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Abstract

The multiring trap is a device consisting of a series of coaxial ring electrodes placed
in a static and uniform magnetic field oriented along the system symmetry axis. When
the electrodes are held at electric potentials choosed to generated into the trap volume
the same electric fields that are present in a standard Penning trap, the structure can
stably confine charged particles exactly as in a Penning trap. The big advantage of the
multiring trap, an important feature not shared with the regular Penning trap, is that the
device is particularly suitable for the in flight capture of bunches of particles. However,
the monitoring of the number of trapped particles and the measure of their mean energy

has been until now an open problem. The present paper offer a simple solution.



1. Introduction

The multiring trap was originally proposed [1] as a possible system for the in flight
capture of bunches of charged particles. It consists of a coaxial series of ring shaped
electrical conductors, (fig.1), isolated one from the other, and placed at electric potentials

that will generate, along the trap axis (z axis), and near to it, an electric force ¢FE,
qE, = —kqz (1)

of elastic nature. We indicated by g the charge of the confined particle. When the trap
is placed in a constant magnetic field B, parallel to the z axis, the electric and magnetic
field spatial distribution, in a region near the trap axis, is the same yielded by a regular

Penning trap [2] and the two device can capture and store particles in the same way.
The main advantage of the multiring trap are of geometrical nature:
- bunches of particles can be easily brought in a cylindrical structure;

- it is possilble to adjust the lenght of the trap and its diameter to match the incoming

bunches dimensions;

- the electrodes potential can be easily adjusted to any desidered capture profile before

bringing them to the final trapping profile.
The main disadvantages are:

- the trap behaves as a Penning trap only in a region near the trap axis (an extension

between 0.2 and 0.5 of the radius of the trap being usually acceptable);

- one needs to apply to the various electrodes many different, well stabilized, constant

electric potentials;

- it is not immediately evident how to properly collect electric signals from the various

electrodes to detect the particles trapped in the structure and to measure their energy.

The discussion of that last problem, and its solution, as regard the axial motion

and the measurement of the axial particle energy will be the main subject of this paper.



2. Particle’s motion

As in a Penning trap, in the paraxial region of a multiring device the trapped
particles harmonically oscillate along the z axis and follow a combined magnetron and
cyclotron motion in a perpendicular (z,y) plane. The z motion may be described, in both

case, by the relations

2(t) = Asin(wt + ¢) (2)

where
w=2r/T = \/kq/m (3)

the constant k£ being equal, for a multiring trap, to:
L
k= 2/L2/ E,(0,0,2)dz = 2V, / L? (4)
0

(L=half trap length) and being equal to:

L
k=2/z / E,(0,0,2)dz =2V, /22 (5)
0

(zo= distance from the trap center to one cap) for a regular Penning trap.

3. Signals from a Penning trap due to the particle axial motion

In a Penning trap, any displacement of the confined particles along the z axis
induces image currents on the trap electrodes. To a first approximation the current I
induced on a trap cap is linearly related to the particle velocity, so that it is possible to
write: p

aq dz
I=—— 6
220 dt ( )

In the above relation, a is a geometrical factor [3] somewhat smaller than 1.

4. Signals from a multiring trap due to the particle axial motion

Let’s consider a particle initially situated in the trap center and moving to the
right. During an half cycle of the particle oscillation, the current flowing in the electrode

named FE in figure 1, will be:



- zero, if the particle has a motion amplitude much lower than the distance zg;
- of the kind shown in figure 2a if the particle amplitude of motion is greater than zg;

- of the kind indicated in figure 2b if the particle amplitude of motion is about equal

to zg.

It follows from these considerations that, while the signals collected from regular
Penning trap are harmonic and directly proportional to the amplitude of motion of the
particle, the signals collected on one of the electrodes of a multiring trap have the same
period of the oscillating particle, but are not harmonic nor simply correlated with the
particle oscillation amplitude. We want to show here, howewer, that it is possible to get
harmonic signals of height proportional to the amplitude of motion of the particle, exactly
as in a regular Penning trap, if one uses all the signals coming from the various trap
electrodes and properly combines these signals with the aid of an electronic network of the
kind shown in fig. 3.

To be more precise, we want to show that the current flowing through the tuning
capacity, indicated as Cr in figure 3, is given by the relation
vq dz
I=—=—
2L dt (7)
where v is a function slowly dependent on the trapped particle energy.

The basic idea that justifies the use of the network of figure 3 in ideal situations
(complete lack of parasitic capacties) was explained in reference [4]. Here we demonstrate
the validity of that idea in any situation and give full details on the method that allows to
completely evaluate the network performance and in particular to compute the function ~

defined by the last equation.

5. How to compute the induced signals

Let’s consider a particle oscillating back and forth in a multiring trap whose elec-
trodes are linked to the electronic network of figure 3 (the network being made by a series
of real inductances and by the tuning capacity Cr). To discuss the electric signals that

originate in the circuit, we introduce a set of basic charge distribution functions, ¢;(z), that



we will define as the functions that specify the amount of charge induced on the various
trap electrodes from a unitary electric charge situated along the trap axis in the position
of coordinate z. For the particular trap having the geometry indicated in figure 1, the
functions g¢;(z) were computed (figure 4), and we will refer to these computations [5] in

our numerical examples.

The functions g;(z) will be in any case bell shaped functions satisfying the only

restriction of charge conservation, namely
Y az) = ¢ (8)
i

The exact shape of the functions ¢;(z) will depend on the trap geometry, essentially on the
ratio between the inner radius of the ith electrode and the distance between that electrode
and the nearest ones (all the functions will be identical if the electrodes are equally spaced

and have the same shape).

We now write the currents I;(t), flowing trough the ith electrode, as

dq; dz
dz dt (%)

and we wrote that these currents may be considered as originating from suitable currents

Ii(t) =

generators G;. Accordingly, we state that the signals induced by particles oscillating in a
multiring trap can be calculated studying the signals induced into the equivalent circuit
of figure 5 by the current generator G;. We shall suppose to tune the circuit of figure
5 (varying Cr) to the particle oscillation frequency, in order to get, in any situation, the
maximum sensitivity. Then, the problem of calculating the electric signale generated by the
particle motion is reduced to the problem of studying the fundamental harmonic transfer
function of the electric network of figure 5. This study, and the related computations, can
be greatly simplified approximating the functions ¢;(z) with a sum of a few number of

function of the kind shown in figure 6.
The advantages of that approximation are:

- the Fourier component of the injected current I;(f) can be easily calculated in an-
alytical form (approximating the functions ¢;(z) with a mixtilinear curve, the current is
approximated by a series of step functions and ones needs only to compute the Fourier

components of constants functions).



- Equation (8) is simply satisfied.

Figure 7 shows the two mixtilinear functions whose sum we used to approximate
the function indicated in figure 4 and to perform many of the computations that we shall

present later.
6. Results and discussions

Using the above outlined procedures, we computed « values for different particle en-
ergies and for different trap geometries and we found that the features of the computations
are simple to describe, easy to understand and mainly dependent only on the following

parameters:

a) the ratio A/d, that is the oscillation amplitude A of the trapped particles measured

using as unit the interelectrode distance d;
b) the ratios between the grounding capacities C; 4 and the tuning capacity Cr;

c) the shape, the dimensions and the distances of the central electrode and of the two

neighboring ones.

We shall list the main features of the behaviour of the 4 parameter, as a function
of the above listed variables, referring (figure 8) to the model multiring trap of figure 1
and to its electrostatic properties (figures 4 and 7). Figure 8 gives v as a function of the
ratio A/d, for different possible values of the ratio Cy/Cr and of the ratio C.;/Cz in the

model trap.
The analysis of that figure suggests the following, generally valid, conclusions:

a) both Cy and C,; tend to decrease the values of the function v, but, while the effects
of Cy are of importance (a fraction of the induced current is directly short circuited by
Cy) and should always be considered, the effects of C,; are small, even for physically large
values of the ratio C.;/Cr (these capacities does not short circuit the circulating current

and, furthemore, they act, in a sense, in series).

b) For small values of the ratio 4/d (A/d less than 0.15) the values of v is constant:

the trap behaves like a Penning trap because only three electrodes are involved in the



induced charge displacement. The « value is sensibly smaller than one, exactly as in a
Penning trap, because a fraction of the induced charge is on the central electrode and
never moves. (In our actual computations the exact constancy of v for A/d < 0.15, comes

from the approximations involved in the use of mixtilinear functions).

c) When at least five electrodes are definitively interested by the motion of the in-
duced charge, the value of v rapidly approches an almost constant values (unitary in ideal

conditions) because now there are no fixed (dead) induced charge on the central electrode.

d) the transition of the 4 value from its small oscillation value to an almost constant
large oscillation value, takes place in a region whose length A, in the direction of the 2
axis, depending on the shape of the central electrode and on the distance of that electrode
from the two neighboring ones : the distance A is roughly equal to the sum of the central
electrode width plus the minimum distance (§ in figure 3) between the central and one of

the two next electrodes.
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Figure 1 - Section, in a plane containing the rotation symmetry axis of the trap, of

the right part of an eighteen electrode multiring trap.
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Figure 2 - Possible currents flowing in one of the electrodes of a multiring trap for
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different values of the amplitude of motion of a trapped particle. (During the second half

of the period, the current is in any case equal to zero).
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Figure 3 - How to combine the signal from the trap electrode:
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- near electrode are eventually grouped in parallel. The connection is convenient when the
actual distance between real electrodes is less than the trap diameter. From now on, we

shall always treat such groups of electrodes as one single electrode.

- the various electrodes are connected to a a series of real inductances and that series is

closed on a tuning capacitor Cr.

Zi+1

Figure 4 - The function gi(2), as deduced from the results reported in reference [5],

for every electrode (in fact a couple of real electrodes) of figure 3.
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Figure 5 - An equivalent circuit to study the signals coming from the real circuit of

figure 3.
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Figure 6 - Two types of mixtilinear functions that can be used to approximate the
induced charge functions g;(z). Using these kinds of approximation it is possible tp satisfy
in a simple way the condition [8] and to simplify the computations. The function of type
1 is a trapezoidal function of adjustable height, centered around one of the electrodes and
satisfying the two condiutions: I; = nd + 2K and l; = (n + 2m)d + 2K (where n and m
are integers 0,1,2..., d is the distance between two near electrode and K in any distance
less than d. Note that a particular case of the type 1 function is the very simple case of
a triangular function exetending n times the distance d. The function of type 2 is a little

more elaborate. The parameter n must be a posistive integer while k is again a distance
shorter than d.
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Figure 7 - The two mixtilinear functions whose sum we used to approximate the

function of figure 4.
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Figure 8 - Values of the function v for different values of the amplitude 4/d. The
three continuos curves A, B, C refer to v values computed assuming the ratio Cei/Cr
always equal to zero and the ratio Cy/Cr respectively equal to 0, 0.4, 1. The three curves
A', B', C' are calculated assuming the ratio Cei/Cr always equal to 0.7 and the ratio
C,/Cr respectively equal to 0, 0.4, 1.



