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ABSTRACT

We did already present results on the stochastic cooling of the axial motion of samples
of N particles stored in a Penning trap.

We complete here our previous results discussing a simple method to stocastically cool
even the particle radial motion.

(Submitted to Physical Review A)



1. INTRODUCTION

A possible technique to stochastically cool the axial motion of particles trapped in
Penning traps was already theoretically discussed for regular [1] and multiring [2] traps
and experimentally verified in a model regular trap [3].

In the present paper we want to discuss the stochastic cooling technique for the radial
motion of particles confined in a regular Penning trap.

The present discussion is organized in the following way: first we recall the pertinent
laws for the motion of particles both into an ideal and into a real Penning trap; then we
briefly revise the main concepts and definitions about the technique of stochastic cooling
when applied to trapped particles and we discuss what type of electric pulses can lead to
the control of the radial motion of one trapped particle. Finally we examine the overall
results of the proposed cooling technique applied to a sample of N particles.

2. IDEAL PENNING TRAP

Let’s first recollect the basic results about the particle motion in a Penning trap.

A voltage V;, applied between the ring and two cups (fig.1) of an ideal Penning trap
[4] placed in a constant magnetic field B parallel to the trap z axis, generates inside the
trap an electric potential given by:
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Under the action of that potential:

i) the z coordinate of a trapped particle changes with time as

z(t) = r, cos(w,t + ¢) (2)
where .
_ Vo ]2

T [m(r?, + 2z3)] o

ii) the particle moves radially with a motion (in ideal condition fully decoupled from the
axial motion) that can be described, as superposition of two circular motions, by the
equation

m(t) + .iy(t) — rcei[wc(t—io)'*'d’c] + rmei[wm(t—to)+¢m] (4)



As it is well known the first type of motion is called the cyclotron motion and is charac-
terized by an angular frequency:

2
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while the second is called the magnetron motion and is characterized by an angular fre-

om = ﬂ—\/<ﬂ>2_2wg = 2rf., (6)

quency:
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The parameters 7., ¢, and r¢,7m, @, pm are constants whose values depend upon the axial
and radial particle velocity and position at the time ;.

3. REAL PENNING TRAP

In a real Penning trap geometrical imperfections, forces due to space charge and
magnetic field inhomogeneities change the ideal motion of the particles and give rise to a
broadening of the linewidth of the three characteristic frequencies w,,w,, W,.

In practice, the standard deviation o, of the cyclotron angular frequency from its
mean value wy. is almost enterely linked to the magnetic field inhomogeneities, while geo-
metrical imperfections and space charge effects are mainly responsible for the broadening,
characterized by standard deviation ¢, and oy, of the axial and magnetron frequencies
from their mean values wg, and wyp,.

To say that the axial, cyclotron and magnetron oscillation frequencies w,,w. and
w, of a particle have dispersions ¢,,0. and ¢,,, obviously means that the motion of a
particle, when analyzed in term of Fourier components turns out to be a superposition
of motions with differents frequencies and cannot be described by simple harmonic func-
tions of the type given by the equations (3) and (4), thinking to the nine parameters
T2y Wzy PzsTesWey Pes PmsWm, Pm as constants of the motion.

To simplify some of our next computations, whenever it will be possible without alter-
ing the final results, we shall assume that the cyclotron, magnetron and axial motions of
any particle can be described by the equations (2) and (4), thinking to the nine parameters
T2y Wzy Pzy Tey Wey ey Tmy Wmy Pm as constants of the motion (each particle moves as in an
ideal trap), but that these single particle parameters are a set of stochastic uncorrelated

variable. In that case we will assume that the phases are uniformly distributed between 0



and 2w, that the angular frequencies float around their mean values wy., wom and wy, with
a dispersion measured by the real standard deviations o, 0., 0, and that the particle
oscillation amplitudes change according to the proper physically significant distribution.

Let’s now discuss the motion of the center of mass of N particles. being the center of
mass £ coordinate given by

zp(t) = ﬂ%k(t) (8)

we can write N N
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z5(t) N N (9)

where
Ocr(t) = wert + Pek (10)
0mk(t) = Wkt + ¢mk (11)

A similar formula with sin functions holds for the center of mass y coordinate yB(t).

It is often convenient to define "instantaneous” cyclotron and magnetron radii and
phases, writing:
N
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It follows immediately from the above definitions that
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Similar formula hold for R,, and 0O,,.
The four quantities R.(t), Rm(t), Oc(t), Om(t), now fully defined, clearly are four

time dependent stochastic variables whose time behaviour is mainly characterized by two



characteristic times, that we shall call cyclotron and magnetron mixing times, defined as

the inverses of the standard deviations o, and o, by the two relations

1
Te= (17)
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The mixing times practically are a measure of the coherence time of the stochastic functions
Rc(t), Rm(t), ©c(t), Om(t). We showed that extensively in reference [1] for the particular
case of the axial position and velocity of the center of mass (means values of the z coordinate
and of its derivative) of a system of N particles but the same result holds for the radial
case.

Therefore we can say that during time intervals short compared with the mixing time
Te (Tm) the functions R.(t) and O.(t) (R (t) and ©,,(t)) are almost constant and the
cyclotron (magnetron) motion of the center of mass can be considered almost harmonic.
On the contrary during time intervals greater than the mixing time the functions R.(2)
and O.(t) (Rn(t) and O,,(t)) show significant fluctuations.

4. STOCHASTIC COOLING

The basic idea about the stochastic cooling of any type of motion of particles confined
in a trap is the following:
- after a measure of the oscillation amplitude A and phase © of the center of mass motion
component under consideration (fig. 2) a suitable electric field is applied of amplitude and
duration selected to stop that motion component of the center of mass. In that way the
energy of one (the center of mass) of the N degrees of freedom of that type of motion is
taken away;
- after that, the system starts to evolve toward a new equilibrium situation, in which
the energy will be again equally shared between all the system degrees of freedom of the
considered motion.

The equilibrium will be reached after a time of the order of the proper mixing time.
At this point, it is possible to repeat the process and to take away another (roughly 1/N
of the total ) amount of energy from the motion.

Reference [1] gave a complete discussion of the stochastic cooling of the axial particle

motion and in the present discussion we will follow the same lines.



5. THE TWO PULSES TECHNIQUE FOR THE COOLING OF THE
SINGLE PARTICLE RADIAL MOTION

In the present paper we will define as ”cooling” of the radial motion the reduction
of both the cyclotron and magnetron radii. Therefore, to cool the radial motion, we shall
have to extract energy from the cyclotron motion, while we shall have to increase the
energy associated with the magnetron motion.

To add or to subtract energy from a given type of motion, exactly as for the case of
the axial motion, we will think to use pulsed electric fields, that is electric fields of duration
7 much shorter than the cyclotron (and magnetron) period, having constant amplitude E,
during the time 7 and directed along the trap z axis (fig. 2).

Using such assumptions it is very easy to evaluate the effect of one electric field pulse:
while the z and y coordinates of one particle and its y velocity component are unchanged,
the z velocity component is suddenly increased of an amount v, given by

qE::T

bvy =

e (19)
The cooling of the particle radial motion looks, at the beginning, more complex than the
cooling of the particle axial motion: one needs to cool two different types of motion and the
controlling electric field pulse changes the amplitudes and phases of both type of motion.
That can be easily demonstrate computing the new amplitude and phases Pory Tk
eks Ornp of a given particle immediately after the electric field pulse application at the
time #;, as function of the corresponding values rck, Tmk, Ock, Omi immediately before the
electric field pulse action.
The results are

Tk €05 01 (t1) = Tk cos O,k (1) (20)
7L, COS Oék(tl) == 7ck cos Ock(t1) (21)
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From these equations it easy to conclude that, even for the simple case of a single trapped
particle, it is possible to freeze the particle cyclotron or magnetron motion but not the two
simultaneously. If we choose

Bi(t) = g (26)
and

dv, = (wck - wmk)rck (27)

the cyclotron motion amplitude is reduced to zero but
(Te)” = (rmi)” + (rek)” + +2rchTmie SinOmi(t1) (28)

This last equation proves that the cooling of one of the two types of motion can substan-
tially alter the other. The same conclusion holds, with additional complications, when we
deal with a number of trapped particles greater than one.

Luckly it is possible to fully decouple the cooling rate of the two types of motion if
every elementary cooling action is done using two consecutive pulses instead of only one
pulse of electric field, the second pulse following the first one after a fixed time interval
equal to one half of the cyclotron period (two pulses technique).

Let’s call §v, and (§v.) the changes of the z velocity component induced by the first
and second pulses and let’s use the symbols 7., r%., 6", 6" to indicate the magnetron
and cyclotron radii and phases immediately after the applications of the second pulse at
the time t,.

Applying two times equations of the type (20),(21), (22), (23) taking into account the
proposed timing and taking into account (7) one easily gets

ok €08 011 (82) = Tk €08 i (21) (29)
Te €08 02 (t2) = —rek cos Ok (t) (30)
v, §v,'

T Sin 6,5 (t2) = Tk sin Omi(t1) +

(31)
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From them:
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It should be now very clear that, using the two pulses technique, it is sufficient to choose
sinf.x(t;1) = 1 (sinOpmi(t1) = —1) and v, = (8v, )/ (§v, = —(6v.)) to change the cyclotron
(magnetron) motion of a particle without affecting in any way its magnetron (cyclotron)

motion.

6. COOLING OF THE RADIAL MOTION OF MANY PARTICLES

As previously said in the fourth paragraph to cool the cyclotron (magnetron) motion
of N particles we have to repetly cool the cyclotron (magnetron) motion of their center of
mass. Let’s think to use the two pulses technique, with pulses of amplitude

5‘03 = %(wco — Wmo )Rc (35)
(6vz = $(weo — wmo)Rm) proportional to R, (Rm) choosing
sinO.(t;) =1 (36)

(sin ©®,,(¢1) = —1) Every couple of pulses changes the cyclotron (magnetron) single particle
radius acccording to the equations (33) and (34). The expectation values of both members
of these equations are suitable quantities to describ the mean effect of a sequence of pulses
applied at regular time interval of lenght 75. Proceeding exactly as we did in [1], supposing
To 2 Tc (To 2> Tm), taking wer ~ weo and wmk ~ wme and assuming (with the hypothesis
of complete uncorrelation between the particle amplitudes and phases) that

) <r>
=< 37
< R?>, i (37)
CR> = STe> (38)
¢ N

(the symbol < >, meaning the statistical expectation value of a random variable) one

gets for the cyclotron motion the equation

d<r?>, _92—2g .

7 Nro <r:>, (39)

if one neglects noise effects and the equation
d< rcz: >a 92 — 2g 2 2 40
7 = N‘ro (< Te >‘ —-< rc,n >a) ( )



if one introduces the effects of noise errors that bring, at the output of the circuits of fig. 2,
to uncorrect reading both of the amplitude and the phase of the center of mass cyclotron
motion.

The quantity < r:‘:’n >, turns out to depend only on the trap and on the detection
resonant circuit of the cyclotron motion and is given by

g 4r?  S8KT.B,
29 — 9% (a-q)’RN  wq,?

(41)

where K is the Boltzmann constant, a, is a geometrical factor, T, is the equivalent noise
temperature of the detection circuit while B, and R are the bandwith and the dynamical
resistance of that circuit.

Formally exactly equal equations can be obtained for the case of the magnetron mo-
tion. The solution is again an exponential law but, from a physical point of view, it may
be useful to note that the time constant for the cyclotron motion is muche shorter than
the corresponding time constant for the magnetron motion bein usually 7,, > 7. (mainly
owing to (7)).
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Figure 2 Scheme of the circuits detecting the cyclotron and magnetron motion.

While the electric charge associated to the center of mass moves inside a Penning trap,
there is an associated motion of the image charges on the trap electrodes.To detect the
particle radial motion it is customary [4] to divide the trap ring electrode in four sectors
(a,b,c,d) and to look at the movement of electric charges between facing electrodes. The
figure shows the four median plane (x,y) section of a 4 sectors ring electrode together with
the schematic diagram of the electronic circuits that detect the cyclotron and magnetron

motion components along the y axis.



