

ISTITUTO NAZIONALE DI FISICA NUCLEARE

CNAF

 INFN/CCR-11/02
 September 1, 2011

A DATA ENVIRONMENT FOR SOFTWARE DEVELOPMENT PROCESS

Marco Canaparo , Claudio Galli, Elisabetta Ronchieri, Cristina Vistoli
INFN-CNAF, Viale Berti Pichat 6/2, I-40126 Bologna, Italy

Abstract

 The maturity of software development process is strictly related to the implementation of
the best practices typically followed by software team to perform particular tasks and to meet
particular objectives. Its improvement is guaranteed by the presence of metrics that are
designed and measured to plan and control productivity, effectiveness, quality and timeliness
of software projects and products. The measurement of metrics contributes to collecting right
data to the handling of the analysis process, and to establishing a dashboard to the
management of the overall health of the process.

This paper describes a data environment suitable for improving the quality of the software
process, developed in the context of the ETICS 2 European project. The data environment
encompasses: 1) the trend analysis disseminator; and 2) the representation of software metrics
and other useful software project information according to a standard organizational
dashboard. The paper also describes the data environment implementations.

PACS: 89.20-Ff

Published by SIDS–Pubblicazioni
Laboratori Nazionali di Frascati

1 INTRODUCTION

Customers expect to get software products that work without defects, that meet
and even exceed their needs and expectations, and all these within continuously
time-varying frames. In order to reach these goals, software development man-
agers face the major challenge of improving products and processes by imple-
menting tactics and methods that have been shown through real-life implemen-
tation to be successful. For example, the selection of project team members is a
practice that will help define the ability of the team to be capable of rapid response:
a cross-functional development team would be an example of a best practice [19].
Various research studies and design gurus have identified a large number of such
best practices that can be beneficially implemented in the team’s software devel-
opment processes [6]. The performance of software processes and products is un-
derstood, tracked, controlled and predicted by metrics whose measurement allows
software managers to handle continuously changing business conditions [15]. If
metrics are to provide information, everyone involved in selecting, designing, im-
plementing, collecting, and utilizing them must understand their definition and
purpose [28].

Software quality is directly related to the quality of the process through which
software is developed. Metrics are essentials in the assessment of the quality of
software development processes by providing information about the development
process itself over time. Measurement enables the software team to improve the
software process, assist in planning tracking and controlling the software project.
The analysis and monitoring of process performance are fundamental for improv-
ing the reaction time of a software team and effectiveness of its products. Several
proposals can be found in the literature for collecting and storing process per-
formance related data in order to support its analysis [20, 26]. In the context of
software development process, data environment is an integrated data collection
aimed at supporting decision-making processes [23]. It addresses the issue of ar-
ranging, integrating, representing and transforming project quantitative data to a
unified and centralized organizational view. It also covers the issue of providing
analytical functionalities for monitoring purposes.

2

In this paper we describe a data environment developed as part of the met-
rics program of the ETICS 2 European project ended in February 2010. ETICS
2 has provided a service to help software developers, managers and users to bet-
ter manage complexity and improve the quality of their software. The ETICS 2
consortium has consisted of CERN (coordinator), INFN, Engineering Ingegneria
Informatica S.p.A., 4D Soft Ltd., MTA SZTAKI, Vega IT GmbH, Forschungzen-
trum Julich, and the University of Wisconsin-Madison. Since May 2010 the ET-
ICS 2 service has been included in the European Middleware Initiative (EMI)
project (http://www.eu-emi.eu/). ETICS is an integrated infrastructure for
the automated build, configuration, integration and testing of software developed
by different teams widespread geographically. Up to now it has been used by Grid
and non-Grid software1 such as EGEE (http://public.eu-egee.org/), DILI-
GENT (http://diligent.ercim.eu/) and EMI. This infrastructure provides a
service for software projects by integrating well-established existing procedures,
tools and resources in a coherent infrastructure, and adapting them to the special
needs of software projects. For example, a software project may require a dedi-
cated resource to be compiled against a non-free thirdparty package. ETICS pro-
vides an intuitive access point through a Web portal and a professionally-managed
multi-platform capability based on proven Grid technologies [1, 10].

Data environment has been designed and developed by CERN, INFN and En-
gineering Ingegneria Informatica S.p.A.. The core of data environment includes
the trend-analysis disseminator and the dashboard monitoring system taking part
of the ETICS architecture. Its goal is to provide a centralized and unified view of
all software projects together with functionalities that easily allow software anal-
ysis on the base of available metrics according to different summarization levels.
To achieve this goal two tools have been designed and developed: the ETICS
Disseminator for trend-analysis that enables users to control the values of some
metrics over time in simple and clear charts; the ETICS Dashboard for monitor-
ing the compiling and testing results that enables users to have an instant view of
trends, and anomalies in the software development activity. This paper describes

1Grid provides a set of services that allow a widely distributed collection of resources to be
tied together into a computational framework.

3

the problems arisen and the solution found with the technical features of data en-
vironment and its current implementation.

The remainder of this paper is structured as follows: Section 2 provides an
overview of the ETICS architecture; Section 3 details the ETICS Disseminator
for trend analysis; Section 4 describes the ETICS Dashboard; Section 5 discusses
related work; Section 6 point out future work; and Section 7 draws conclusions.

2 Overview of ETICS

ETICS is to provide a service for software projects by integrating well-established
procedures, tools and machines in a coherent framework and adapting them to the
special needs of software projects. It maintains and manages integrated pools of
machines for running automated builds and test suites. ETICS has designed a data
model on top of which its architecture has been built.

2.1 Data Model

The ETICS data model is designed to organize a generic software project by using
the high-level entities such as the project internal structure, the software relation-
ships and the operations required to build and test such a project [3]. The model
is inspired by the Common Information Model (CIM) Application model2 and the
Object Management Group (OMG)’s Model Driven Architecture3. Nevertheless,
it adds definitions for the operations of software construction (build) and verifica-
tion (testing) which are missing from the mentioned models above. The ETICS
data model is composed of several objects, which can be organized in software
structures, and build and testing configurations. It explicitly describes the objects
and the relationships between objects.

The software structure is characterized by the concepts of component, subsys-
tem and project [2]: component is a portion of code providing a well-defined

2Common Information Model (CIM) Specification, 2.2, June 14, 1999, http://www.dmtf.
org/spec/cims.html

3The Architecture of Choice for a Changing World, MDA, http://www.omg.org/mda/.

4

functionality within the system architecture; subsystem is a logical container
of the overall architecture in more specific subsets of functionalities; and
project is a container of well-defined high-level functionalities according
to predefined user requirements. Our explanation of component is simpli-
fied compared to what is defined in reference [27]. A proper understanding
of component requires an investigation of the concepts of code and func-
tionality. The former can be at least a source file, or a configuration file
or a document, whilst the latter is the sum or any aspect of what a soft-
ware application can do for a user. Having said that, a subsystem is simply
a logical container of components, whilst a project is a logical container
of components and subsystems. For instance, a project can be composed
of one or more components, one or more subsystems, or a combination of
components and subsystems. Figure 1 shows the relations amongst project,
subsystem and component entities.

Figure 1: ETICS software project structure. On the left it is represented a generic
software project structure, whilst on the right a partial software structure of the
org.etics project.

Moreover, the general term module is used for referring to any of project,
subsystem and component. Each module holds at least one configuration.

The build and testing configuration is composed of platforms, commands, prop-
erties, environment variables and dependencies: platform contains operat-
ing system, architecture and compiler information, as for example slc4 x86 64 gcc345

5

Figure 2: ETICS project configuration structure. On the left it is represented
a generic configuration project structure, whilst on the right a partial configura-
tion structure of the project etics int configuration belonging to the org.etics
project. Moreover, on the left the x index shown in the configuration name ex-
plains that each module (either project or subsystem or component) holds at least
one configuration.

where slc4 is the operating system, x86 64 is the machine architecture
and gcc345 is the compiler; version control system commands are used to
checking out software on a local area; build commands are used to config-
uring, build, packaging, creating documentation, and removing generated
build files (e.g., make clean, make doc); test commands are involved in
running, for example, specialized unit test, coverage test, coding conven-
tions test, functional test, stress test and performance test; properties are
a set of custom attributes that a configuration requires at build-time such
as compiling options; environment variables are a set of dynamic values
that can affect the way running processes will behave; dependencies are
optional link between component’s configurations representing a software
constraint. For each supported platform, a configuration contains informa-
tion for checking out, compiling, and testing a subset of software as well as
for handling software dependencies. Configurations can be linked one an-
other in order to produce a tree whose root is a project’s configuration and
leaves are components’ configurations.

Figure 2 shows an example of a given configuration project. The names

6

in the green boxes represent the name of each configuration. Project and
subsystem configurations are the only ones able to define different trees and
subtrees respectively.

2.2 Architecture

The ETICS architecture is composed of several services as shown in Figure 3:
Configuration Service, Repository Service and Execution Engine. The ETICS

Figure 3: The ETICS architecture.

services specified in the following list are accessible to the ETICS communities
via Command Line Interface (CLI) and Web Portal (WP). The ETICS CLI pro-
vides a similar functionality as the ETICS WP and makes use of the same Web
service interface for simplicity and symmetry. CLI can be used directly by the
user on local machines (e.g., a developer machine). Furthermore, the same client
is used in an almost identical context by the Execution Engine. This similarity

7

is crucial to avoid context switching between local and remote builds or tests4,
which would reduce the usability and reliability of the system.

The ETICS data are listed in three databases: the first is related to build or test
artifacts, the second one to reports and metrics, and the last one to configurations.

The underlying security infrastructure is based on standard x.509 certificates [16].
Users are modelled as fully qualified x.509 principal names as they appear in stan-
dard x.509 -compliant certificates. The Web service verifies the user certificate
Distinguished Name (DN) in the database of existing users involved in a project,
and it allows or denies the operation according to the roles assigned to the users.
From that point onwards, the Web service uses a service certificate to interact with
other internal services. The access control list on the persisted data will be en-
forced by the Web service. The identified roles are described in the following list:
administrator is a kind of super user enabled to perform all the operations allowed
in the ETICS infrastructure; module administrator is responsible for handling the
project by using the ETICS services; developer works on the implementation of
the software; integrator runs software verifying if it works and register packages;
tester submits and stores test; release manager is responsible for defining the re-
lease candidate of the project, publishing packages, creating release notes and
other documentation; guest has only read access.

2.2.1 Configuration service

The Configuration service is the component providing business logic for config-
uring software and running remote builds and tests. It is used by both CLI and
WP.

The Configuration service abstracts the data storage backend, which holds the
persistent version of the ETICS data model. It provides a set of high level meth-
ods to read and write objects from and into the database and a set of specialized
methods either to generate and manipulate objects or to get information about the

4A local build or test is performed, for instance, by the developer on his/her personal worksta-
tion whenever he/she wants. A remote build or test is submitted, for instance, by the developer on
a remote system that will process it when possible (i.e., the developer does not have a total control
of the machines that may be used by other users).

8

operations performed by users and the system for auditing and logging purposes.
In addition, the Configuration service abstracts the access to the underlying job 5

Execution Engine framework presenting a common build and test job interface
layer for remote submission.

It is developed in Java and runs in a servlet container, such as Tomcat.

2.2.2 Repository service

The Repository service is the component providing logic for accessing build (or
test) reports, artifacts and yum [17] repositories used by WP. It consists of a data
management system that allows storing, cataloguing, browsing, searching, dis-
seminating and deleting ETICS artifacts or sets of them.

All reports and artifacts produced by the ETICS system are stored in the repos-
itory. Its storage is divided in two parts: 1. a volatile storage area used by devel-
opers to access build and test artifacts that have been remotely built using the
ETICS infrastructure, and 2. a permanent storage area where the official artifacts
are registered typically by integrators. In both cases the built reports and artifacts
are available for downloading.

It is developed in Java and runs in a servlet container such as Tomcat.

2.2.3 Execution engine

The execution engine allows the ETICS system to offer to the host projects the
automation of remote builds and tests, possibly on a regular schedule and on a
large set of different machines and platforms.

The engine is provided by the Metronome [21] build and test framework pro-
duced by the Condor Project (http://www.cs.wisc.edu/condor) that manages dis-
tributed job execution and provide access to computing resources. Metronome
uses the ETICS CLI during the compiling and testing of software downloaded on
a given machine.

5Job in ETICS is a list of instructions to be executed remotely to get the outputs.

9

3 DISSEMINATOR

3.1 Problem Description

Software development is facing the problem of improving the quality of software
products. The lack of quality, in fact, can easily lead to major cost and delays in
the development and maintenance of the software. One of the principal purposes
of the ETICS project was to support software developers and managers in assuring
the quality of their software. In order to achieve this goal ETICS users have been
supplied with a graphical tool which enables them to control the behaviour of the
values of some metrics over time with simple and clear charts.

3.2 Solution

The ETICS Disseminator for trend-analysis is the portlet of the ETICS portal
(shown in Figure 4) that has been designed and developed with the aim of provid-
ing ETICS users with a tool for monitoring the ”quality” of their code.

The ETICS Disseminator creates charts which represent the time variation of
one or more metrics whose values have been previously collected by the ETICS
system. The layout of the ETICS Disseminator is organized in three panels. The
first one is a horizontal panel located on the top of the Web page which shows the
form where it is possible to specify the metrics you want to be shown and some
options to filter the results (i.e., date range, platforms’ name, type of repository
- registered or volatile - and volatile area name). The second panel is a vertical
one and is located on the left. It shows the expandable tree composed of all the
projects with related subsystems, components and configurations registered in ET-
ICS. Finally the third panel is on the right of the tree panel and it is filled with the
graphs of the metrics, result of the request issued by the user.

3.2.1 Type of metrics

ETICS plugin framework is the feature of ETICS client that is related to the analy-
sis and metric collection. Besides activating the existing plugins, ETICS users can
leverage the extensibility of the framework adding their own ones. The existing

10

Figure 4: A screenshot of the ETICS Disseminator.

plugins generate a variety of metrics which are listed, with a brief description, in
Table 1. Some of these plugins, such as SLOCCount6 and IPV6 [7], generate only
one metric. The Findbugs [12, 13] and Junit [18] plugins create two metrics each.
The CKJM [5] plugin provides eight metrics.

3.2.2 Metrics and charts

The ETICS Disseminator for trend-analysis is able to create one or two different
images for each metric. Different types of charts have been chosen in order to give
to the users the possibility to analyse the behaviour of the code they are writing. In
particular, a time series chart is used for most of the metrics (SLOCCount, IPV6,
Findbugs, Junit, and all the CKJM metrics), a pie chart has been considered a
good choice for the metrics Findbugs rate and Junit rate, furthermore, a bar chart
is plotted for all the metrics generated by the CKJM plugin. Pie charts and bar
charts provide the users with the latest values obtained for a certain metric and the
average of the other values for the same metric. Some examples of charts that the
Disseminator create are shown below.

In Figure 5 a bar and a time series charts are shown for the metrics DIT and
NOC for the org.etics project.

6Wheeler, D. A., SLOCCount, http://www.dwheeler.com/sloccount

11

Plugins Metrics Description
SLOCCount SLOCCount shows the number of lines of code.
IPV6 IPV6 represents the percentage of IPV6 compliance of

code.

Findbugs
Findbugs indicates the number of bugs found during the build

or test.
Findbugs rate shows the percentage of modules that have

successfully passed the threshold defined by
${findbugs.failure.threshold}.

Junit
Junit shows the total number of tests successfully executed.
Junit rate indicates the percentage of components with tests suc-

cessfully executed.

CKJM

WMC (Weighted
Methods per
Class)

the ckjm program assigns a complexity value of 1 to
each method, and therefore the value of the WMC is
equal to the number of methods in the class.

DIT (Depth of In-
heritance Tree)

provides for each class a measure of the inheritance
levels from the object hierarchy top. In Java where all
classes inherit Object the minimum value of DIT is 1.

NOC (Number of
Children)

measures the number of immediate descendants of the
class.

CBO (Coupling
Between Object
classes)

represents the number of classes coupled to a given
class (efferent couplings). This coupling can occur
through method calls, field accesses, inheritances, ar-
guments, return types, and exceptions.

RFC (Response
For a Class)

measures the number of different methods that can be
executed when an object of that class receives a mes-
sage (when a method is invoked for that object).

LCOM (Lack
of Cohesion in
Methods)

measures the number of different methods in a class
that are not related through the sharing of some of the
class’s fields.

Ca (afferent Cou-
plings)

is a measure of how many other classes use the spe-
cific class.

NMP (Number of
Public Methods)

counts all the methods in a class that are declared as
public. It can be used to measure the size of an API
provided by a package.

Table 1: Metrics.

12

Figure 5: Two charts about the metrics DIT and NOC of the org.etics project.
On the left a barchart is shown: for each metric there are a gray column and a
yellow column that represent the latest value and the average value respectively.
On the right there is a time series chart that shows the behaviour, over time, of the
two metrics. Above the charts a summary of the parameters requested is shown.

In Figure 6 there are two pie charts that represent the latest and the average
value of the metric Findbugs rate for the org.etics project. Finally in Figure 7
there are the plots of SLOCCount and Findbugs for the org.etics.build-system
subsystem, starting from 2009-09-01 till now in the volatile repository.

3.2.3 Features of the charts

Together with the chart or the set of charts some information is provided. In
particular, a summary of all the parameters chosen by the user is shown above
the chart, whilst the overall number of the values returned with the date when
the query was sent is shown below the chart. Moreover, some links are provided
underneath these values: the first link is the ”link to repository” and redirects to
the Web page of the ETICS Repository where all the results are shown in a table;
the second one is called ”showPlot”: clicking on this link a new window is opened
where only the charts and a small summary of the parameters chosen appear; and
finally, the third link is named ”exportValues” and allows users to download, in

13

Figure 6: Two pie charts. The left one represents the latest value of the metric
Findbugs rate. The right one shows the average value of the same metric. The pie
charts are red because both the percentage are 100% of success.

a csv (comma separated values) [24] file, all the results of the query for all the
metrics with the date they have been stored in the ETICS Repository.

3.2.4 Integration with the ETICS Dashboard

The ETICS Disseminator for trend-analysis can be used by the ETICS Dashboard,
which is a Web page composed of a variety of widgets that has the purpose of
summarizing all the principal information about a project (for further details on the
ETICS Dashboard see Section 4). The ETICS Disseminator may contribute to the
information through the representation of some charts. Dashboard communicates
with Disseminator via a specific URL. The ETICS Disseminator plots the graphs,
saves them on some jpeg files and finally passes the binary files to the dashboard.

14

Figure 7: SLOCCount and Findbugs graphs of the org.etics.build-system

subsystem, the values are filtered with a time range starting from the 09th of Jan-
uary 2009 till now. On the left there is the chart related to the total number of lines
of code, a minumum value of 40000 has been specified, on the right there is the
number of bugs that Findbugs has found.

3.3 Implementation Details
3.3.1 How to make a query

The user has to specify at least one metric and one node of the tree (which can
be a project, a subsystem, a component or a configuration). Optionally he or
she can specify also a time range, a platform, a scope, a repository area and the
name of a volatile repository area. All the parameters are passed from the client
side of the GWT (Google Web Toolkit 2.0) [14] client application to the server
side, where they are used to build a XPath [4] query that is sent to the ETICS
Repository Web service. This Web service returns an XML file with all the values
for the specified metrics. By parsing the file with JAXB (Java Architecture for
XML bindings) [25] it is possible to organize the values according to the date
and the name of the metric. Then all the values are plotted in the charts and
saved in jpeg files. The images created, therefore, are shown in the plot panel of
the disseminator. Figure 8 shows a sequence diagram of the process described.
EticsTrendAnalysis is responsible for the creation of the portlet and it is the entry-

15

point of the application. XPathQueryImpl builds the XPath query that is sent to the
ETICS Repository Web service and store all the results. Moreover, it invokes the
makePlot function in order to create the jpeg files. RepositoryWebService is the
ETICS Repository Web service that receive the XPath query and sends back all the
results related to the parameters specified in the query. XPathPlot is responsible
for the creation of the jpeg files and the plot of the charts.

Figure 8: Sequence diagram of a request for one or more charts.

3.3.2 URL Query

As soon as the user has specified the parameters and clicked on the ”plot” button,
all the options chosen appear in the URL bar of his browser. This mechanism
allows the user to bookmark the page and to retrieve the same graphs with the up-
dated data whenever desidered. Clicking on the bookmark, in fact, an URL query
is sent to the ETICS Disseminator. Every parameter is parsed by the application
and stored in one data structure. These data are processed in the same way as if
they had been specified in the forms. Thus, the XPath query is sent to the Repos-
itory Web service and in a few seconds, the disseminator application receives the
values from the Repository Web service and some charts will be plotted. The pa-

16

rameters that appear in the URL will be used to initialize the values of the forms
of the disseminator and the tree on the left will be incrementally expanded with
the purpose of selecting the projects, or subsystems or components chosen by the
user.

3.3.3 Technologies

In the following the list of some of the most important technologies used by the
ETICS Disseminator for trend-analysis is shown.

• GWT has been used for the ETICS Web portal. GWT is a development
toolkit for building and optimizing complex browser-based applications.

• Ajax [9] (Asynchronous Javascript and XML) with Ajax the ETICS Dis-
seminator can retrieve data from server asynchronously in the background
with our interfering with the display and behaviour of the existing Web
page. This technology has been used in order to retrieve all the various
names of volatile areas, platforms, projects, subsystems, components and
configurations in ETICS.

• JAXB allows Java developers to map Java classes to XML representations.
The ETICS Disseminator for trend-analysis uses it to parse the XML file
sent by the ETICS Web service and that contains all the values (with date)
for all the metrics requested.

• JFreeChart [11] is an open-source framework for the programming lan-
guage Java, which allows an easy creation of complex charts.

• XPath is a query language for selecting nodes from an XML document.

4 DASHBOARD

4.1 Problem description

The development of complex software needs to be supported by Web-based tools
able to collect and represent information organized in different views [8]. A

17

project manager, for instance, may need to analyse the state of some projects
by evaluating their metrics and charts plotted on a single Web page. At the same
time, a developer may be interested in tracing the quality of his or her code. One
of the purposes of the ETICS 2 project was to provide a graphical tool that makes
easily available a large set of information from different sources (like Web portal
and Web repository), and shows measures of metrics about the quality and trend
of the software projects.

4.2 Solution

The ETICS Dashboard has been designed and developed with the aim of providing
ETICS users with a tool for monitoring the builds and tests results, the quality of
software and other useful project information. It contributes to an instant view of
trends, patterns and anomalies in the software development activity.

The ETICS Dashboard Web page (shown in Figure 9) is a collection of widgets
that offers to the ETICS users some different features. The Web page layout uses
a grid composed ofM rows and N columns, whose single cell is represented by
the couple (row, column). Each widget is placed in a cell. The features of each
widget are represented by some key parameters: the location of the cell, which
the widget is assigned to, given by the couple (row, column); and the span of
the widget given by rowSpan and columnSpan. The values of the rowSpan and
columnSpan parameters explain how many cells the widget occupies respectively
vertically and horizontally.

An example of the ETICS Dashboard Web page organization is given in Fig-
ure 10(a) and Figure 10(b): the former shows 9 widget positions of the form (row,
column); whilst the latter shows 9 widgets dimensions of the form (rowSpan,
columnSpan).

4.2.1 Supported Widgets

The ETICS Dashboard provides a variety of widgets (listed in Table 2), whose
description is detailed in the following paragraphs.

18

Figure 9: The screenshot of the ETICS Dashboard page.

ProjectSummary collects generic information about a given project such as repos-
itory URL, homepage URL, and logo.

Figure 11 shows an example of the ProjectSummary widget for the org.etics
project. Besides the main project information, two Web links are avail-
able: the former (named Repository) redirects to the ETICS Repository Web
page, the latter (named Homepage) to the Home Web page of the project.

19

(a) Widget position in
terms of couples of form
(row, column).

(b) Widget dimensions
in terms of couples
of form (rowSpan,
columnSpan).

Figure 10: A representation of the ETICS Dashboard Web page layout.

Widgets Description
ProjectSummary generic information about the project
JobHistory build and test results over the time
Portability build results per platform
Disseminator charts plotted by the Disseminator
URL Web page

Table 2: List of widgets

JobHistory lists the history of the submitted jobs to the ETICS infrastructure in
a table. Each row contains the type of the submission (e.g., build or test)
and its result. All records are displayed in discending order.

Figure 12 shows an example of the JobHistory widget for the org.etics
project. The Refresh link allows user to reload all data from the Web ser-
vices. Clicking a row, a panel with build or test job details (such as status,
submission-id and links to repository and packages) is opened: the View Re-
ports and Browser Packages links open, respectively, the report Web page
and the repository Web page of the selected job.

Portability shows the state of the last build results per platform for a list of the
ETICS configurations. The results are represented in a table in which rows

20

Figure 11: An example of ProjectSummary widget output for the org.etics project.

Figure 12: An example of Job History widget output.

are configurations and columns are platforms. In case of no results for the
(configuration, platform) couple in the given time range, the message ”Build
Not Found” is shown. In case of failure a red icon appears next to the ”Last
Result” message and the last successful build is searched: if it is found, the
”Last Success” message is shown; otherwise, the Last Success Unknown
message is displayed.

Figure 13 shows an example of the Portability widget. Clicking on the
green or red icons the details of the related Build Report from the ETICS
repository is shown in a new Web page.

Disseminator makes available some different charts from the ETICS Dissemina-
tor component.

In the following, the CKJM bar chart (Figure 14(a)) and the SLOCount
chart (Figure 14(b)) for the org.etics project are shown. The DIT and NOC
metrics are plotted in the same CKJM chart.

21

Figure 13: An example of the Portability widget output.

(a) CKJM bar chart (b) SLOCCount chart

Figure 14: A couple of commonly used charts.

URL shows some useful URLs and Web page by using an iFrame HTML.

Figure 15(a) and Figure 15(b) show two examples of Web pages loaded by
the URL widget.

(a) points to http://indico.cern.ch (b) points to https://savannah.cern.ch

Figure 15: Some examples of URL Widget content.

22

4.3 Implementation Details

Two customization levels are required for the ETICS Dashboard page: the former
is about the layout in relation to the position and the size of the widgets, whilst
the latter concerns the type of the chosen widgets according to users’ needs.

In order to implement both levels of customizations an XML-based configu-
ration file has been introduced.

4.3.1 Configuration file overview

The configuration file of the ETICS Dashboard Web page is composed of two
main sections: the former describes the page layout, whilst the latter includes the
list of widgets to be loaded in the page.

Each configuration file has a unique name given by a specific key called PAGE-
ID. The name format of the file is, for example, etics.dashboard.conf.PAGE-
ID.xml. The PAGE-ID key is also used in the URL to point to the correct Dash-
board Web page: the following URL

https://etics.cern.ch:8080/dashboard/#name=MYPAGE

tells the Dashboard’s server-side process to use the file named etics.dashboard.-
conf.MYPAGE.xml to load all configuration parameters.

If no configuration file with the specified name is found, the Dashboard loads a
default page, whose content depends on the default configuration file. On the con-
trary, the server-side servlet passes the file to another server-side process, called
DashboardPageLoader, whose task is to load all data about the page layout and
the widget parameters.

4.3.2 Dashboard Layout

The first section of the configuration file refers to the page layout. According to
the description in Section 4.2, the following part of the configuration file specifies
for the Dashboard page: the maximum layout width of 880 pixels; and the number
of cells divided into 5 rows and 3 columns .

23

<layout>
<params>
<param>
<name>numRows</name>
<value>5</value>

</param>
<param>
<name>numCols</name>
<value>3</value>

</param>
<param>
<name>maxWidth</name>
<value>880</value>

</param>
</params>

</layout>

The grid of the ETICS Dashboard page.

4.3.3 Configuration of Widgets

The configuration file defines the list of widgets and the related parameters. For
each widget, an XML tag, called widget, contains the complete list of parame-
ters specified by the tag param name. Each parameter is composed of a (name,

value) pair of tags. An extract of a configuration file shows the XML widget tag.
<widget>

<params>
<param>
<name>type</name>
<value>ProjectSummaryWidget</value>

</param>
<param>
<name>project</name>
<value>org.etics</value>

</param>
...

</params>
</widget>

An amount of common parameters is listed below:

type: takes one of the following: ProjectSummaryWidget, JobHistoryWid-
get, URLWidget, PortabilityWidget or DisseminatorWidget.

project, subsystem, component or configuration: are the ETICS name
of project (like org.etics), subsystem (like org.etics.portal), component or

24

configuration which widget refers to.

width and height: are the width and height values of the widget.

rowIdx and colIdx: are the row and column numbers that identify the cell
where the widget is placed.

colSpan and rowSpan: are the row-span and column-span values for the
cell of the widget. The default value is 1.

4.3.4 Widget interaction

The user can interact with any type of widgets. For example, when a row in the
JobHistory widget is clicked, the browser generates a related event. The widget
uses this event to call a server-side process that collects all the job details and then
returns them to the client-side.

Figure 16 shows the sequence diagram that describes this behaviour.

Figure 16: The sequence diagram for a typical interaction between the widget and
the server-side application.

DashboardServiceImpl is the server-side class that receives and evaluates the call

25

from Widget. It needs from Widget a WidgetListener that is used to return data
back to Widget. At the end, Widget takes all the data from the WidgetListener and
shows them in the proper way.

4.3.5 Technologies

The most important technologies used by the ETICS Dashboard are GWT and
JAXB detailed in Section 3.3.3. The ETICS Dashboard uses JAXB to parse the
XML configuration file, load and configure all widgets.

5 RELATED WORK

ETICS provides users with a variety of functionalities most of which are neglected
by the subject of this paper, that is focused on the ETICS Dashboard and Dissem-
inator. In the following paragraphs ETICS is compared to a couple of tools for
software development and project management, mainly highlighting their dash-
board features.

Jira provides issue tracking and project tracking for software development
teams to improve code quality and the speed of development (http://www.atlassian.
com/software/jira/). Both Jira’s and ETICS’s dashboard aim at providing a
Web Page where users can get the basic information about their products at a
glance. Another similarity between Jira and ETICS is the fact that both have been
designed as aggregator of self-content elements that allows users to promptly and
quickly visualize information. Jira calls these elements gadgets, whereas ETICS
widgets. The ETICS widgets are a subset of the Jira’s gadgets: adding Web Page,
graphics and charts, report and summary of products information. However, wid-
gets support all the basic functionalities provided by Jira. ETICS, as Jira, is able
to define different Dashboard configurations according to users’ needs, provid-
ing custom monitoring information. ETICS, unlike Jira, is more flexible in the
maximum number of widgets in each dashboard configuration.

Redmine (http://www.redmine.org/), another tool for project management,
provides users with a plugin, called Scrumdashboard, in order to visualize Ver-
sions, Tracks and Issues of a given project. Its use is mainly focused on the

26

showing of patches states, opened tracks and issues. The ETICS Dashboard is
extremely flexible being founded on a set of configurable widgets: therefore it
might be easily extended to provide functionalities similar to Redmine’s, like a
widget for tracking.

6 FUTURE WORK

The ETICS Disseminator for trend-analysis is able to plot further charts that show
the metrics of the AQCM (Automated Quality Certification Model) plugin [22].
This plugin supports different programming languages (Java, C/C++, Python) by
exploiting results coming from different plugins - such as PMD, CKJM, Check-
style, CCCC, CCN, SlocCount, IPv6, Codewizard, PyCyCom - in order to provide
4 more metrics: maintainability, reliability, portability, functionality. These met-
rics can measure the compliance of the software to several ISO/IEC 9126 aspects.
More in detail, the maintainability metric measures the ability of the software to
be modified with relatively little effort, the reliability metric provide the user with
the ability to keep the agreed performances within the agreed conditions. The
portability metric measures how the software can be moved from an operating
system to another one, finally, the functionality metric represents the ability pro-
vide functions which meet the explicit and the implicit functional requirements of
the software.

The ETICS Disseminator for trend-analysis can plot time series charts of these
four metrics in order to let the users know what is the behaviour of one or more
of the AQCM metrics over time. Moreover, if the user specifies all four metrics a
polar chart about the latest values will be shown. As soon as some values related
to the AQCM metrics are collected by the ETICS system, users will be able to
exploit the further information given by the AQCM charts in order to evaluate
their code.

Concerning the ETICS Dashboard users can simply customize the Dissemina-
tor widget in the Dashboard configuration file with the AQCM parameters. The
following Figure 17 shows a possible representation of the AQCM chart in the
AQCM widget.

27

Figure 17: A possible representation of the AQCM chart for the AQCM widget.
In the left side it is placed the AQCM polar chart retrieved from the ETICS Dis-
seminator, whilst in the right it is reported the summary of the values collected
and the link to the complete AQCM ETICS plugin report.

7 CONCLUSIONS

This paper described a data environment for software development process devel-
oped as part of the software quality program of the ETICS 2 European project.
This data environment was built in response to some of the requirements com-
ing from the ETICS users. It integrates two main aspects: 1) the trend analysis
disseminator; and 2) the representation of quantitative data (i.e., metrics) accord-
ing to a standard and centralized organizational dashboard. The set of metrics
taken into consideration are restricted but significant, however new metrics can
be included implementing new plugins. This data environment has been put in
production since August 2010.

We are confident that its use will enable the software team to improve the soft-
ware process. In addition, this data environment will enforce the use of standards
that guarantee that all metrics are comparable; it will reduce the workload and in-
crease the consistency and regularity of data collection; it will provide analytical
instruments that improve the communication of metrics results to all members of
the software team.

28

8 ACKNOWLEDGEMENTS

This work was done in the context of the ETICS 2 project funded by the European
Commission under contract number INFSO-RI-223782.

29

References

[1] B. Allcock, I. Foster, V. Nefedova, A. Chervenak, E. Deelman, C. Kessel-
man, J. Lee, A. Sim, A. Shoshani, B. Drach, and D. Williams. High-
performance remote access to climate simulation data: A challenge prob-
lem for data grid technologies. In Proceedings of the SC2001 Conference,
Denver, November 2001.

[2] M.-E. Begin, S. Da Ronco, G. Diez-Andino Sancho, M. Gentilini,
E. Ronchieri, and M. Selmi. Etics meta-data software editing - from check
out to commit operations. Journal of Physics: Conference Series, 119, 2008.

[3] M.-E. Begin, G. Diez-Andino Sancho, A. Di Meglio, E. Ferro, E. Ronchieri,
M. Semli, and M. Zurek. Build, configuration, integration and testing
tools for large software projects: Etics. Lecture Notes in Computer Sci-
ence (LNCS), 4401/2007(4401):81–97, 2007. N.Guelfi and D. Buchs (Eds.):
RISE 2006.

[4] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernandez, M. Kay, J. Robie,
and J. Simon. Xml path language (xpath) 2.0 w3c recommendation, January
2007.

[5] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented
design. IEEE Transaction on Software Engineering, 20(6):476–493, 1994.

[6] R.G. Cooper. Winning at New Products: Accelerating the Process from Idea
to Launch, Third Edition [Paperback]. Basic Books; 3rd edition, June 2001.

[7] S. Deering and R. Hinden. Internet protocol, version 6 (ipv6) specification,
Decembre 1998.

[8] S. Few. Information Dashboard Design: The Effective Visual Communica-
tion of Data. O’Reilly Media, 1 edition (January 1, 2006).

[9] J. J. Garrett. Ajax: A new approach to web applications, February 2005.

30

[10] A. Giesler, A. Streit, E. Ronchieri, and M. Dibenedetto. Demo: Synergizing
etics and unicore software. In UNICORE Submit 2010, pages 37–43, Julich,
Germany, 18-19 May 2010.

[11] D. Gilbert. The jfreechart class library, June 2002.

[12] C. Grindstaff. Findbugs, part 1: Improve the quality of your code. why and
how to use findbugs, May 2004.

[13] C. Grindstaff. Findbugs, part 2: Writing custom detectors. how to write
custom detectors to find application-specific problems, May 2004.

[14] R. Hanson and A. Tacy. GWT IN ACTION. Manning, 2007.

[15] W. Harrison. A universal metrics repository. In Pacific Northwest Software
Quality Conference, Portland, Oregon, USA, October 18-19 2000.

[16] Ford W. Polk W. Housley, R. and D. Solo. Internet X.509 Public Key Infras-
tructure - Certificate and CRL Profile, January 1999.

[17] M. Jang. Linux Patch Management: Keeping Linux Systems Up To Date,
volume Chapter 6. Prentice Hall. Part of the Bruce Perens’ Open Source
Series series., Jan 9 2006.

[18] A. J. S. Mills. JUnit Testing Utility Tutorial. The University Of Birmingham,
2005.

[19] E. Olson, R. Walker, and Ruekert R. Organizing for effective new product
development: the moderating role of product innovativeness. Marketing,
59:48–62, 1995.

[20] E. Palza, C. Fuhrman, and A. Abran. Establishing a generic and multidimen-
sional measurement repository in cmmi context. In 28th Annual NASA Soft.
Eng. Workshop (SEW’03), pages 12–20, 2003.

31

[21] A. Pavlo, P. Couvares, R. Gietzel, A. Karp, I. D. Alderman, Livny M., and
C. Bacon. The nmi build & test laboratory: Continuous integration frame-
work for distributes computing software. In the 20th conference on Large
Installation System Administration, Washington, DC, pages 263–273, De-
cember 2006.

[22] Takacs E. Matranga I. Di Meglio A. Rippa, A. and A. Manieri. Etics system:
Automated testing and quality assurance. In QA&TEST 2009, 8th Interna-
tional Conference on Software QA and Testing on Embedded Systems, 2009.

[23] J. Ronkainen, T. Rahikkala, and R. Blackwood. Automating scm metric data
collection and analysis in virtual software corporations. In Proceedings of
25th EUROMICRO Conference, volume 2, pages 279 – 283, Milan, Italy, 08
set 1999 – 10 set 1999 1999.

[24] Y. Shafranovich. Common format and mime type for comma-separated val-
ues (csv) files, October 2005.

[25] D.-O. Simion. Java facilities in processing xml files - jaxb and generating
pdf reports. Informatica Economica, 2008.

[26] V. Subramanyam and S. V. B. Sharma. Hpd - query tool on projects historical
database. In SEPG Conference, Bangalore, February 1999.

[27] C. Szyperski. Component Software: Beyond Object-Oriented Programming.
2nd ed. Addison-Wesley Professional, Boston, 2002.

[28] L. Westfall. 12 steps to useful software metrics. Technical report, The West-
fall Team, PMB 101, 3000 Custer Road, Suite 270, Plano, TX 75075, 2005.

32

