propagating modes.

Such solutions propagate, down the waveguide, rigidly with Superluminal velocity#2

v = c=cos �. Therefore, (non-evanescent) solutions to Maxwell equations exist, that are

waves propagating undistorted along normal waveguides with Superluminal speed (even

if in normal-sized waveguides the dispersion relation for each mode, i.e. for each term of

the Fourier-Bessel expansion, is the ordinary \subluminal" one, !2=c2 � k2z = +
2).

#2 Let us stress that each eq.(9) represents a multimodal (but localized) propagation, as if the geo-
metric dispersion compensated for the multimodal dispersion.
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It is interesting that our Superluminal solutions travel rigidly down the waveguide:

this is at variance with what happens for truncated (Superluminal) solutions[7-10], which

travel almost rigidly only along their �nite \�eld depth" and then abruptly decay.

Finally, let us consider a �nite number of terms in eq.(8), at t = 0. We made a few

numerical evaluations: let us consider the results for N = 22 (however, similar results can

be already obtained, e.g., for N = 10). The �rst initial condition of eq.(4), then, is no

longer a delta function, but results to be the (bumped) bidimensional wave represented

in Fig.2.

The threedimensional wave, eq.(9), corresponding to it, i.e., with the same �nite num-

ber N = 22 of terms, is depicted in Fig.3. It is still an exact solution of the wave equation,

for a metallic (normal-sized) waveguide with radius r = a= sin �, propagating rigidly with

Superluminal group-velocity v = c= cos �; moreover, it is now a physical solution. In

Fig.3 one can see its central portion, while in Fig.4 it is shown the space pro�le along z,

for t = const:, of such a propagating wave.

5. { A re-derivation of our results from the standard theory of waveguide

propagation.

Lu's theorem is certainly a very useful tool to build up localized solutions to Maxwell

equations: actually, it can be used to get a variety of solutions, eq.(9) being just the

simplest example. Nevertheless, due to the novelty of our previous results, it may be

worthwhile to outline an alternative derivation of them which can sound more familiar.

For the sake of simplicity, let us limit ourselves to the domain of TM (transverse

magnetic) modes. When a solution in terms of the longitudinal electric component, Ez,

is sought, one has to deal with the simple boundary condition Ez = 0. We shall look,

moreover, for axially symmetric solutions (i.e., independent of the azimuthal variable ').

[Such choices could be easily generalized, just at the cost of increasing the mathematical

complexity]. Quantity Ez is then completely equivalent to the scalar variable 	 � 	3D

used in the previous analysis.

Let us try to �nd out solutions of the form
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Ez(�; z; t) = C Q(�) exp

�
i

�
!z cos �

c
� !t

��
(10)

where Q(�) is assumed to be a function of the radial coordinate � only, and C is a

normalization constant. Here we call c the velocity of light in the medium �lling the

cylindrical waveguide, supposing it nondispersive. The angular frequency ! is for the

moment arbitrary.

By inserting expression (10) into the Maxwell equation for Ez, one obtains

�2
d2Q(�)

d�2
+ �

dQ(�)

d�
+ �2k20 sin2 � Q(�) = 0 ; k0 �

!

c
;

whose only solution, which be �nite on the waveguide axis, is Q(�) = J0(�k0 sin �). By

imposing the boundary condition Q(�) = 0 for � = r, we get that the acceptable angular

frequencies are constrained to be

!l =
c�l
r sin �

(11)

where �l is the l-th zero of the equation J0(x) = 0.

Therefore, assuming an arbitrary parameter �, we �nd that, for every mode supported

by the waveguide and labelled by the index l, there is just one frequency at which the

assumed dependence (10) on z and t is physically realizable. Let us show such a solution

to be the standard one known from classical electrodynamics. In fact, by inserting the

allowable frequencies !l into the complete expression of the mode, we have:

El
z(�; z; t) = C J0(

��l
r
) exp

�
i

�
!lz cos �

c
� !lt

��
: (12)

But the generic solution for (axially symmetric) TM0l modes in a cylindrical metallic

waveguide is:[20]

ETM0l

z (�; z; t) = C J0(
��l
r
) exp [i (�(!l)z � !lt)]
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with the dispersion relation �2(!l) = (!l=c)2�(�l=r)2. By identifying �(!) � !l cos �=c,

as suggested by eq.(12), and remembering the expression for !l given by eq.(11), the

ordinary dispersion relationship is gotten. We have therefore veri�ed that every term in

the expansion (9) is a solution to Maxwell equations not di�erent from the usual one.

The uncommon feature of our solution (9) is that, given a particular value of �, the

phase-velocity of all its terms is always the same, it being independent of the mode index l:

vph =

�
�(!l)

!l

�
�1

=
c

cos �
:

In such a case it is known that the group-velocity of the pulse equals the phase-velocity[21]:

which in our case is the velocity tout court of the localized pulse.

With reference to Fig.5, we can easily see that all the allowed values of !l can be cal-

culated by determining the intersections of the various branches of the dispersion relation

with a straight line, whose slope depends on � only. By using suitable combinations of

terms, corresponding to di�erent indexes l, as in our eq.(9), it is possible to describe a

disturbance having a time-varying pro�le, as already shown in Figs.2-4 above. The pulse

thus displaces itself rigidly, with a velocity v equal to vph.

It should be repeated that the velocity v (or group-velocity vg � v) of the pulses cor-

responding to eq.(9) is not to be evaluated by the ordinary formula vg ' d!=dk (valid for

quasi-monochromatic signals). This is at variance with the common situation in optical

and microwave communications, when the signal is usually an \envelope" superimposed

to a carrier wave whose frequency is generally much higher than the signal bandwidth. In

that case the standard formula for vg yields the correct velocity to deal with (e.g., when

propagation delays are studied). Our case, on the contrary, is much more reminiscent

of a baseband modulated signal, as those studied in ultrasonics: the very concept of a

carrier becomes meaningless here, as the elementary \harmonic" components have widely

di�erent frequencies.

Let us �nally remark that similar considerations could be extended to all the situations

where a waveguide supports several modes. Tests at microwave frequencies should be

rather easy to perform; by contrast, experiments in the optical domain would be probably

ruled out, at present, by the limited extension of the spectral windows corresponding to
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not too large attenuations.
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Fig. 1 – The experiment with two “barriers” (i.e., segments of undersized
waveguide) 1 and 2. It had been found that, for suitable frequency bands, the wave
coming out from barrier 1 can go on with practically infinite speed, crossing the
intermediate (normal–sized) waveguide 3 in zero time. We show in this paper that
localized solutions to the Maxwell equations do actually exist, which travel along a
normal waveguide with Superluminal speed.
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Fig. 2 – Shape of the bidimensional solution of the wave equation valid on
the circular domain ρ≤a; a=0.1mm of the (x,y) plane, for t=0,
corresponding to the sum of N=22 terms in the expansion (8). It is no
longer a delta function, but it is still very well peaked. By choosing it as
the initial condition, instead of the first one of eqs. (4), one gets the
threedimensional wave depicted in Figs. 3 and 4. The normalization
condition is such that |Ψ2D(p=0; t=0)|2=1
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Fig. 3 – The (very well localized) threedimensional wave corresponding to
the initial, bidimensional choice in Fig. 2. It propagates rigidly (along the
normal–sized circular waeguide with radius r=a/sinθ) with Superluminal

speed v=c/cosθ). Quantity η is defined as η≡ z
c

t−



cosθ

. The Normalization

condition is such that |Ψ3D(ρ=0; η=0)|2=1.
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Fig. 4 – The shape along z, at t=0, of the threedimensional wave
whose main peak is shown in Fig. 3.
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Fig. 5 – Dispersion curves for the symetrical TM0l modes in a perfect
cylindrical waveguide, and location of the frequencies whose corresponding
modes have equal phase–velocity. [Actually, the phase velocity c/cosθ of all
the terms in eq. (9) is always the same, being independent of the mode index l:
in such a case it is known that the group–velocity of the pulse equals the
phase–velocity: which in our case it the velocity tout court of the localized
pulse].


