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ABSTRACT 

This article presents the results of our work about the signal induced on the electrodes of 

a Penning trap by oscillating particles with an amplitude which is comparable with the 

trap dimensions (that is to say with energy of the order of magnitude of the potential 

well which permits the confinement in the trap). The detection sensibility is calculated 

whether for radial motion or for the axial motion as a function of the particle energy and 

radial position. Quantitative analysis of the results shows a notable non linearity between 

the detected signals and the oscillation amplitudes. 
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1. Introduction 

Penning traps are widely used to measure fundamental properties of the stored par-

ticles (such as masses and magnetic momenta) with very high precision [1],[2]. Every 

measurement of this kind can be reduced to a measure of some frequency of the stored 

particle motion and frequency resolution of the order of 108 or better can be obtained by 

a careful control of every disturbance which can alter the -ideal motion inside the trap. 

In order to minimize the effects coming from mechanical imperfections, electrodes trun-

cation, magnetic field inhomogeneity and so on, the stored particles are usually detected 

only when they have very small oscillation amplitude compa~ed with the trap dimensions. 

The detected electric signal, coming from the displacement of the induced charges on the 

trap electrodes, is then linearly related to the particle velocity as described in [3]. 

Recently the Penning traps have found a wide application as devices catching beams 

of particles in flight [4]. The energy of the captured particles is now of the same order 

of the potential -well of the trap and therefore the particles oscillate inside the trap with 

amplitudes comparable with the trap dimensions. In this situation the induced signal 

cannot be calculated using the previous small oscillations approximation leading to the 

results of [3]. 

In this paper we analize, in a general way, both the signal coming from the axial and 
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the radial motion of the particles stored inside the trap and results were obtained which 

hold for every oscillation amplitude. The detection of particles stoted inside the trap with 

high energy and big radii could be useful in order to obtain information about the mean 

energy and the mean radial position of the stored bunch and to obtain the pick-up signal 

for the stochastic cooling process [5J, [6J. The requested precision 'is several orders of 

magnitude less than that which is necessary to perform the measurements described in [1 J 

and [2J . 

. We first recall some general result about the motion of particles stored in an ideal 

Penning trap and about the induced currents on a conductor by moving charges. Finally 

we show the results about the calculated signal for the axial and radial motion of particles 

stored in Penning traps having different dimensions. 

2. Penning traps 

A Penning .trap [1 J is a particular trap for charged particles having the electrodes 

shaped as revolution hyperbola. Fig. 1 shows an axial section of this trap. When a voltage 

Vo is applied between the ring and the two cups the electrostatic ·potential generated inside 

the trap is 

-Vo 
V( ) (r2 - 2z2) r,z == 2 2 

ro + 2zo 
(1) 
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A particle, whose charge is q, if qV>O feels a harmonic electric field along the z direction 

leading to 

z(t) = Az cos(wzt + <Pz) (2) 

where 

W z = 
4qVo 

(3) 

and m is the particle mass. The amplitude Az and the phase <Pz are related to the initial 

conditions. 

Because the radial electric field is defocusing, to obtain a stable orbit it is necessary 

to place the trap inside a proper uniform magnetic field B directed along the z axis. The 

radial motion is then completely decoupled from the axial one and can be described by 

( 4) 

where the cyclotron angular velocity We is 

(5) 

and the magnetron angular velocity Wm is 

(6) 

The cyclotron radius r c, the magnetron radius rm and the phases <Pm and <Pc can be 

calculated knowing the initial position and velocity of the particle. 
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Normally 

Wm « W z « We 

and so the energy of the stored particle is related principally to the amplitude of the axial 

motion and of the cyclotron motion. The magnetron radius characterizes the mean radial 

position of the particle internally within the trap. 

3. Induced currents on the trap electrodes 

The motion of a stored particle inside the trap produces a displacement of induced 

charges on the trap electrodes that is a current through a circuit connected between any 

trap electrode E and ground. The current iE(t) is obviously related to the induced charge 

QE(t) by 

iE(t) = dQE(t) 
dt 

(7) 

When the potential of the electrodes are held constant , it is possible to compute the 

charge QE( t) generated by a particle in the position x(t), y( t), z( t) using the simple relation 

[7] 

QE(t) = -qU E(X(t), y(t), z(t)) (8) 

The function U E must be calculated solving the Laplace equation 

(9) 
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satisfying the boundary conditions 

U E = 1 an the electrode E 

U E = 0 an the other electr"odes (10) 

This is a general result coming from the Gauss identity. 

From (7) and (8) it follows 

iE(t) = -q £(t) VUE«X(t),y(t),z(t)) (11) 

This last equation clearly shows how the induced current is related to the particle motion -

described by the particle velocity £( t) - and to the geometry of the surrounding conductors 

which determines the function U E. 

When it is possible to assume that 

Az Tm rc 
-,-,- «1 
Zo ro ro 

(12) 

the function giving the charge Q cup, induced on the upper cup of the trap shown in figure 

I, may be approximated in the following way 

(13) 

The constant coefficient Ct, is a number < 1 depending upon the ratio ro / Zo as the calcu-

lations performed in [31 show. 
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The induced current is then linearly related to the axial oscillation amplitude 

icup(t) = qa. A. w. sin (w.t + </I.) 
2zo 

(14) 

that is, provided that the amplitude is sufficiently small, for a given trap the "detection 

sensibility az" is not energy or position dependent. Note that, selecting a. = 1, equation 

(14) holds for every particle position inside a parallel plate capacitor having the plates at 

distance 2zo• 

When condition (12) is satisfied a similar results holds for the charge Qr induced on 

a ring sector 

Qr(t) = -qar (2~o + D (15) 

The related current allows the radial motion detection 

(16) 

aT has a meaning equal to a. but we cannot find any reliable publishied data. 

In the usual'detection network (figure 2a and 2b) the signals (14) and (16) act as input 

of resonant circuits tuned to the frequencies v. = w./(2tr), Vc = wc/(2tr) or Vm = wm /(2tr) 

and connected to one cup for the monitoring of the axial motion and to a ring sector for 

the monitoring of the radial motion. This method normally allows the complete detection 

of protons, antiprotons or heavy ions and the detection af the magnetron and axial motion 
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of electrons. The cyclotron motion of electrons is normally in the microwave range and 

can be detected using different techniques [1]. 

4. Calculation of the U functions 

As we anticipated in the introduction, we analized the signal coming from particles 

moving inside the trap with big oscillation amplitudes. When one consideres particles 

having large oscillation amplitudes two effects become important: 

1) far from the center of a real trap the motion is no longer described by only three 

frequencies but anharmonicity effects could not be negligeable. This generally means that 

the ideal frequencies could be shifted and that the detected signal could have a large 

frequency spectrum centered around the new frequencies . 

2) The induced charge Qs(t) must be calculated in the complete way solving the 

"equivalent electrostatic problem" described by equations (9) (10) and, even for an ideal 

trap having infinite electrodes, the problem can only be solved numerically. 

In this paper we concentrated on point 2) and we calculated the induced signal from 

both the radial and the axial motion neglecting the anharmonicity effects in the particle 

motion. 

The "equivalent electrostatic problem" which must be solved to determine Ucup can 
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be reduced, using cilindrical coordinates, to a two dimensional problem for the variable 

r, z. This simplification is not possible for the calculation of the U. functions where 3 is a 

ring sector: in this case we must solve a 3D problem. 

In both cases the charge distribution calculation was performed numerically using 

Finite Element Method. The two-dimensional axisimmetric problem was analyzed using 

V F I P E2D electrostatic module solving a Laplace equation. The program uses a Galerkin 

weighted residual formulation for the finite element discretization of the differential equa-

tion and a Delaunay algorithm for the geometrical subdivision of the problem domain. 

Instead the analysis of the 3D case was carried out using the VF ITOSCA [8] solver 

for the computation of the three-dimensional field and using the VF IOPERA enviroment 

to model the geometry. Even in this case the code is based on a standard Galerkin finite 

.element scheme. 

In order to allow an approximate evaluation of the accuracy of the calculations it can 

be mentioned that for the two dimensional cases a mesh of about 2200 nodes has been 

used (using first' order triangular elements) while in the three dimensional analysis, with 

first order bricks elements,.about 42.000 nodes have been employed. 
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5, Results about the axial motion 

We studied Penning trap having different values for the ratio ro / Zo and we present 

results concerning traps with ro/zo = 02), ro/zo = 1, ro/zo = 0.6. It is interesting to 

underline that traps with Zo > ro are favorite for catching beam of particles in flight. 

Fig. 3 shows the induced current on a cup of a trap having ro / Zo = 0.6 by a particle 

oscillating with A./.zo = 0.25 and rm/rO = 0.5, rc/ro = 0.1 The picture shows that this 

current is a periodic function, having the same period as the particle axial velocity. It is 

important to evaluate the Fourier component with frequency II. because this is the only 

component of the signal that gives an output in the tuned detection system. To better 

compare the general signal to the signal corning from particle moving near the center of 

the trap we define a'.(&,!m.) in the following way 
Zo ro 

a' = Ja2 +b2 
• •• (17) 

where 

i
T 2 2zo . 

a. = T A tcup(t) coswzt)dt 
wzq z 0 

(18) 

T 
. 2 2zo l' . b. = T A tcup(t) sm (w.t)dt 

w.q z 0 
(19) 

T is a time intervallonge enough to get· results independent of the <P., <Pm and <Pc values. 
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Using (17) (18) (19) the current icup(t) can be written 

i cup( t) = q 
Az 

W z sin(wzt+.pz) 
2zo 

(20) 

a~ is equal to a z for rm/ro, Az/zo «1 but, generally, is a function ofrm/ro and Az/zo. 

Looking at this function it is easy to see how signal (20) is different from the linear one 

described by (14) and how the detection sensibility is changing with the particle axial 

energy and mean radial position. Fig. 4a), 4b), 4c) show a~(Az/zo,rm/ro) versus Az/zo 

kee'ping rm/rO as parameter for three different Penning traps. 

Fig. 4a,b,c indicates that while the amplitude is increasing the signal (20) rises faster 

than the linear one (14) but, for a given oscillation amplitude, the z motion is detected 

with a sensibility which decreases while the radius becomes bigger. 

6. Results about the radial motion 

We calculated the radial current ir;ng detected in a circuit connected to one of the 

electrodes obtained by splitting, in the axial direction, the trap ring into four equal sectors 

(figure 2b). We are interested in the Fourier component with frequency Vc and Vm and we 

define a~ m using relations similar to (,17), (18), (19) , 

(21 ) 
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where 

2 2ro iT. ac ,m = T lring(t) cos (wc,mt)dt 
wc,mqrc,m 0 

. (22) 

2 2r iT bc,m = T 0 iring(t) sin (wc,mt)dt 
wc,mqrc,m 0 

(23) 

The results about the magnetron motion are simpler than the ones concerning the 

cyclotron motion because a:", as a~, depends only upon rm/rO and Ar/zo. 

Fig. 5a, 5b, 5c shows the behaviour of a:". 

The cyclotron motion detection sensibility a~ is a more complicated function because 

it depends on Ar/ Zo ,rm / ro and rc/ro as fig. 6a, 6b, 7a, 7b, 8a, 8b show. 

7. Observation about the signals with double frequency 

For what concerns the axial motion it is very interesting to observe that it is possible 

to obtain a signal related to the axial oscillation amplitude but not depending on the radial 

.particle position. This result can be achieved linking together the two cups of the trap 

and connecting them to a detection circuit tuned to v~ = 2vr • Equations (9) and (10) tell 

us that in this configuration the induced charge Q2cup. is 

(24) 
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and taking into account equations (2) and (24) we easily obtain the induced current i 2cup• 

. 2A~. 2( '" ) 2q 2q 
'2cup. = -q 2 22w,sm wzt +'1" - 2 2 2zvz - 2 2YVy 

TO + Zo· TO + Zo TO + 2zo 
(25) 

This current has a Fourier component with frequency 2wz which takes contribution mainly 

from the first addendum. Therefore, as we anticipated, the signal detected by the circuit 

tuned to 211, is practically independent on the radial particle position and it is proportional 

to the square of the axial oscillation amplitude. 

A result similar to (25) holds for the current i 2 .. ct flowing in a circuit tuned to 211c 

(or 211m) and connected to two opposite radial ring sectors linked together 

. 2T~. ( '" ) 
'2 .. ct = -,,(q 2 2 Wm sm2 wmt + 'I'm + .... 

TO + 2z0 
(26) 

The"( coefficient has been evaluate numerically: it takes values near to 1 but, unfortunately, 

it is a function of the axial amplitude and of radial particle position very similar to a~ 

( a;" ). Therefore for the radial motion also this new detection configuration do not allow 

to get a linear relation between the radial motion parameters and the measured signal. 
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7. Comments and conclusions 

As expected, the results of our work show that generally in a Penning trap the relation 

between the particle oscillation amplitude and the electrical signal detected by a tuned 

circuit connected to the trap electrodes is not linear. Our calculations allow to specify 

this statement in a quantitative way at least for some typical configuration of the trap 

electrodes. In any case our results allow to establish some· limit about the trap volume 

that the stored particles can occupy in order to get a signal which differs from the linear 

one of a given quantity. 

Another results .of our calculation concerns the informations that can be obtained 

measuring the induced signal coming from N particles stored inside the trap. The current 

I z induced on one cup of the trap is obviously obtained summing the currents coming from 

every particle 

N 

Iz == L:,>.(t) == q (27) 
.=1 

It follows from this relation that the mean value of I~ is directly proportional to the particle 

number times the quantity. 

(28) 
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that is 

(29) 

When the particles oscillates near the trap center we can assume that the a~ value is 

constant and in this situation measuring < t; > we directly obtain the value of the 

product 

(30) 

In the general situation discussed in this article - when the oscillation amplitudes of the 

stored particles are not small compared with the trap dimensions - the value assumed by 

< t; > is depending on the distribution of the axial oscillation amplitude and radii of the 

particles. Generally this distribution is unknown but, in any case, our calculations allow 

to make estimation of the possible errors about the evaluation of the mean axial oscillation 

amplitude (that is the mean axial energy) and particle number effettuated using different 

hypothesis for the distribution. The discussion can be extended in an easy way from the 

axial motion to the radial one. The axial motion present the advantage of allowing a good 

extimation of the product N < A~ > using the detection system described in section 6. 
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FIGURES CAPTIONS 

FIGURE 1 

Axial section of a Penning trap. 

FIGURE 2a 

This figure shows the typical z motion detection network. The Lz and Cz values must 

satisfied the relation W z = k 

FIGURE 2b 

This is a simple scheme to detect the radial motion. The two circuits are connected 

to' two ring sectors; the upper is tuned to the cyclotron frequency and the lower to the 

magnetron frequency. 

FIGURE 3 

This figure shows the behaviour of i,u,(t) versus time (unif of Tz = 27r/wz ). Here icup qw, 

is the current induced on a: cup of a trap having ro / Zo = 0.6 by a particle oscillating with 

Az/zo = 0.25, rm/rO = 0.5, rc/ro = 0.1 and wc/wz = 6.61,wm/w z = 0.079 

• 
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FIGURES 4a,4b,4c 

These figures show the values of the function a~(Az/zo,rm /ro) for Penning traps 

having ro / zo = )(2) ro / zo = 1 and ro / zo = 0.6. The a~ values are plotted versus Az/ zo; 

rm / ro is the parameter which changes from curve to curve in the same plot. Going from 

the top curve to the bottom one rm/rO takes the values 0; 1/10; 2/10; .... 9/10 

FIGURES 5a,5b,5c 

Values of a'm(Az/zo,rm/ro) versus rm/rO plotted using Az/zo as parameter. Going 

from the top curve to the bottom one Az / Zo takes the values 0; 1/ 10; 2/ 10; .. .. 9/ 10. 

Reading rc / ro in place of rm / rO these curves give the values of a'c(b,!:m. = 0, !. ). 
Zo TO TO 

FIGURES 6a,6bj 7a, 7bj 8a,8b 

Values of a'c(b,!:m., !.) plotted versus l:<.±!m. keeping rm / ro = 0.2 and rm / rO = 0.5. 
Zo ro TO TO 

To better compare these plots with fig. 5a,b,c the horizontal axis also shows the values 

of rc / ro As usual the parameter describing the different curves is Az/ Zo which keeps the 

same values as in fig. 5a,b,c. ro / Zo takes the value of )(2), 1 and 0.6 going from fig. 6a 

and 6b to fig. 8a and 8b. 

, 
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Figure 1 
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Figure 2b 
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