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Abstract:

In order to test the concept of homology [1, 2] on a lighter pair of nuclei we did
focus on the target nuclei ®°Zr and ®'Zr. To gain the information needed high resolution
(p.a) experiments were carried out. Here we report on the results of the target %0Zr. In
the excitation energy range from 0 to approximately 3 MeV 36 levels could be resolved.
The data have been analyzed with DWBA-calculations using a double-folded potential
in the exit-channel. Moreover the structure of low-lying states of 37Y has been studied
within the frame work of shell model, using the code OXBASH.



Experimental setup:

The experiment was carried out at Munich MP Tandem accelerator using a polarized
22 MeV proton beam, the Q3D magnetic spectrograph and the 1.6 m focal plane detector
with periodic readout allowing particle identification and focal plane reconstruction [3].
The energy resolution achieved was = 12 keV and the uncertainty in the energy attributed
to the resolved levels was estimated to be + 3 keV. Angular distributions have been
measured from 5° to 65° in steps of 5°. The spectrometer entrance slits were adjusted
to provide for © > 10° a solid angle of 11.038 msr. The beam current used was about
140 nA with a value for the polarization (both up and down) of (73 £ 5) %.

A typical spectrum is shown in Fig. 1.

Analysis:
In the analysis of the data finite range DWBA-calculations have been performed. The

real part of the a-channel was a double folded optical potential calculated from

V@A) = A [ [ orE)paFIU B p, pay i, oy ).

Here pi(7), p2(7) are the respective nucleon densities of target and projectile, t(E, p1, pa,
T1,T3,T) is a parametrisation of the nucleon-nucleon-interaction taken from [4] and A is
a scaling parameter. The nucleon density distributions p; and p; were the experimental
ones [5] obtained from electron scattering and unfolded with the charge distribution
of the proton. For the imaginary part of the optical potential in the exit channel a
volume Woods-Saxon-potential was chosen. In a first step the angular distribution and
the analyzing power of the g.s. transition were fitted with the code TROMF [6] which
allows a simultaneous fit to the elastic data in the entrance and exit channel as well as
to the reaction data (Fig. 2). In the entrance channel the potential of Ref. [7] was used.
The potential parameters obtained are listed in Table 1. The optical potential in the

exit channel agrees well with the results found in a systematic study of the energy and



mass dependence of a-nucleus double-folded potentials [8].

In a second step the cross sections and analyzing powers of all the resolved states
found have been computed using the code DWUCKS5 [9]. In these calculations only the
binding energy of the triton has been adjusted to fit the excitation energy of the level
considered. Most of the levels are reproduced quite well (Figs. 3-6).

The advantage of the method applied is that the potential ambiguities on the a-
channel are removed through i) the simultaneous fit of both the scattering and the reac-
tion data and ii) the comparison of the potentials obtained with our global a-systematics.
This leads to smaller renormalisation factors and a more systematic behaviour of the ex-

perimental spectroscopic factors.

Shell model calculations:

The structure of low lying levels of 87Y has been studied in the framework of the shell
model. The calculations have been parallely performed for both 87Y and #8Y nuclei, since
our interest is concentrated to evidence levels in 88Y homologous to states in 87Y.

Here we present the results for 37Y

The calculation are based on the usual one- and two-body Hamiltonian

H = Z e,-afa,- + Z ‘/ijk[a}’a;aka[
: i1kl
and we have constructed the model space using the orbitals 1fs/2, 2p3j2 and 2p,/, for
the protons and the orbitals 1go/5, 1g7/2, 2d5/2, 2d3/9 and 35, for the neutrons. For the
two-body matrix elements V;;.; we have used the set GWBXC [12], which are essentially
G-matrix effective interactions basedon realistic Paris potential.

The calculation has been performed with OXBASH code [13]. The resulting low lying
levels and corresponding wave functions for 87Y are listed in Table 2. In this case the
model space has been assumed of the form : proton fs5[5 — 6], pa/2[3 — 4], p1/2[0 — 2]
and go/2[0 — 1]; neutron go/5[8]. In square brackets the allowed particle occupations are

indicated.



The single particle energies used in the calculations are:
-8.90 MeV, -12.62 MeV, -9.61 MeV, -5.07 MeV for the fs/2, P32, P1/2, gos2 proton
orbitals, respectively and 0.664 MeV for the go/; neutron orbital.

In terms of particle-hole description, m(1h)v(1h) negative-parity states of the form

[7(5) " v(gos2) )11

are used where the allowed proton-hole states include p3/;, fs/; and py/, orbitals, plus

7(2h — 1p)v(2h) positive-parity states of the form

[7[(71)72 (52) ™ (9y2)]1, (W(goy2) 211,

i.e. states corresponding to proton core excitation to the proton go/, orbital. From the
components of the lowest states displayed in the table, one can see that only the spins
1/27 and 9/2% of the lowest states can be assigned to dominant proton single particle
configurations (p1/2)~" and (p1/2)"%(ges2). respectively. In the case of the spins 3/2~
and 5/27, the lowest states are still associated, a; dominant component, to the proton
(p1/2) state, with a recoupling of the two (go/2) neutron holes. The states collecting
most of the single-hole character are predicted to lie at higher excitation energy, precisely
at 1.00 MeV for the 5/27 and 1.46 MeV for the 3/2".

In Tables 3-and 4 all the observed levels of 87Y up to an excitation energy of almost
3 MeV are listed together with those observed in a previous (p, ) experiment [14] and
the corresponding adopted ones [15]. From the analysis 10 new attributions of spin and

parity values result,improving the present knowledge of the 7Y level scheme.
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[Vl o o [W]el=
p |l 524 1.20 |0.690 1.12 | 1.236 | 0.690
a A =1.204 8.33 | 1.83 | 0.576
t l 1.24 | 1.19
L IWal ra [ aa [Veol ro | 2w
|| p l 8.27 ] 1.236 | 0.690 ” 5.90 | 1.072 | 0.630
TABLE 1: Table with the potential parameter used in the calculations
E(MeV) Jr ] CONFIGURATION
Exp. Th. P1/2 P3/2 f5/2
0.000 0.000 | 1/2— | 87.05 514 | 7.81 [w(])“lu(gg/z)ﬁu]l
0.794 0.691 | 5/2~ | 57.39 3.01 39.59 [7(7) " v (ge/2) 311
0.982 0.689 | 3/2~ | 77.68 17.70 4.62 [ﬂ'(])—ll/(gg/Z)%V]I
1.184 1.464 | 3/2~ | 10.87 78.21 10.92 [ﬂ'(])—ll/(gg/z)%u][
1.201 1.000 | 5/2~ | 26.65 3.61 69.74 [W(])"lu(gg/z)}u]l
Jie
P1/2(2) P1/2P3/2 f5/2P1[2 f5/2P3/2
0.382 0.379 | 9/2% | 77.16 7.14 14.61 1.09 [71'[(]'1)“1(]'«z)“l(gg/z)]l,r
[v{gar)Inl:

TABLE 2: Eigenvalues and percentage of different components obtained
within the Shell Model Hamiltonian with GWBXC interaction for low
lying states of 37Y



Present work | (p,a) reaction [14] | Adopted levels [15]

E.-  J° |E; Jr E. J"

0 = 1]o 1= 0 1=

0379 2+ |0.38 -§-+ 0.381 2+

0793 2= ]0.79 2- 0.794 8-

0.981 3 0.9 2- 0.981 3-

1151 2+ | 115 (27) 1.153 ()t

1.182 3~ 1.178 (3)-

1201 2~ |1.20 (27) 1.202 (3)"
1.37

1.401 (&) 1.404 (1)
1.58

1607 (%) 1.609 37,3

| 1629 2+ 1.623 C |

1.704 32~ 1.704 (27)

1.757 3+ 1757 (3+,1°)
1.79 2-

1.802  2- 1.801 (37,2357

1.846 ;= |185 2= 1.851 3

1979 I- 1.988  (£,9)-

2.006 i+ 2.008 ()

2113 &+ 2.111

' 2.13 ()

2.153 ' 2- 2.159

2184 I- 2.185

2209 3~ 2207 (8,14

2.210 1

TABLE 3: Found levels



Present work (p, o) reaction [14] | Adopted levels [15] |
E. J" E, J" E, JT
- 2242 (1.39)
2.249 2- 2.244
2214 (&%)
2.276 2- 2.278 (Z7)
2.302 - 2.30 (2%)
2.354
2365 (¥ + 3%) 2367 (¥7)
2.408 3~ | 2.409 3)*
| 2.449 2- 2.446 (3)*
| 2.531 u- 2.532
+ -
2.562 u 2.57 (£-) 2.564 (2)*
2.572 (¢7)
2.599 2- 2.595
2.63 (27)
2.661 I+
2.682 - 2676 (i)
2.747 2+
+
2.801 u
2821 (3)*
2828 (257
2.831 2-
2.903 2= 2901 373~
2.96 s+
2.998 st 2995 (3"
TABLE 4: Found levels
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FIGURE 1: Typical spectrum obtained in the experiment at 8., = 20°.
For some of the levels the excitation energy is indicated.
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