# ISTITUTO NAZIONALE DI FISICA NUCLEARE

Sezione di Milano

INFN/BE-96/09 27 Novembre 1996

P. Guazzoni, M. Jaskola, L. Zetta, J. Gu, A. Vitturi G. Graw, R. Hertenberger, D. Hofer, P. Schiemenz, B. Valnion, E. Zanotti-Müller U. Atzrott, G. Staudt

STUDY OF THE  $^{90}{
m Zr}(\vec{p},\alpha)^{87}{
m Y}$  REACTION AT 22 MeV

Poster Contribution to EPS10

Trends in Physics Conference, September 9,14, 1996 Sevilla

SIS - Pubblicazioni dei Laboratori Nazionali di Frascati

# INFN – Istituto Nazionale di Fisica Nucelare Sezione di Milano

INFN/BE-96/09 27 Novembre 1996

# STUDY OF THE ${}^{90}\mathrm{Zr}(\vec{p},\alpha){}^{87}\mathrm{Y}$ REACTION AT 22 MeV

P. Guazzoni, M. Jaskola[†] and L. Zetta
Dipartimento di Fisica dell'Università and I.N.F.N. via Celoria 16. I-20133 Milano.
Italy

J. Gu [‡] and A. Vitturi Università and I.N.F.N. via Marzolo 8, I-351(

Dipartimento di Fisica dell'Università and I.N.F.N. via Marzolo 8, I-35100 Padova. Italy

G. Graw, R. Hertenberger, D. Hofer, P. Schiemenz, B. Valnion and E. Zanotti-Müller Sektion Physik der Universität München. D-85748 Garching, Germany

U. Atzrott and G. Staudt

Physikalisches Institut der Universität, Auf der Morgenstelle 14, D-72076 Tübingen. Germany

#### Abstract:

In order to test the concept of homology [1, 2] on a lighter pair of nuclei we did focus on the target nuclei  $^{90}\mathrm{Zr}$  and  $^{91}\mathrm{Zr}$ . To gain the information needed high resolution  $(\vec{p},\alpha)$  experiments were carried out. Here we report on the results of the target  $^{90}\mathrm{Zr}$ . In the excitation energy range from 0 to approximately 3 MeV 36 levels could be resolved. The data have been analyzed with DWBA-calculations using a double-folded potential in the exit-channel. Moreover the structure of low-lying states of  $^{87}\mathrm{Y}$  has been studied within the frame work of shell model, using the code OXBASH.

## Experimental setup:

The experiment was carried out at Munich MP Tandem accelerator using a polarized 22 MeV proton beam, the Q3D magnetic spectrograph and the 1.6 m focal plane detector with periodic readout allowing particle identification and focal plane reconstruction [3]. The energy resolution achieved was  $\approx$  12 keV and the uncertainty in the energy attributed to the resolved levels was estimated to be  $\pm$  3 keV. Angular distributions have been measured from 5° to 65° in steps of 5°. The spectrometer entrance slits were adjusted to provide for  $\Theta \geq 10^\circ$  a solid angle of 11.038 msr. The beam current used was about 140 nA with a value for the polarization (both up and down) of (73  $\pm$  5) %.

A typical spectrum is shown in Fig. 1.

## Analysis:

In the analysis of the data finite range DWBA-calculations have been performed. The real part of the  $\alpha$ -channel was a double folded optical potential calculated from

$$V(\vec{r}) = \lambda \cdot \int \int \rho_1(\vec{r}_1) \rho_2(\vec{r}_2) t(E, \rho_1, \rho_2, \vec{r}_1, \vec{r}_2, \vec{r}) d\vec{r}_1 d\vec{r}_2.$$

Here  $\rho_1(\vec{r}), \rho_2(\vec{r})$  are the respective nucleon densities of target and projectile,  $t(E, \rho_1, \rho_2, \vec{r}_1, \vec{r}_2, \vec{r})$  is a parametrisation of the nucleon-nucleon-interaction taken from [4] and  $\lambda$  is a scaling parameter. The nucleon density distributions  $\rho_1$  and  $\rho_2$  were the experimental ones [5] obtained from electron scattering and unfolded with the charge distribution of the proton. For the imaginary part of the optical potential in the exit channel a volume Woods-Saxon-potential was chosen. In a first step the angular distribution and the analyzing power of the g.s. transition were fitted with the code TROMF [6] which allows a simultaneous fit to the elastic data in the entrance and exit channel as well as to the reaction data (Fig. 2). In the entrance channel the potential of Ref. [7] was used. The potential parameters obtained are listed in Table 1. The optical potential in the exit channel agrees well with the results found in a systematic study of the energy and

mass dependence of  $\alpha$ -nucleus double-folded potentials [8].

In a second step the cross sections and analyzing powers of all the resolved states found have been computed using the code DWUCK5 [9]. In these calculations only the binding energy of the triton has been adjusted to fit the excitation energy of the level considered. Most of the levels are reproduced quite well (Figs. 3-6).

The advantage of the method applied is that the potential ambiguities on the  $\alpha$ -channel are removed through i) the simultaneous fit of both the scattering and the reaction data and ii) the comparison of the potentials obtained with our global  $\alpha$ -systematics. This leads to smaller renormalisation factors and a more systematic behaviour of the experimental spectroscopic factors.

#### Shell model calculations:

The structure of low lying levels of <sup>87</sup>Y has been studied in the framework of the shell model. The calculations have been parallely performed for both <sup>87</sup>Y and <sup>88</sup>Y nuclei, since our interest is concentrated to evidence levels in <sup>88</sup>Y homologous to states in <sup>87</sup>Y.

Here we present the results for <sup>87</sup>Y

The calculation are based on the usual one- and two-body Hamiltonian

$$H = \sum_{i} \epsilon_{i} a_{i}^{\dagger} a_{i} + \sum_{ijkl} V_{ijkl} a_{i}^{\dagger} a_{j}^{\dagger} a_{k} a_{l}$$

and we have constructed the model space using the orbitals  $1f_{5/2}$ ,  $2p_{3/2}$  and  $2p_{1/2}$  for the protons and the orbitals  $1g_{9/2}$ ,  $1g_{7/2}$ ,  $2d_{5/2}$ ,  $2d_{3/2}$  and  $3s_{1/2}$  for the neutrons. For the two-body matrix elements  $V_{ijkl}$  we have used the set GWBXC [12], which are essentially G-matrix effective interactions based on realistic Paris potential.

The calculation has been performed with OXBASH code [13]. The resulting low lying levels and corresponding wave functions for  $^{87}$ Y are listed in Table 2. In this case the model space has been assumed of the form : proton  $f_{5/2}[5-6]$ ,  $p_{3/2}[3-4]$ ,  $p_{1/2}[0-2]$  and  $g_{9/2}[0-1]$ ; neutron  $g_{9/2}[8]$ . In square brackets the allowed particle occupations are indicated.

The single particle energies used in the calculations are:

-8.90 MeV, -12.62 MeV, -9.61 MeV, -5.07 MeV for the  $f_{5/2}$ ,  $p_{3/2}$ ,  $p_{1/2}$ ,  $g_{9/2}$  proton orbitals, respectively and 0.664 MeV for the  $g_{9/2}$  neutron orbital.

In terms of particle-hole description,  $\pi(1h)\nu(1h)$  negative-parity states of the form

$$[\pi(j)^{-1}\nu(g_{9/2})^{-2})_{I_{\nu}}]_{I}$$

are used where the allowed proton-hole states include  $p_{3/2}$ ,  $f_{5/2}$  and  $p_{1/2}$  orbitals, plus  $\pi(2h-1p)\nu(2h)$  positive-parity states of the form

$$[\pi[(j_1)^{-1}(j_2)^{-1}(g_{9/2})]_{I_{\pi}}(\nu(g_{9/2})^{-2})_{I_{\nu}}]_I,$$

i.e. states corresponding to proton core excitation to the proton  $g_{9/2}$  orbital. From the components of the lowest states displayed in the table, one can see that only the spins  $1/2^-$  and  $9/2^+$  of the lowest states can be assigned to dominant proton single particle configurations  $(p_{1/2})^{-1}$  and  $(p_{1/2})^{-2}(g_{9/2})$ , respectively. In the case of the spins  $3/2^-$  and  $5/2^-$ , the lowest states are still associated, as dominant component, to the proton  $(p_{1/2})$  state, with a recoupling of the two  $(g_{9/2})$  neutron holes. The states collecting most of the single-hole character are predicted to lie at higher excitation energy, precisely at 1.00 MeV for the  $5/2^-$  and 1.46 MeV for the  $3/2^-$ .

In Tables 3 and 4 all the observed levels of  $^{87}$ Y up to an excitation energy of almost 3 MeV are listed together with those observed in a previous  $(p,\alpha)$  experiment [14] and the corresponding adopted ones [15]. From the analysis 10 new attributions of spin and parity values result, improving the present knowledge of the  $^{87}$ Y level scheme.

#### References

- [†] guest researcher, permanent address: Soltan Institute for Nuclear Studies, Swierk, Poland.
- [‡] guest researcher, permanent address: Institute of Modern Physics, Academia Sinica, Lanzhou, P.R.China.
- [1] E. Gadioli et al., Phys. Rev. C 43, 2572 (1991)
- [2] E. Gadioli et al., Phys. Rev. C 47, 1129 (1993)
- [3] E. Zanotti et al., Nucl. Instr. Meth. A 310, 706 (1991)
- [4] A. M. Kobos et al., Nucl. Phys. A384, 65 (1982)
- [5] H. de Vries et al., Nucl. Data Tables 36, 495 (1987)
- [6] M. Walz, code TROMF, University of Tübingen, 1987, unpublished
- [7] R. L. Varner at al., Phys. Rep. 201, 57 (1991)
- [8] H. Abele, Ph.D. thesis, University of Tübingen, 1992
- [9] P. D. Kunz, code DWUCK5, University of Colorado, unpublished
- [10] J. B. England et al., Nucl. Phys. A388, 573 (1982)
- [11] J. B. Ball et al., Phys. Rev. 135, B706 (1964)
- [12] A. Hosaka et al., Nucl. Phys. A444, 76 (1985)
- [13] A. Etchegoyen et al., MSU-NSCL Report 524, (1985)
- [14] R. J. Peterson, and H. Rudoph, Nucl. Phys. A241, 253 (1975)
- [15] H. Sievers, Nuclear Data Sheets 62, 327 (1991)

|          | $V_r$             | $r_r$ | a <sub>r</sub> | W        | $r_w$           | $a_w$           |
|----------|-------------------|-------|----------------|----------|-----------------|-----------------|
| р        | 52.4              | 1.20  | 0.690          | 1.12     | 1.236           | 0.690           |
| $\alpha$ | $\lambda = 1.204$ |       |                | 8.33     | 1.83            | 0.576           |
| t        |                   | 1.24  | 1.19           |          |                 |                 |
|          | $W_d$             | $r_d$ | $a_d$          | $V_{so}$ | r <sub>so</sub> | a <sub>so</sub> |
| р        | 8.27              | 1.236 | 0.690          | 5.90     | 1.072           | 0.630           |

TABLE 1: Table with the potential parameter used in the calculations

| E(MeV) |       | $\int_{}^{\pi}$ | j            |                  |                  |                  | CONFIGURATION                                |  |  |
|--------|-------|-----------------|--------------|------------------|------------------|------------------|----------------------------------------------|--|--|
| Exp.   | Th.   |                 | $p_{1/2}$    | $p_{3/2}$        | $f_{5/2}$        |                  |                                              |  |  |
| 0.000  | 0.000 | 1/2-            | 87.05        | 5.14             | 7.81             |                  | $[\pi(j)^{-1}\nu(g_{9/2})_{I\nu}^2]_I$       |  |  |
| 0.794  | 0.691 | 5/2-            | 57.39        | 3.01             | 39.59            |                  | $[\pi(j)^{-1}\nu(g_{9/2})_{I\nu}^2]_I$       |  |  |
| 0.982  | 0.689 | 3/2-            | 77.68        | 17.70            | 4.62             |                  | $[\pi(j)^{-1}\nu(g_{9/2})_{I\nu}^2]_I$       |  |  |
| 1.184  | 1.464 | 3/2-            | 10.87        | 78.21            | 10.92            |                  | $[\pi(j)^{-1}\nu(g_{9/2})_{I\nu}^2]_I$       |  |  |
| 1.201  | 1.000 | $5/2^{-}$       | 26.65        | 3.61             | 69.74            |                  | $[\pi(j)^{-1} u(g_{9/2})_{I u}^{2}]_{I}$     |  |  |
|        |       | 794             |              | $j_1j_2$         |                  |                  |                                              |  |  |
|        |       |                 | $p_{1/2}(2)$ | $p_{1/2}p_{3/2}$ | $f_{5/2}p_{1/2}$ | $f_{5/2}p_{3/2}$ | ·                                            |  |  |
| 0.382  | 0.379 | 9/2+            | 77.16        | 7.14             | 14.61            | 1.09             | $[\pi[(j_1)^{-1}(j_2)^{-1}(g_{9/2})]_{I\pi}$ |  |  |
|        |       |                 |              |                  |                  |                  | $[ u(g_{9/2})^2]_{I u}]_I$                   |  |  |

TABLE 2: Eigenvalues and percentage of different components obtained within the Shell Model Hamiltonian with GWBXC interaction for low lying states of  $^{87}Y$ 

| Preser | ıt work                                                          | $(p,\alpha)$ | reaction [14]                                                               | Adopt | ed levels [15]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------|------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_x$  | $J^{\pi}$                                                        | $E_x$        | $J^{\pi}$                                                                   | $E_x$ | $J^{\pi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0      | $\frac{1}{2}$                                                    | 0            | $\frac{1}{2}$                                                               | 0     | 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.379  | $\frac{9}{2}$ +                                                  | 0.38         | $\frac{\tilde{9}}{2}$ +                                                     | 0.381 | <u>9</u> +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.793  | $\frac{5}{2}$ -                                                  | 0.79         | $\frac{5}{2}$ -                                                             | 0.794 | $\frac{5}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.981  | $\frac{3}{2}$                                                    | 0.99         | $\frac{\overline{3}}{2}$                                                    | 0.981 | 3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.151  | - + +                                                            | 1.15         | $\frac{\frac{1}{2}}{\frac{9}{2}} + \frac{5}{2} - \frac{3}{2} - \frac{3}{2}$ | 1.153 | $\frac{1}{29} + \frac{1}{2} + 1$ |
| 1.182  | $\frac{3}{2}$                                                    |              | _                                                                           | 1.178 | $\left(\frac{3}{2}\right)^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.201  | $\frac{5}{2}$ -                                                  | 1.20         | $\left(\frac{5}{2}^{-}\right)$                                              | 1.202 | $\left(\frac{5}{2}\right)^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                  | 1.37         |                                                                             | İ     | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.401  | $(\frac{13}{2}^+)$                                               |              |                                                                             | 1.404 | $(\frac{13}{2}^+)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| - SE   |                                                                  | 1.58         |                                                                             |       | Ĩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.607  | (512512312512<br>512512312512                                    |              |                                                                             | 1.609 | $\frac{3}{2}^{-}, \frac{5}{2}^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.629  | 5+                                                               |              |                                                                             | 1.623 | $\left(\frac{5}{2},\frac{7}{2}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.704  | $\frac{3}{2}$ -                                                  |              |                                                                             | 1.704 | $\left(\frac{5}{2}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.757  | $\frac{5}{2}$ +                                                  |              |                                                                             | 1.757 | $(\frac{5}{2}^+, \frac{7}{2}^-)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        | _                                                                | 1.79         | $\frac{5}{2}$                                                               |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.802  | $\frac{5}{2}$                                                    |              |                                                                             | 1.801 | $(\frac{1}{2}^-, \frac{3}{2}, \frac{5}{2}^-)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.846  | $ \frac{5}{2} $ $ \frac{1}{2} $ $ \frac{7}{2} $ $ \frac{11}{2} $ | 1.85         | $\frac{3}{2}$                                                               | 1.851 | $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.979  | $\frac{7}{2}$                                                    |              |                                                                             | 1.988 | $(\frac{7}{2}, \frac{9}{2})^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2.006  | $\frac{11}{2}$ +                                                 |              |                                                                             | 2.008 | $(\frac{7}{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.113  | $\frac{5}{2}$ +                                                  |              |                                                                             | 2.111 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | .                                                                | 2.13         | $\left(\frac{7}{2}^{-}\right)$                                              | 1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.153  | 9-                                                               |              |                                                                             | 2.159 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.184  | 9-<br>7-<br>3-<br>3-                                             |              |                                                                             | 2.185 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.209  | $\frac{3}{2}$                                                    |              |                                                                             | 2.207 | $(\frac{15}{2}^+, \frac{17}{2}^+)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |                                                                  |              |                                                                             | 2.210 | $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

TABLE 3: Found levels

| Present work                           |                                                                                                          | $(p,\alpha)$ reaction [14] |                            | Adopted levels [15]     |                                                                          |
|----------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|-------------------------|--------------------------------------------------------------------------|
| $E_x$                                  | $J^{\pi}$                                                                                                | $E_x$                      | $J^{\pi}$                  | $E_x$                   | $J^{\pi}$                                                                |
| 2.249                                  | $\frac{9}{2}$                                                                                            |                            |                            | 2.242<br>2.244<br>2.274 | $\left(\frac{7}{2},\frac{9}{2}^{-}\right)$ $\left(\frac{9}{2}+\right)$   |
| 2.276                                  | 9-                                                                                                       |                            |                            | 2.278                   | $\left(\frac{7}{2}\right)$                                               |
| 2.302                                  | $\frac{9}{2}$ $\frac{11}{2}$ -                                                                           | 2.30                       | $\left(\frac{9}{2}\right)$ | -:-: 0                  | (.2)                                                                     |
| ii                                     | 2                                                                                                        |                            | (2)                        | 2.354                   |                                                                          |
| 2.365                                  | $(\frac{15}{2}^- + \frac{7}{2}^+)$                                                                       |                            |                            | 2.367                   | $\left(\frac{15}{2}^{-}\right)$                                          |
| 2.408                                  | $\frac{3}{2}$                                                                                            |                            |                            | 2.409                   | $(\frac{3}{2})^{+}$                                                      |
| 2.449                                  | $\frac{3}{2}$ $\frac{9}{2}$ $\frac{11}{2}$                                                               |                            |                            | 2.446                   | $\left(\frac{5}{2}\right)^+$                                             |
| 2.531                                  | $\frac{11}{2}$                                                                                           |                            |                            | 2.532                   | ļ                                                                        |
| 2.562                                  | $\frac{11}{2}$ +                                                                                         | 2.57                       | $(\frac{15}{2}^{-})$       | 2.564                   | $(\frac{9}{2})^+$                                                        |
|                                        |                                                                                                          |                            |                            | 2.572                   | $\left(\frac{3}{2}^{-}\right)$                                           |
| 2.599                                  | $\frac{9}{2}$                                                                                            |                            | . 10                       | 2.595                   |                                                                          |
|                                        | 7.1                                                                                                      | 2.63                       | $(\frac{13}{2}^{-})$       |                         |                                                                          |
| 2.661<br>  2.682<br>  2.747<br>  2.801 | $\frac{\frac{7}{2}}{\frac{11}{2}}$ - $\frac{\frac{11}{2}}{\frac{3}{2}}$ + $\frac{11}{2}$ + $\frac{1}{2}$ |                            |                            | 2.676                   | $(\frac{17}{2})^-$                                                       |
| 2.001                                  | _                                                                                                        |                            |                            | 2.827<br>2.828          | $\left(\frac{21}{2}\right)^+$ $\left(\frac{3}{2}^-,\frac{5}{2}^-\right)$ |
| 2.831                                  | 9-                                                                                                       |                            |                            |                         |                                                                          |
| 2.903                                  | 91232                                                                                                    | 2.96                       | <u>5</u> +                 | 2.901                   | $\frac{3}{2}$ , $\frac{5}{2}$ -                                          |
| 2.998                                  | <u>5</u> +                                                                                               | 4.30                       | 2                          | 2.995                   | $\left(\frac{5}{2}\right)^+$                                             |

TABLE 4: Found levels



FIGURE 1: Typical spectrum obtained in the experiment at  $\theta_{lab}=20^{\circ}$ . For some of the levels the excitation energy is indicated.



FIGURE 2: Differential cross sections in the entrance and exit channel. The experimental data are taken from [10] and [11]. The solid lines are optical model calculations with the potential parameters listed in table 1.



FIGURE 3: Differential cross sections and asymmetries for the  $(\vec{p}, \alpha)$  reaction.



FIGURE 4: Differential cross sections and asymmetries for the  $(\vec{p}, \alpha)$  reaction.



FIGURE 5: Differential cross sections and asymmetries for the  $(\vec{p}, \alpha)$  reaction.



FIGURE 6: Differential cross sections and asymmetries for the  $(\vec{p}, \alpha)$  reaction.