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1 - INTRODUCTION.

During the last years, many attempts were devoted to theoretically defining and
calculating the time spent by a sub-barrier—energy particle for tunnelling through a po-
tential barrier; so that critical reviews were already in order. Actually, a first, valuable
review article, by Hauge and Stoveneng, did recently appear (at the end of 1989) as
ref.ll.  We deem it useful, however, a second review paper since: (i) on one hand,
it appears convenient to deepen and extend the criticism to the existing approaches,
and (i) on the other hand, we can show —as a consequence of such a criticism— how
a definite proposal can be put forth for introducing suitable, self-consistent, physically
meaningful definitions of the tunnelling times: a question that was regarded still as an
open problem in ref.l!).

The problem of defining the tunnelling times has a long history, since it arised in
the fortieth and fiftieth?=4l, simultaneously with the problem of a general definition in
quantum mechanics of the collision durations.

The advent of high-speed experimental devices, based on tunnelling processes in
semiconductors, did revive an interest in the whole question;®1! whose relevance has
always been apparent in nuclear physics: For instance, tunnelling plays an essential role
in the physics of nuclear fission and fusion.

As already mentioned, aims of this paper are a comparative analysis of the vari-
ous, known definitions for the tunnelling durations; and the introduction of a possible,
rigorous way for theoretically evaluating the time spent by a particle inside a potential
barrier: with the final presentation of some peculiarities of the tunnelling-process time
evolution. Our starting point will be the formalism in refs.[88],

First of all, in Sect.2, we critically review the main definitions of the tunnelling
times appeared up to now, to the best of our knowledge. Then, Sect.3 is devoted to the
application of our own formalism®® to tunnelling. At last, Sect.4 is dedicated to the
conclusions and to some proposals for further developments.

2 - THE EXISTING DEFINITIONS OF TUNNELLING TIMES.
2.1 - The simplest stationary picture of Tunnelling.

Let us confine ourselves to the ordinary case of particles moving only along the z—
direction, and consider a time-independent barrier V(z) in the interval (0,a): see Fig.
1, in which —for later convenience— a larger interval (z,,z;), containing the barrier
region, is also indicated. =~ We assume the stationary scattering problem to have been
solved exactly for every kinetic energy E = h%k%/2m, where k is the wave-number and
m the particle mass. The wave function ¥(z; k) will have the general form:

v=Pr=Ymt+¥rn for =<0,
p=yg for 0<z<aq, (1)

p=ym=9vr for z>gq



where: i, = €*°; Yp = A e7**; Y1 = Ar €*%; the lower indices R,T staying for
“reflected” and “transmitted”, respectively. In the simple case of a rectangular barrier
(V(z) = Vo], it is ¥ = ae™™® + Be*® (with k = /2m(Vy — E)/A], where the coefficients
[amplitudes] Ag, A1, a and (3 can be analytically calculated, and are known to be

2k k+ix - 2k —k +ix
D, (k*—x?)D_/D, + 2ikx’ = D, (k? —x?)D_/D, + 2k«

a =

exp(—2ka);

(2)
AR =a+p-1; Ar=(ae™+Pe*)e*; Dy =1+ exp(—2ka).

The amplitudes Ag, At satisfy the probability conservation law

[4nl* + [42]" = 1. (3)

The flux density

j = Rel () 222, (4

does not depend on z. Before the barrier it equals the difference (1 — |4g|?) between
the incoming and reflected wave flux-densities. It is less known that, inside the barrier,
the fluxes for the separate components of ¥i1 (exponentially decreasing and increasing,
respectively: ae " and (e**) do vanish. Only their interference does provide the con-
servation of j.

2.2 - Construction of the wave—packet

For later use in the non-stationary description of actually moving wave-packets,
let us consider a wave—packet constructed in terms of the solutions ¥(z;k) of the sta-
tionary Schroedinger equation: namely, by integrating over E from 0 to co with a
weight-amplitude g(E — E)

U(z,t) = [ dE g(E - B) (x;k) exp(~iBt/h) (5)

where we introduced the resolution of the time-evolution operator, with the normaliza-
tion condition [dE |g|* =1, quantity E being the average kinetic energy.

In the case of a Gaussian wave—packet it is convenient to pass from the energy to
the impulse representation, by recalling that dE = (h*k/2m)dk; when the spread in E
of g(E — E) is much smaller than E, one easily gets

g(E-E)dE ~ G(k ~ %) dk = il g(zh—; (k? — &%) dk, (6)

2m



with G = C exp[—b(k—k)?]. Of course, the (initial) wave-packet of the incoming waves
will have a Gaussian shape also in the configuration space.

By inserting in the integral of eq.(5) the reflected (1) or transmitted (1) wave,
instead of the total wave v, we obtain the final reflected or transmitted wave—packets,
respectively, carrying a time-delay due to the interaction. Notice that one could expect
a distortion in the wave-packet form due to the energy dependence of Ag and Ar; but
it has been already shown, for a wide class of weight amplitudes, such a distortion to
be negligible." Furthermore, we shall get rid also of the wave components with above-
barrier energies by introducing the additional transformation

9(E — E) — g(E - E) O(E - V}), (7)

in order to avoid distortions of the sub-barrier penetration (tunnelling).

For simplicity’s sake, we shall in general address ourselves to quasi-monochromatic
packets, for which the energy spread AE is so much smaller than E that it is possible
to adopt the approximation

l9(E - E)|* ~ §(E - E) (8)
in all the final expressions for our quantities, when averaged over pdz or Jdt; where

p=1(z, ) J = Relit(z, ) 2220 (9)

are the probability density [for a particle to be located in the unitary space-interval
centered at z] and the probability-density flux [for a particle to pass through position
z during the unitary time-interval centered at t], respectively.

2.3 - The ordinary phase—times

Following the usual procedure, introduced inl?~4, it is easy to get the ordinary
phase—times for quasi-monochromatic packets, in the stationary—phase approximation:

d(arg At + ka)

1
TTPh(:ci,a:f; E)= - (z¢—z;) + h 2 (10)
and
1 d A
R, E) = 5 (~2m) + 1 L) 1)

where v = hik/m is the group-velocity. Eqs.(10) and (11) refer to a transmitted from
the initial position z; to the final position z¢] particle and to a reflected [from the initial
position z; to the same position] particle, respectively; cf., e.g., [,

For a rectangular barrier with height Vg, the phase-times (10) and (11), when
linearly extrapolated!!] to the barrier region (z; = 0; =y = a) would become



m

(0,6 E) = 7"(0, 4 B) =

[2kak?(k? — k?) + ko*Sinh(2xa)] , (12)

which, for ke >> 1, would simply yield 2/vk. Ineqs.(12),itis D = 4K%k%+ko*Sinh?*(ka);
and ko = 2mVp/h. In other words,” for sufficiently wide —t.e., opaque— (or high)
barriers, eqs.(12) do not depend on the barrier width a, and the effective tunnelling—
velocity a/7F® may become arbitrarily large [Hartmann and Fletcher effect[e'm]].

One of the main objections against extrapolations (12) is that they do not describe
the actual asymptotic behaviour of the phase-times; since they disregard the fact that
both the [magnitude of the] initial packet mean-position, |zi|, and quantity z; — a
(where z¢ is the transmitted packet mean—position) must be large with respect to the
packet spatial extension [of the order of iv/AE], in order to avoid “interference” effects
between physically quite different processes (i.e., between incident and reflected waves).

Therefore, it is not quite correct to attribute to the extrapolated phase-times the
physical meaning of “times spent in the barrier region (= inside the barrier)”. Moreover,
one cannot separate in 7i" and 75" the self-interference delays from the time spent inside
the barrier.

Before going on, let us clarify the behaviour of the phase-times at the very top of
the barrier, and check whether there is any continuity —there— between the values of
the sub-barrier tunnelling time and those for the above-barrier case. Let us compare
eqs.(12) with the following expression for the above-barrier transmission time:

2m  —(k? — ¢%)*tan(qa) + 4qak?(k? + ¢*)/cos?(qa)
hkq 4k2q? + [(k? + ¢*)tan(qa)]?

80,0, E > Vp) = (13)

which was obtained(*), by the stationary—phase method, for the case of a rectangular
barrier. In such a case, it is ¥ = v€'% + §e%® with ¢ = /2m(E — V,)/h, and the
coefficients ¥ and § are analytically evaluable. By comparing eqs.(12) and (13) one gets

. Ph . = mka® 2ma ’
l_l_lgTT (0,a; E > Vp) = 6A(1 + k2a?/4) amo 3Rk’ (12)
Cen . B mka® 2ma ’
lim 7y (0,0, E < Vp) = 6h(1 + k2a?/4) amw 3k (13

In other words, we find that that the two limits (12’), (13’) do coincide with each other,
and linearly depend on a for “opaque” barriers (provided that the condition ka — 0
holds). Notice that such a result does not contradict the Hartmann and Fletcher effect,
since the latter takes place only when ka — oo, while it is absent for finite values of xa.

(*) These calculations have been explicitly performed by V.S. Sergeyev.



2.4 — The dwell time

The total scattering time duration has been defined inl'V as the probability for the
particle to be localized in the interval between the initial (maybe, source) position and
the final (maybe, detector) position, divided by the incident particle flux density; that
is to say, as the time spent by a particle while travelling inside such space—interval: the
so—called dwell time. In the chosen case of particles moving only along z, the dwell time
is therefore defined as('Z:

TD“’(:B;,:Bf;k) = % /:; dz |¢(z; k)|2. (14)

Ti

For a rectangular barrier, the (dwell) time spent inside the barrier becomes:!2!

2mV,
h2

mk

Dw . —
7°%(0,a;k) =D

[2ka(k? — k%) +

Sinh(2xa)] (15)

which, for ka >> 1, would give fik/xVp. The results (12) and (15) are in sharp contrast
with each other with regard to the k-dependence. Let us comment on this point.

The stationary definition (14) for the dwell time, according to us, is not self-
consistent from its very beginning, and appears to be in contradiction with its physical
meaning. In fact, the time variable is firstly discarded (in passing from the time-
dependent to the stationary Schroedinger equation), and later on it is re-introduced in
an artificial, ad hoc way: namely, through the introduction of a localization-probablility
expressed in terms of time-independent wave functions, instead of actually moving
wave—packets.

Moreover, even the modified “dwell time approaches” with time-dependent wave
functions!’®-18 in which

)= IS 8t SE ()
S R I TR AY )

7o%( , (16)

do still contain formal time-averages that are not actual averages over the physical time
(i.e., the time #(z) at which the considered particle passes through the position z). In
fact —at least when the direction of flux J is time-independent— by integrating Jdt,
and not pdt.[!¢] In eq.(16) quantity Ji, is defined as in eq.(9), just replacing 1(z; k) of
eq.(5) by ¥in(z; k) = e*=. At last, the “dwell-time approaches” are unable!® to define
and study the time distributions for any kind of collision process.

2.5 — The local Larmor times

Inl7 a gedanken ezperimente was proposed for measuring the scattering duration
as the ratio 8/w, where 8 is the angle by which the magnetic moment u of the considered
particle . due to a small homogeneous magnetic field B = BoZ (directed along z) sup-
posedly present in the scattering region, and w = 2uBo/H is the Larmor precession fre-



quency. For a magnetic field existing in the interval (z;, z¢), and for an incident particle
(moving along = and) with spin ; polarized along the z-direction (see Fig. 2), 6 results
to be proportional to the average spin component < s, >: namely, § = —2< s, > /A,
or 8 = —-2< s, >g/h, for the transmitted or reflected waves, respectively. In this case,
the Larmor times 7Jf(zi,zs;k) and 73§(zi,zr;k) become equal to the Phase Times,
plus —however— terms which oscillate as kz; and kz¢ vary.l! In the particular case of
a rectangular barrier

r;‘f(O,a;k) = ;‘Q(O,a; k) = TD"'(O,a;k). (17)

In Baz’s approach, as it was shown in refs.®), the expressions for the collision
duration [e.g., eqs.(17)] are artificially distorted by the sharp boundaries attributed to
the magnetic—field region; in other words, are influenced by the mathematical, rather
than physical, assumptions. Actually, the oscillating terms do depend on the kind of
[for instance, smoothed] boundary that one adopts. Moreover, both those oscillating
terms vanish when z; — —oo and zy — oo, once one does average over the incident
particle energy-spread; so that the final expressions do coincide with the Phase Times.

It it also known(!! that the mathematical behaviour assumed for the magnetic—fiels
boundary does not influence only the spin components along y. In fact (see Fig. 2), the
incident particle has finite probabilities of being spin-up or spin-down along the field-
direction z. As pointed out in ref.!?l; the spin-up components will be preferentially
transmitted (except when d|At|?/dE < 0): so that one gets the noticeable result that
<8, >r >> < 8y >5. On the basis of what precedes, Biittiker in ref.1¥ introduced
the new Larmor times: 7I(z;,zr;k) and 758(zi,z¢k), both defined analogously
to quantities T;‘f and TJ‘;{, respectively; as well as the hybrid Larmor times, defined as

follows:

(r£%)” = (fa)" + (12R)" (18)

However, the introduction of so many time durations for a single collision (e.g.,
trasmission and reflection processes) seems to us physically unjustified.
Let us notice that, for an opaque rectangular barrier, we obtain

ma ;

m2(0,a;k) ryl (19)

which results to be different from both the extrapolated Phase Times (12’) and the
Dwell Times (15).

2.6 — A complex time approach

It is known, a formal generalization of the classical time spent by a particle inside
the barrier can lead, for E < V, (when the actual presence of the particle, there, is for-



bidden by classical mechanics), to the introduction of a complex time. More generally,
an analogous extension of classical time to the quantum domain has been recently pro-
posed in’® (see also, e.g., refs.19=21, and refs. therein). For one-dimensional motion,
following ref.['®!, one of the natural “quantum generalizations” of the classical expression

[P(t)] = /t " dt [ & 6=~ P(2) (20)

for the time spent inside a region V' —where P(t) is the classical path going from z;(t;)
to z¢(ts)— is the path-integral average

TQu(:l:i,ti;zf,tf) =< T[P( )] >paths (21)

in which P( ) is any arbitrary path between the given end-points.
For the process relative to Fig. 1 and to eq.(1), one has:(519

_ / de Mz; 8k / de 6l°g‘4“ , (22)

where V' is nothing but the interval (z;,z¢) [or, in particular, (0,a)]; and §/6P(z) is a
functional derivative. In general, quantities T'IQ’; are complex; and are connected with
the Larmor Times by the relations

ReTTR— L’fn; Imr%‘ﬁ:—f‘fn . (23)
Of course, complex time is a useful theoretical tool; even if the ordinary tunnelling-
times should be real. The physical meaning of the imaginary part is still controversial.[?2]

2.7 - The Biittiker—Landauer time

In refs.?®! the tunnelling times were studied via a new kind of “gedanken ex-
perimente”, namely by supposing the barrier to possess, besides the ordinary (time-
independent) part, an additional part oscillating in time:

V(t) =Vo+ V] coswt . (24)

Since the potential V varies with time, the incident particles —if endowed with electric
charge (or magnetic moment)— can absorb or emit "modulation quanta” fiw during
the tunnelling, which leads to the appearance of sidebands with energies E + nhw;
[n = £1,+£2,...]. In the first-order approximation in Vi, it is enough to consider only
the neighbouring sidebands with energies E + fv. Biittiker and Landauer did obtain
the following expressions for the relative sideband intensities



A(il)(w) Vi
Ié‘ﬂ)(w) = IT—‘ |2~ [ L ex BL 2
x~ p(wrg”) - 1)%,
A9 2 )~ 1]

(1) (25)

A (w) V,’.BL
Ew) = | P P (AR (1 twr

A9 2 )

where Af(ril) and Ar(I? ) are the perturbed (sideband) and unperturbed transmission—
amplitudes, respectively; and similarly for the reflection-amplitudes A&il) and AY
In eqs.(25) the last equalities (~) hold only for the case of opaque [rectangular] ba.rri:rs.
and not too high frequencies: i.e., for fiw small with respect to both E and V, — E
Moreover, 77" = ma/hx; 7EY = 2mk/(hx(k? + k?)); and 7. =m/fik?. One can see
that 7P is identical to the Larmor time 7% as given in eq.(19).

) In our opinion, it is not worthwhile to report about the discussions originated by
Biittiker-Landauer’s approach, since they seem to us to be too technical and unsuffi-
ciently justified; let us only quote, here, the refs.?4~-2"1 However, two results should be
mentioned.

First, Hauge and Stovneng(!! did find a simple connection between, on one side, the
w — 0 limits of A&\il)(w)/Ar(I?) and A%il)(w)/Ag)), and, on the other side, the complex
times of eqs.(23):

) _ Ve, AW _ Vo 26
Ag)) - 2% T A'(I?) - 7'2h TR ( )

even if the physical meaning of such a connection is not yet very clear.

Second, it is interesting to recall that Bruinsma and Bak[?®! (see also ref.l!) pro-
posed the characteristic frequency (78L)~! = hix/ma to give information about the
coupling between tunnelling and other accompaning channels, rather than about the
intrinsic tunnelling times.

3 — ABOUT THE POSSIBILITY OF INTRODUCING CLEAR, UNIVO-
CAL DEFINITIONS OF 7t AND mg.

3.1 - A comment on Hauge and Stovneng’s conclusions.

After having reviewed all the main definitions and evaluations of the tunnelling
times (which we also have presented, and criticized, in Sect.2), the authors of ref 1]
concluded that no definite, acceptable approach still exists to calculating such tunnelling
durations. As a necessary but not sufficient condition, to be obeyed by any physically
acceptable expression of the tunnelling and reflection times 7t and mg, those authors
did propose the following relation

" = |Ar|*rr + |4rl*m, (27)
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which they required to be satisfied by the durations calculated via any method (besides
the dwell one, of course, which ab initio does not separate transmission from reflection
time). Let us observe that the negative conclusion of ref.l!);, which is actually the main
conclusion of that review, is based not only on a criticism of all the previosly existing
approaches (a criticism that we made more complete and even stronger), but also on
the fact that none of them satisfies condition (27).

However, relation (27) is unacceptable as a general criterion, since it attributes
a special role (and meaning) to the Dwell Time 7°*, which on the contrary does not
possess —in general— the physical meaning of global collision—duration, as we showed
in Sect.2.4.

In the following Section, we are going to show that it is possible to define (and
calculate) —in a physically meaningful and self-consistent way— those durations 7
and TR.

3.2 — A direct, general definition of the collision durations; and Applications
to Tunnelling

A direct, general definition of the collision durations was put forth first by
Ohmural??!, and then improved —and generalized for finite distances— by us./®# Follow-
ing refs.["], the transmission and reflection durations < 7r >, < ™ > (averaged over the
corresponding flux densities) can be defined, in the considered case of one-dimensional
motion in presence of a barrier, as follows:

<1t > = < t(:cf) >ITH - < t(l!i) >in =

[ dtt T ert) [ dbt Ju(mt)
ffooo dt J':]l:'.'n(mf?t) ffooo dt Jin(zht) -
J> dEv |gAr|? mF™(=i, z¢, E)

= = - s 4+ <Arr > (28
@ dEv|gAr]? (o = o) <o > < Amr > (29)

< Hz) >p - < t(z) >, =

n

< TR >

[, dt t JE(=i,t) J 5o dt t Jin(iyt)

[ dt Ji(z;, 1) J2, dt Jia(zi,t)

[ dEv |gAR|? 78 (zi, 2, E) 2
_ 19 =2lz| <v'>+<Am>, (29)
[ dEv |gAR|? @i

which hold when the incoming, reflected and transmitted wave—packets do not interfere:
i.e., are totally separated in space-time. Quantity g = g(E — E) was defined in eqgs.(5),
(6); while the ordinary Phase Times 7", 7£" have been defined in egs.(10) and (11).
Moreover, quantities J& and JX! are defined as in eq.(9), just replacing ¢(z, k) of eq.(5)
by Y = Ar e * and ¢¥m = ¥ = Ar e'** respectively. Let us stress that our
equations (28), (29) do implicitly define also the time delays < Arr >, < Amr >
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due to transmission and reflection, respectively; as well as the “average” instants
< t(zf) >frn, < t(z;) >g, < #(z;) >;, at which the corresponding wave-packets [trans-
mitted, reflected and initial, respectively| pass through point z; or ;.

Notice that for quasi-monochromatic wave packets, i.e., when approximation (8)
holds, eqs.(28), (29) do directly yield the ordinary Phase-Times 7k}, 7", given in
eqs.(10), (11).

However, when z;, z¢ are not far from the barrier, then it happens that the incom-
ing, reflected and transmitted wave—packets can interfere. Moreover, the flux density
J(z,t) does in general change its sign with time; for example, the sign of J(0,t) does
change from + into — approximately a time # d(arg Ag)/dE after the arrival at z = 0
of the initial wave—packet. Therefore, the integrals [°_ dt¢ ¢t J(z,t) do represent in
general the algebraic sum of positive and negative quantities, so that the probability
densities

J(z,t) dt
JZ% dt J(z,1)
are not positive definite and do not possess a direct physical sense.

Each probability density acquires a physical meaning only during those (partial)
time-intervals in which the corresponding flux-density J(z,t) does not change its di-
rection. As a consequence, the previous integrals are to be split into varios integrals,
each one carried over a partial time-interval such that during it the sign of J(z,t) is
only positive, or only negative. Afterwards, one will sum over all such contributions.

In other words, we have to deal only with the positive definite probability densities

dt J.(z,t) an dt J_(z,t)
J2% dt Ji(z,1) [ dt J_(z,t) '
where J, and J_ represent the positive and negative values of J(z,t), respectively.

Therefore, we do propose as physically adeguate definitions for the average trans-
mission time and the average reflection time the following expressions:

< e > = <tlz) >, — <tz) >, =
[Zdtt Jy(zt)  [SodttJi(zint) (30)
ST dt Jy(zs, 1) J2, dt Ty (zi,t)
<mR> = <tzm)>_—<tzm)>, =
_ f_wdtt.]_(il!i,t) _ f_oodtt’]+(zi7t) ) (31)

J2% dt J_(=i, 1) J2% dt Ji(=it)
Let us notice that, when z¢ > a and z; — —o0, equation (30) goes into equation

(28) since in that case Ji(z¢,t) = Jr(zs,t) = J(zr,t) and Ji(zi,t) = Jia(ist). Anal-

ogously, when z; — —oo, equation (31) goes into equation (29) since in such a case

To(zi,8) = Ju(zi,t) and J_(z5,t) = Ja(z;, t).



12

What precedes, and in particular eqs.(30), (31), lead us to adopt as suitable, strict
definitions for the very Tunnelling Time and the Reflection Time at the barrier—front
(or To-and-Fro Time) the following ones:

< Thm> = < t(a.) > — < t(O) >4+, (32)

< Tyofro > = < Tr(z; =0) >

<t0)>_ — <t0) >, , (33)

where one should recall that the barrier starts at the point =z = 0.

According to us, egs.(32) and (33) are the correct definitions for the “Tunnelling
time” < 7y, > and the “Reflection-due-to-the-whole-barrier time” (i.e., the Reflection
time at the barrier front wall) < 7,_g, >. In conclusion, at variance with the authors
of review(!!, we think that a positive answer can be given to their question about the
possibility of a precise, meaningful, univocal definition of the Tunnelling and Reflection
times; such an answer being given by our equations (30)—(33).

Unfortunately, simple analytical expressions for those time-durations in the energy
representation exist only in particular, limiting cases. In general, even for Gaussian or
quasi-monochromatic wave packets, calculations can be performed only numerically.
Anyway, eqs.(30)—(33) can be qualitatively tested in an easy way.

We are left with the question of the time evolution of wave-packets inside the
barrier: a problem which till now was paid attention to only in ref.[”). We shall examine
it in the coming Section.

3.3 — Time evolution of the tunnelling wave—packets inside the barrier

In ref.!] calculations were performed of p(z,t) and J(z,t), at different points z
inside the barrier, for a Gaussian wave—packet with an energy spread AE = 0.025 E.
The results of those calculations are presented in Fig. 3, for E = 1V, and xa = 5/ V2.
From it, one can see that the times 7,(z), 7s.(z) and 7;_(z), taken by the maximum
of p(z,t), J.(z,t) and |J_(z,t)|, respectively, to penetrate the barrier till the depth
Az = z, do not depend linearly on z; and that J(z,t) —inside the barrier— does change
its sign with time, not very far from the barrier forward wall (0 < z < 0.6 a).

It is worthwhile to notice that: (i) although the continuity equation 8p/8t +
8J/8z = 0 goes on holding inside the barrier, nevertheless the equality J = vp (which
is valid for quasi-monochromatic wave packets outside the barrier) is not valid —not
even approximately— inside the barrier; and that: (ii) the effective velocities v, =
(dr,/dz)™?, vz = (dryy/dz)™! and vy = (d7y-/dz)™! of the maximum of p, J,
and |J_|, respectively, not only are non-constant as z varies, but also do not coincide
with each other.

Passing to the mean velocity of the wave-packet while tunnelling through the whole
barrier, it can be defined in a natural way as follows:

a
— = —% 34
Vitun < T > ( )
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Let us explicitly notice that, if < T, > does not increase with a, the “effective”
speed Ty, may become arbitrarily large. This would actually happen when the tun-
nelling time can be expressed by the ordinary Phase Time: < 7., >= 78%(0,q; E); cf.
Sect.2.3.

Moreover, we can show that even in general, for rectangular barriers and large
values of a, quantity < 7., > does not depend practically on a. In fact, it is obviously
< t(a) > = < t(a) >;; so that the corresponding terms, for z; = a, become equal
in eq.(32) and in eqs.(28). Therefore, the same will happen —for quasi-monochromatic
wave packets— for the corresponding term included in eqs.(12). As a consequence, the
term < t(a) >+ does not depend on a for opaque barriers. As to the second term,
< t(0) >, , of eq.(32), it differs from < #(0) >;, of eqs.(28) [owing to the effect
of interference between incoming and reflected waves in the flux J,(z; = 0,¢t)] by a
quantity that depends on the reflection time 75%(0,a;E), on the wave packet time—
extension [of the order of A/AE], and on the form of the wave-packet. Consequently,
also such a “second” term does not depend on a for opaque barriers. We can conclude
that the Hartmann-Fletcher’s effect is valid even for our definition (32).

It is perhaps worthwhile to add the following observations. The arriving, initial
wave-packet does interfere with the reflected waves, that start to be generated as soon
as the packet forward tail reaches the barrier edge; in such a way that (when consid-
ering the profiles of fluxes J(z,t) before the barrier) the backward tail of J;, decreases
—for destructive interference with Jg— in a larger degree than the forward one. This
simulates an increase of the average speed of the entering-flux profile, J.(z,t). Hence,
the term < t(z) >, decreases for negative  ~ 0. In other words, the effective (aver-
age) flight-time of the approaching packet from the source to the barrier does decrease.
Let us now consider what happens inside the barrier, for positive £ =~ 0. An analogous
interference effect leads to expect an increase of the (effective) tunnelling time < Tiyq >;
which consequently will not coincide with the Phase Time 7£%(0,a;E): not even for
quasi-monochromatic packets. Finally, it is interesting to note, and easy to recognize,
that the time—flight decrease before the barrier, and the tunnelling-time increase inside
the barrier, do exactly cancel each other out, so that the total effect vanishes. In any
case, let us stress that the fact that the entrance time-instant < #(0) >, is decreased
by the mentioned “distortion” does not obscure the physical sense of our definition of
the tunnelling time < Ty, >, €q.(32).

Coming back to the time—evolution of the wave packet inside the barrier, we cannot
describe it as the quasi-classical motion of a particle. We can visually describe it, on
the contrary, in terms of the “motions” of the three densities p(z,t), JXz,t) and
JY(z,1).

In particular, we can pictorially say that both profiles [bumps]| of the “incoming”
and the “reflected” flux-densities J,(0,t), J_(0,t) (depicted for z = 0 as a function
of time: see Fig. 3) do repeat themselves —with distortion— for increasing values
of the penetration depth z. Such a “transmission” takes place rather rapidly (when
considering the velocities vy, vs_ of the bump maxima)in comparison with the initial
speed v, non-uniformly, and with a gradual decreasing of the bumps. In particular,
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such decreasing is so strong for the reflected waves, that they disappear at the end of
the barrier. At last, we can qualitatively say that the probability density p(z,t) does
conserve the form of its temporal shape at every position z inside the barrier, however
exponentially decreasing as the depths increases, and quickly, non-uniformly moving
towards the final barrier wall.

4 — CONCLUSIONS AND PERSPECTIVES

In this work, besides a critical review of the previous definitions of the tunnelling
times and of their consequences, we proposed for them new definitions, egs.(30)-(33),
that we regard as physically acceptable. We do share with the authors of review({!,
however, the opinion that none of the previously known definitions were generally ac-
ceptable.

Moreover, in this work we began analysing —for the first time— also the time—
evolution of the tunnelling process inside the barrier.

As to the future, let us before all recall that analytical expressions in the energy
representation for < 7,, > and < Tyo_ge > do not exist, even in the case of the simplest
barriers. However, numerical calculations can be straightforwardly performed about the
time evolution of the considered wave—packet inside the barrier. On the basis of such
one-particle (and one-dimensional) calculations, il will be possible to start developing

a kinematical theory for the tunnelling of bound or metastable many—particle systems,
and of unbound aggregates, through various barriers.

Within the field of nuclear physics, it will be interesting —on the basis of the pe-
culiarities of the tunnelling-process temporal evolution (Sect.3.3 above; and ref."))—
to investigate the possibility of observing effects due to the change in form, in volume,
in orientation and in life-time of many-particle systems (nuclei, fragments,...) during
their tunnelling. As well as effects due to “collisions”, inside the barrier (e.g., the ion—
ion barrier), between different, successive, penetrating particles: for example, the role
of those possible collisions in enhancing two—proton sub-barrier transfer in heavy ion
interactions. Another future task will be developing a multi-dimensional description,
in terms of tunnelling processes, of the sub-barrier fusion of two nuclei: taking account
of nuclear deformation, formation of noses or a neck, and of dissipation phenomena.[*?

At last, we should comment on the fact that —when < 7,;, > does not practically
depend on the barrier width a, as we have seen to happen for opaque or high barriers
(Sects. 3.3 and 2.3)— then one apparently meets, in connection with eq.(34), speeds
that (inside the barrier) can assume arbitrarily large values. This does not violate any
postulate, as far as we deal with non-relativistic (quantum) physics; and in fact such a
phenomenon has already been frequently met within “quantum systems”.[3!

It is easy to check that the same would happen, in our case, even when replacing
the Schroedinger equation by the Klein—Gordon or Dirac equation, at least for barriers
that do not depend explicitly on time. More interesting is the occurrence of this fact
in such “quantum field theories” (which deal, however, with semi-classical potentials).
But those infinitely large speeds could disappear in a self-consistent relativistic quantum
theoretical treatment.

If, on the contrary, that effect would not disappear, then it should be added to
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the already known results that point in the same direction: cf., e.g., refs.?2. Results
that have been predicted, inside relativistic theories like QFT, by many authors, like
Sudarshan!®, Van Dam and Wigner/®!, Recami®®!, Ne’eman/®® and others.
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Fig. 1 — The case of stationary scattering and tunnelling. In this figure we depict a
generic potential-barrier V(z) (which does not depend explicitly on time), with the
three regions generated by its presence; and the incoming, reflected and transmitted

plane waves.
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Fig. 2 - Orientations of spin and magnetic

field for the case of the “Larmor clock” (see
the text).

plx, 1), T(x,t)]

~N
<
=1

Ttun® Y r_

L)
o~
<%
k

3
D
(]
1
’
Y
—pe

xX..2
a 5

-__!;_-
Y
f

it
[ ]
Ex N
— -
Y
—'-

<

1]
|~
_ 4>.

-

\
A »t

=3
5

\

\
L A —

5

Fig. 3 - A pictorial view of the time dependence of J(z,t) and p(z,t), for various
values of the penetration depth z inside a rectangular barrier (for Gaussian wave-
packets). Actually, as = increases, all the “bumps” suffer an exponential damping; but,
for convenience, we neglected in this figure the exponential factor exp(—«z).




