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Abstract

The b — o angular correlation analysis in A(a,b)B(a)C processes
can be used as a powerful 'tool’ to study the unbound states populated
in transfer reactions leading to the same final state. So one obtains a
complementary investigation of the intermediate nucleus B = o+ A
studied by a-particle resonance scattering from A nucleus.



1 Sequential and two-body processes.

In Heavy-Ion Deep Inelastic Collisions (DIC) the mechanism governing both
the transfer of most of the incident kinetic energy to the internal degrees of
freedom of the intermediate system and the relative orbital angular momentum
to the intrinsic angular momenta of the final reaction fragments has been
extensively studied [1].

While the analysis of angular distributions in such reactions cannot give
information on reaction mechanism because of the ’structurelessness’ of the
spectra, the particle-particle angular correlations , critically depending on the
transition amplitudes, can be effective tools to study the reaction dynamics

(2, 3].

2 Particle-Particle Angular Correlation.

Let us consider such a sequential process A(a,b)B(c)C assuming that it pro-
ceeds through a given continuum state (¢, Jpmp) in the nucleus B to a narrow
definite state (€5, Jome) in the final nucleus C [4].

€% is the excitation energy of the state having definite spin Jx and mx
in the nucleus X , while my is the z-component of Jx. The (xX) system
has relative radial coordinate 7, momentum Ez, velocity v, and energy e,.
We define the spherical polar angles (J,,¢,) of k_; and (Jp, ) of k_; in the
(A + a) centre-of-mass (c.m.) system, while k. has polar angles (9, ) defined
in the recoil centre-of-mass (r.c.m.) system ( that is the rest frame of B) and
described in a xyz-frame with the x-axis and z-axis parallel to the x-axis and

z-axis of the c.m. frame.



In order for the A(a,b)B(c)C reaction to be a sequential process, we
require that the excitation energy € of the intermediate system B formed
in the first step of the three-body reaction be independent of the angles of
the particle ¢ and we also assume that in the B — ¢ + C decay the nuclear

interaction between b and B is negligible.

Figure 1: C.M. and r.c.m. Reference Frames.

Following the same symbolism of Ref. [4], we suppose for simplicity the
nuclei A, a,b and ¢ to have spin zero and b and ¢ particles to be in the ground
state.

Let us write the outgoing part of the stationary solution of the Schrodinger
equation for the A(a,b)Blep] reaction, -corresponding to the partition

(bB; €5, Jpmp), associated with the unit flux in the partition (aA;¢,), in the



asymptotic region (w = (9, ¢)) [5, 6]:
Uy = foa(€p; mB,wo)$s8BOs. (1)

where the outgoing wave O, is given by
Oy = (1);/27‘,,)_1 expli(kyry — mp In 2ky7, + of)] (2)

whilst 7, and of are the Coulomb field parameter and the S-wave Coulomb
phase shift for the pair (bB), respectively; ¢ and ¢p are the normalized wave
functions of the b and B nuclei, respectively; the fi, amplitude , related to the

differential cross-section for the A(a,b)B reaction by means of

do
—— = | foal€p;mB,ws) I, (3)

dwy, 3
determines the population of the substate (€g; Jpmg), in the nucleus B, pre-
pared by detecting the particle b in the fixed direction of ky .

We suppose that, outside the range of any interaction with the nucleus b,
the nucleus B decays into ¢+ C [4]. In the B nucleus rest frame, the outgoing
part of the stationary solution of the Schrodinger equation corresponding to
the decay from a substate (€f; Jpmg) to a given partition (cC; €, Jome), in

the asymptotic region can be written as [7]
¢B = FBC(CEa 62‘; mpg,mc, w)¢c¢COc- (4)

where O, is written in an analogous way like eq.(2), while ¢, and ¢¢ are the
normalized wave functions for ¢ and C particles, respectively; moreover, the

decay amplitude Fp. is defined by:

Fp.(€g,€;mp, me,w) = —1t Z(—)c < Jelmg,mp —mg | Jgmp > -
¢

Se(€p,€c) Y7 (w). (5)



In the above equation € is the relative orbital angular momentum of the pair
(cC), Y/*(w) are the spherical harmonics, < Jelmg,mp — m¢g | Jgmp >
are the Clebsch-Gordan (CG) coefficients [9], S is the matrix which describes
the B — ¢+ C decay and the summation over £ is restricted to only parity-
conserving values.

Now in order to evaluate, in the nucleus B rest frame, the outgoing part
of the wave function which describes the sequential decay process (aA;e¢,) —
(bB; €, Jg) — (bcC; €5, Jome) in the asymptotic region, we can use the above

wave function ¢p thus getting, in the nucleus B rest frame

Wy = Foc(€p, €0 me, wh, w) Oy OcPrdedc (6)
where
fbc(cg) 62'1 mC7wb’w) = ZI.fba(CE, mBawb)FBc(CE, 62') mp, mc,LU). (7)
mp

Here T is the Jacobian related to the trasformation from the c.m. system to
the r.c.m. system [6, 4] (see Fig. 1).

The number of the nuclei ¢ emitted in the solid angle dw along k. in
coincidence with the nuclei b emitted in the solid angle dw, along the fixed ky
is given by the flux ji. in the partition (bcC;ef, Jome) through the surface

elements of area rldw, and rdw, respectively, and defined by (5, 6]
Jhe(me; wp,w) = vbrfdwbvcrzdw/dg | Tpe |2 (8)

the integration being taken over the totality of the internal variables.
If one recalls the unit flux in the partition (aA;e€,), s is exactly the
double differential cross-section d?c for the sequential reaction (aA;e,) —

(bB; €5, J) — (bcC; €, Jeme). So, by performing the integration in eq. (8),



with the functions ¢, ¢. and ¢¢ normalized, the double differential cross-

section for any final spin, from eqs. (6)-(8), is

d?*c
dwbdw = Z I Z Fba(CE;WT‘Bawb)FBc(CEa 62'1 mBymC,w) |2 (9)
mec mp
where
Fba(cg; mB,wb) = Ifba(cfg; mB,wb). (10)

A quantity often considered in the b—c coincidence measurements is the b—c

differential multiplicity defined by (see egs. (3) and (9))

M(w) = (dijl) / (;;) : (11)

that is the number of particles ¢ per nucleus b and per unit solid angle in the

moving frame of the decaying nucleus B, having sr~! dimensions.
Let us take into account the same process in the particular case when

wp = 0 so that mp = 0. With these assumptions, eq. (9) becomes:

d*c
=| Fia(eg) |? Fg.(es, €53me,w) |2 12
(dois) = Pl FE Fade@imo (12

me
from where one can deduce that the double differential cross-section can be

factored in two terms, one related to the A(a,b)B reaction, and the other one

related to the B — ¢+ C decay:

2
().~ (&), (&) 1
dwpdw =0 dwy wp=0 dw

where

in which

Fio(€p) = —i(2m/ka) 3° Sele, D5(Via' (wa))*-

Laly M

{(Ipls0, M | £, MY, (0) (15)



and

d
ZZ =S| Fad(€, €3 me,w) | (16)

dw =

in which

Fp.(€, €6;me,w) = —1 »_(=1)'57° -
¢

- < Jebme,—mg | Jg0 > Y, "¢ (w)". (17)
Let us now consider the A(A,c)C elastic scattering process and let us
analyze it by means of the Ackhiezer-Pomeranchuk- Mclntyre-Blair model
(APMB), where the particle scattering is treated by semi-classical boundary
conditions.
The starting point is that the whole particle flow impinging on the nucleus
is absorbed, while the other particles are scattered by the Coulomb potential
exerted by the nucleus.

Let us write the cross-section for the elastic scattering

do 9
& 1 10)] (18)
where
7(0) = (2ik)™ Y20 + 1) (e — 1) Pe(cos 0) (19)
£=0

with k = h/pv where p is the reduced mass and v is the relative velocity, 7, is
the scattering matrix, P(cos @) are the Legendre polinomials.
We assume ¢ = 0 and 1, = €*°¢ for £ < {' and £ > [, respectively, while

oe is the Coulomb phase shift given by:

4
o¢ =00+ Y tan"'(n/m) (20)
m=1
with
yAA 2
n= . (21)

hv



If one consider classical orbits, £ can be expressed by:
R (0 +1) = 2uR*[E — (ZZ'€*/R)) (22)

where R is the sum of the radii of the involved nuclei, Z and Z’ are their
atomic numbers, E is the beam energy, and p is the reduced mass.

To get the best fits at backward angles, we introduced a smooth cut-off
for ne:

e = Ace[2i("z+51)] (23)
where §; is a nuclear phase shift, while A, and &, are given by [10}
Ae = {1 +exp[(ta — 0)/ALa]} (24)

(5@ = 50{1 + exp[(f — fs)/A@.s]}_l. (25)

The final differential cross-section expression becomes:

—fl—{ = (2k)~? | nsin~%(0/2) exp(2ioo) exp[—inlog(sin?(0/2))] +
w
iy exp (2i0¢)(Arexp 2ige — 1) P(cos ) | . (26)
=0

If the reaction cross-section is negligible with respect to the resonance
energy, A¢ ~ 1 when ( is the resonance value; in this case, the Legendre
polynomial coefficient amplitude reaches a maximum when §; = 7/2,and this
is chosen as a resonance condition.

The corresponding level is attributed a spin J = £ and a parity m = (—1)*.
If we compare the expression of the differential cross-section with the general
form obtained by partial wave analysis, §;’s represent the real part of partial
wave phase shift and A, corresponds to exp(2ides), where the &;’s are the

imaginary part of the partial wave phase shift.



Now we assume that the reaction A(a,b)B proceeds via direct one-step
transfer of a zero-spin particle A, namely that the A(a,b)B(c)C sequential
process is represented by the sequencea + A = (b+A)+A >+ b+(A+ ) —
b+ B — b+ c+ C. Then a visual comparison between eq.(13) and elastic
scattering cross- section (18) shows the analogy between the A(a,b)B(c)C
sequential process and the A + A - B — ¢+ C resonance scattering one as

schematically depicted in Fig. 2 [8] by means of Feynman-like diagrams.

- bi o
N
s

Figure 2: Diagramatic representationof aa+A — (b+A)+A — b+(A+A) =
b+ B — b+ c+ C direct sequential process and the A+ A - B - b+ C

resonance reaction.
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Since our only assumption was that the A(a,b)B reaction is a one-step
transfer process, one can easily understand the decisive role played by b — ¢
angular correlation measurements in the study of the reaction mechanism.
Different (a,b) reactions, leading to the same B nucleus, can be useful in the

investigation of the role of the spectator b particle in more detail.

3 Analogy between sequential and two-body

processes.

Instead of considering the coincidence cross-section by referring to specific
energies of the nuclei B and C, we now want to get a theoretical expression of
the b—c angular correlation for the three-body sequential process A(a,b)B(c)C
under the hypothesis that the B nucleus is highly excited to levels lying in the
continuum region, within a certain, fixed energy interval; moreover and for
simplicity let us consider only the case of a single Jp-value.

By averaging the double differential cross-section over an energy interval
A centered at the energy €} with a proper definition of the average of a function
such that the final result of averaging should not depend in general on the exact
form of the weighting function for the result to have physical sense, finally we

get (4]
( d*c
dwydw

) ~ E | Z Fyo(mp,ws){FBe(mB, mc,w)) 1. (27)

mc mp

Similarly to the one-level treatment, let us assume, also in the case of

continuum, mp = 0 and w; = 0; then, from eq. (27):

(dais) ) = E @) Eaulmen (29

A TMC
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one gets:

(725) ) 2@ P T Edmown P ()

wp=0 A
From the previous equation, one can easily see that the double differential

cross-section can be separated in two terms:

do or 12
(d—wb)%ﬂ =| Fpa(0°) | (30)

and

(32) =5 I (Fautme,) - (31)

mc

We want now to stress how, in this particular case, the differential multiplicity

is exactly equal to the cross- section of the B — ¢+ C' decay:

92) = M) =| T3 Selep +id e (w) [ (32)
dw £ mc

Since we expressed the reaction cross-section as a sum of an equilibrium

term and of a non-equilibrium one, they will be factored as follows:

(@5~ (&)..() ®
dwbdw wb=0_ dwb wp=0 dw

and
d20' NE B ﬁ NE ﬁ NE (34)
dwydw wb=0— dwy wp=0 dw
where
do E do NE
— =|— =| Fpa(0°) ? 35
(dwb)w,,=o (dwb)%zo | Foa(0°) | (35)
while
dO’)E Tg
— | =Y wlJo)= 1 Y (w)* P (36)
(dw 7 G'"
and

do NFE
(d_w) =S| Se(es + iAo (W) 2. (37)
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Let us now go back to the elastic scattering process, by averaging eq.(18)
on a A energy interval, centered at the mean energy of the particles. The
average of f(0) can be written as:

(=]

(f(0)) = (20k)™" 3 _(2£ + 1){(me — 1)) Pe(cos 0) (38)

=0

from which one gets:

(Z_:) = (2k)7 | 2(2/«’ + 1){(1e = 1)) Pe(cos0) [*. (39)

4 Using the DWBA formalism.

Let us consider now the same process by using the DWBA formalism: in this

framework the transition amplitude A4;, of the sequential process
a+ A= b+17)+A2b+(T+A)>b+B—-ob+c+C
can be written as:

Aba(JB"TLB,CB,gb = —[JBSNIO((L b)SNJE(B A)]1/2

E T2 (N, N')Y[*2(05,0) (40)
with
! m 4m kb i La=Lp~J
(LyJgmp, —mp | L0)I{2, (N, N'). (41)

SNnL(A, 1) is the spectroscopic amplitude for A nuclear state that decays
in g and 7 with quantum numbers N and L, L, and L, are the orbital angular

momenta for ingoing and outgoing channels, and Igbe is the radial integral.
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When mp = 0 and w, = 0, one gets:

d’o dB
(i)Yo = Swvale, sy (B, Aoy (N, N, Ol s (42
where
dBO * sme 2
<_d:>A =>_1> ac(Js, mc; €5, A)Y (W) | (43)
mc 4
with
ag(.]B,mc;eB, = ZS CB +’LA <ch meg,mMc | JBO> (44)
and
[o5(N, N’ 0)]DW_ JB ZTJELB(N N)l (45)

is the differential cross-section at 0°, for the A(a,b)B reaction as expected by
DWBA.

Let us now consider the differential cross-section averaged on a A interval
centred at € for the A(a,b)B reaction with J4 = 0 proceeding through an

isolated resonance (€%, JgmgB), i.€

o(ex T a €% B dBo
<d d(wB)>A - E ' [FB ﬁ‘;)]J ( dw >A

a

(46)

I'p, and ['g being the partial and total widths, respectively, and {(dBo/dw)a
is given by eq.(43).

As previously deduced, from comparison of eq.(29), (39), and (42), (46),0ne
easily infers the analogy between the sequential process and the resonance

scattering one.
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the phase shift analysis of the resonances observed in *0(e, a)'¢0, . elastic
scattering [11, 12, 13]. In the analysis of these states one has to support the
thesis according which the four transferred nucleons behave like an a particle,
so allowing a description which employs the cluster model.

Fig. 3 shows a comparison between the d-a coincidence spectrum for
160(®Li,d)*°Ne(@)®0, . at Esr; = 35.3 MeV at 6; = 10° and 4, = 164°+170°
in lab. and the excitation functions for O(a, @,)'°0,.;. at 0c.ar. = 149.4° and
Oc.pr. = 154°. The subscript o on o means that only the a-decay to %0, . is
considered.

The correspondence among the highly excited levels in excitation func-
tions and in a,-decay spectrum, as well as the fair agreement - although quali-
tative - in their form, strongly supports the conjecture of an a-cluster structure
of the more pronunced ?° Ne resonances in the considered energy range. This
shows how the angular correlation analysis can be used, at least in the case of
strongly excited levels, as a complementary technique to solve the ambiguities
arising from the excitation functions analysis. It is clear that, in the study of
the excitation function of the *0(a, a)'®O reaction and in the measurement
of d— a coincidences related to the *0(6Li, d)* Ne(a)'®O process, 2° Ne states
will appear that have important reduced widths for a-decay to 0, ., due to
the direct a-transfer in the (°Li, d) reaction.

One can look at the d-o angular correlation in 60 (®Li, d)** Ne()'®0 as
the angular distribution of a elastic scattering at different energies.

In 6L:,” Li o-cluster transfer-induced reactions the shape of the spectra
and angular distributions at small angles and high excitation energy of residual

nucleus, are mainly due to the momenta distributions of the clusters in L3,
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" L1 nuclei.

The angular distributions for high excited states do not depend on the
angular momentum transferred to the nucleus: this circumstance does not
allow one to deduce the state quantum numbers from angular distributions[14].

For these reasons an interrelationship is necessary between the infor-
mation extracted from b — a angular correlation analysis and the one from
a particle-induced resonance scattering: these studies can help nuclear spec-
troscopy in highly excited « level analysis, as well as providing new information

on collective effects in light nuclei.
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