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Introduction

The aim of the present work is to describe preliminary calculations of the giant
monopole (GMR) and quadrupole (GQR) resonances within the framework of the
interacting boson model (IBM) by means of a coupled - channel analysis of inelastic
scattering by a transitional isotope chain (""8"5“Sm).



Nuclear model

The starting point is the IBM-1 Hamiltonian in its standard multipole expansion®:
H(sd) = By + ey + PP + qLL + 0,00 « 0.0 + ab.¥. ()

Here, the multipole operators are expressed in terms-of creators and annihilators of s
and d bosons, 1.e. pairs of particles above, or pairs of holes below a major shell closure,
with L=0 and L =2, respectively, according to the definitions of ref.®. A limiting sym-
metry of the Hamiltonian, yielding the low-energy spectrum and transitions of a prolate
rotor is obtained when, in eq.(1), &4 = @ = a = a, = 0 and the quadrupolec operator,
Q, is of the form:

é# = (d'x5 +s"xd)? - J_ (dxd)?, (u= —2,.,+2), _ (2)
withd, = (—1)yd.,.
In that case the five components of Q and the three of the angular momentum operator,

= /10 (d+xa')“) , generate an su(3) algebra, whose irreducible representations

(irreps) are labelled with Elliott’s quantum numbers, (4, 4) corresponding to Young dia-
grams with 4 + u boxes in the first row and u boxes in the second row.

In particular, the six creators s*, df (v=-2,..,+2) belong to a (2,0) irrep and the
ground-state band of the nucleus to a (2N,0) irrep, N being the total number of s-d
bosons. According to refs.®9 , the GMR and GQR degrees of freedom are introduced
into the model by means of S and D bosons, respectively, which simulate 2#w particle -
hole excitations across major shell closures.

The total Hamiltonian can be assumed in the following form:
H(sdS,D) = H(sd) + Eshs + Ephp + kO.0,. 3)

Here, the total quadrupole operator, Q,, is a linear combination of the s-d quadrupole
of eq.(2) and of the first- and second-order contnbutxons to the S-D quadrupole, Q o

Ou = a0, + V0, + 70, =
=aQ,(sd) + B(D* + D), + y[(D*xS + s*<D)@ + y (D*xD)P],
(L==2,.,+2), (4)
where a, f, y and y' are hitherto unknown coefTicients.

The introduction of S-D bosons and their type of interaction with s-d bosons could be
microscopically justified in the frame of symplectic model of collective motion® as being
produced in the u(3) @ hw(6) contraction of the symplectic algebra when the number,
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Ny (=0.9 A3), of harmonic oscillator quanta describing the nuclear ground state goes to

infinity®. This preliminary work is devotéd to the study of the gross.features of
Hamiltonian (3), therefore, two drastic approximations have been made, (1): the one-
boson approximation has been adopted (ns, n, = 1 or 0); (ii): only the leading term
of the Q,.Q, interaction, responsible for GMR and GQR fragmentation, has been kept
in eq.(3):

#(sdSD) = H(sd) + Eshs + Ephp + cO. O, (5)

where (2)Q is the S-D analogous of. Q when y’ —\/—7_/2. The five components
of (2>Q and the three of [’ = J10 (D*xD)(" generate an su(3) algebra, too, and, pro-
vided Es = Ep-, the Hamiltonian of eq.(5) is a linear combination of quadratic Casimir
operators of SU(3) and SO(3) in - the three representations
(Q, LA.), (‘2)Q', lA,') (Q +‘2’Q L+ L) Since the creators S*, D} (u=—2,...,+2)
form a (2,0) irrep, coupling an S-D boson to the ground-state band of an axisymmetric
rotor amounts to the following reducible product of SU(3) representations:

(2N,0) ® (2,0)= (2N+2,0) ® (2N,1) @ (2N -2,2), (6)

The GMR and GQR excitations correspond to the L=0 and L=2 members of the
SO(3) irreps contained in the three SU(3) irreps on the right-hand-side of ¢q.(6), labelled
with' a quantum number, K, corresponding to the projection of the angular momentum
on the nuclear symmetry axis; the (2N+2,0) irrep contains a K=0 band with
L=0,2,...,2N+2; (2N,1) a K=1 band with L=1,2,.., 2N+ 1; (2N-2,2) a K=0 band wit
L=0,2,..2N-2 and a K=2 band with L=2,3,...,2N. Therefore, the SU(3) limit of the
model predicts two GMR components and four GQR components in an axially sym-
metric nuclcus; the GMR states arc close in energy to the GQR states with K=0, one
of which has the same energy as the K= 2 state, since they belong to the same (2N-2,2)
irrep.

Breaking the SU(3) symmetry of the S-D Hamiltonian amounts to choosing
¥ # —7/2ineq.(4) and Es # E, in eq.(5).

The L=0,2 transitions between an'S-D state and a member of the ground-state band
(pure s-d state, in the present approximation) are given by the matrix elements of the
following operators®:

Ty = o (ST + 3), (7
%2# = a2 (D+ + 5)#’ (#=_2""’+2)v (8)

where the coefficients, a and a,, are fixed by assuming that the GMR and GQR
excitations exhaust the corresponding energy - weighted sum rules (EWSR):

+ 2R 2
2EOI <0l Ty 107> =5 A<r>, ©)

A 5’
DECHISZ T 107> P =20 A<r>, (10)
n

N



Here, index m (n) runs over the GMR (GQR) states and <r?>,, is the mean square
radius of the ground-state density.

Alpha scattering analysis

The energies of the (0f — 2 — 4{) members of the grovnd-state band and the GMR
and GQR states, as well as the reduced matrix elements of the allowed (L=0,- 2, 4)
transitions, evaluated by means of the nuclear model of the previous section, are utilized
in the coupled channel calculations of « particle scattering by even-even samarium
isotopes, carried out with the ECIS88 code®. The transition densitics between members
-of the ground-state band have the radial dependence and normalization discussed in
ref.™, The L=0 transition density between S-D and s-d states has the phenomenologic
form given in ref.®:

PV 0, 9) = 40) (ST + 9) 1, (11)
where:
Jan o dp,
Ay(r) = — (R + X,0m)- (12)
0( A 4Rm<r>m _ Xm<r2>m m- Ay mFm
. (r— R, 7', .
Here, o, is given by €q.(9), p. = [1 + exp 7 ] is the radial dependence of

the ground-state density, <r¢>, = [ o°°p,,,r"+2dr/ i) :";),,.rzdr and X, = 2R.<r'>,.

The L =2 transition density is written in the form:

+2
PP, 0,9) = A Y. (DY + D), ¥i0,9), (13)
pu=—2
where:
My = —L 2 D (14)

A R,<r>, dr

with o, given by eq.(10).

The optical potential is given by a complex Woods - Saxon well:

Vo + i,

(Vo 0) ’ (15)
r — R)

1 + exp[(—av——]

W) =

whose depth is adjusted so as to reproduce the experimental cross section for elastic
scattering at E, = 120 MeV©®,

Between the transition potentials and the optical potential we assume the same relation
as between the transition densities and the ground-state density: therefore, the radial



dependence of the transition potentials is given by eq.(12) for L= 0 and eq.(14) for L=2,
with R, instead of R, and <rt>, = f:’ V(r)r"“a’r/f;“ V(r)r’dr instecad of <r*>, . Such
an assumption for the radial form factors is equivalent to an implicit folding procedure,
valid for a density independent nucleon - nucleon interaction, as shown in refs.t, A
standard Coulomb form factor contributes to the L > 0 transitions, but plays a minor
role in the excitation of the GQR.

Results and comments

The excitation of isoscalar resonances through the scattering of 129 MeV « particles
by **Sm has been discussed in ref.%2: both the angular distributions at excitation energy
E'=11.8 MeV and 14.9 McV have been interpreted as a mixture of L=0 and L=2

modes, the quadrupole being dominant at the lower and the monopole at the higher
encrgy.

The differential cross sections evaluated in the SU(3) limit of the model, with the IBM
parameters and optical model paramcters listed in Table I, are compared with the ex-
perimental data in fig.1. The high-energy cross section is the sum of an L=0 contrib-
ution at E' = 14.41 MeV, exhausting 42% of the monopole EWSR and of an L=2,
K=0 contribution at E* = 14.48 MeV containing 15% of the quadrupole EWSR.

TABLE I : [IBM AND OM PARAMETERS

IBM : 154-Sm (SU(3))LIMIT 154-Sm (BROKEN SU(3)) 148-Sm (BROKEN SU(3))
N 1N 11 8
€4 (KeV) 0 371.0 770.3
a, (Kev) 0 8.0 52.3
3 (KeV) 7.1 0.5 4.0
a, (KeV) - 17.5 - 19.6 - 12.6
X -77/2 - 1.20 - 0.65
3y (Kev) 0 8.4 29.6
3, (KeV) 0 5.7 19.7
ES (MeV) 11.30 14.18 15.50
ED (MeV) 11.30 11.75 12.50
Coq- (ke 130 80 80
x' -717/2 - 0.15 - 0.15
a (fm?) 197.7 177.2 169.1
u: (fm?) 88.2 86.4 81.6
oM : 154-5m (E_ = 129MeV) 148-5m (E_ = 115MeV)
V0 {MeVv) 50.80 58.80
wo (Mev) 36.90 32.90
RV (fm) 7.50 7.41

3y (fm) 0.73 0.73
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Fig. 1. GMR and GQR excitations through o scattering at E, MeV by *Sm in the
SU(3) limit. ¢ : expt. data at £°= 11.8 MeV from ref.#?; ¢ : expt. data at E = 14.9
MeVea, . E= 144 MeV: L=0 (42% EWSR) + L=2(15% EWSR); = E=
12.2 MceV:L=2(42% EWSR); _ __ L=2(50% EWSR); ...... L=2(85% LEWSR).

The calculation reproduces the experimental datum at 6., = 0° and is slightly higher
than the experiment in the 2° = 6° angular range.

The disagreement is stronger at low energy, where the L=2, K=1 excitation at E* =
12.20 MeV, with strength S = 42% EWSR, underestimates the experimental cross sec-
tion, which could be reproduced in the 2° + 6° range by adding the L= 2 contribution
at E' = 9.89 MeV so as to exhaust 50%  EWSR. Adding the fourth L =2 contribution
at E* = 9.83 MeV, with total strength S = 85% EWSR, the datum at ..., = 0° is re-
produced, but the values at higher angles are overestimated by more than a factor of 2.
The excitation of a strong L=0 component at E* = 9.80 MeV, with S = 58% EWSR,
seems to be quite incompatible with the experimental results.



Breaking the SU(3) symmetry of the Hamiltonian, when Es# Ep and y’ # — /7 /2, al-

lows us to change the L=0 and L=2 strengths in the two cross sections. In particular,
the choice of a weaker GMR - GQR coupling brings the theoretical curves to better
agreement with the experiment, as shown in fig.2. In that case the high energy cross
section is mainly L=0, with S = 87% EWSR, while L=2 is reduced to S = 5% EWSR
only; the low energy cross scction almost exhausts the L= 2 strength (S = 95% EWSR),
but contains a sizeable L =0 contribution (S = 13% EWSR) which reproduces the ex-
perimental value at 0., = 0°.
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Fig. 2. ¥Sm(a, '), E, = 129 McV, broken SU(3) symmetry; expt. data as in fig. 1;
E= 12 MeV: L=0 (13% EWSR) + L=2(95% EWSR);  E= 15 MecV: L=0
(87% EWSR) + L=2 (5% EWSR).

The reliability of the model in describing the GMR and GQR excitation in a transitional

isotope chain can be checked by evaluating inelastic a scattering by the spherical
nucleus #Sm with a small adjustment of the S and D boson energies so as to reproduce
GMR and GQR energy centroids, but without changing the parameters, ¢ and y’, of the
interaction Hamiltonian.
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The calculations are compared in {ig.3 with the experimental data of inelastic scattering
of 115 MeV a particles taken from ref.». The cross section at E° = 12.0 McV is satis-
factorily reproduced by an L=2 component with S = 99% EWSR and an L=0 com-
ponent with § = 9% EWSR, but the cross section at E° = 14.9 MeV is strongly
underestimated by the calculation, predicting an almost pure L= 0 excitation, with S =
91% EWSR. The data of ref.4» at E, = 115 MeV, as well as the relative cross sections
for the scattering of 129 MeV o particles in the 2° = 6° angular range given in ref.4%,
could only be explained by a strong mixture of L=0 and L =2 modes at both excitation
energies; on the other hand, recent measurements® of inelastic scattering of 120 MeV
o particles at §.,~0° favour an almost pure L=0 excitation at E° = 14.95 MeV
(Sexp. = (1171 27)% EWSR) and an L=2 excitation at E' = 12,66 MeV
(Sex. = (87 £27)% EWSR) in better qualitative agreement with the present work.
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Fig. 3. “*Sm(a, o)L, = 115 McV, broken SU(3) symmetry; ¢ : expt. data at £= 12
MeV from ref."¥; ¢ : expt. data at E* = 15 MeV®¥; L=0 (9% EWSR) + L=2
(99% EWSR); ..... L=0(91% EWSR).

While the experimental situation is not completely clear, mainly for *Sm, the nuclear
model needs to be improved by going beyond the one-boson approximation and replac-
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ing the adopted quadrupole - quadrupole interaction of eq.(5) with the more general
form of eq.(3), susceptible to solid microscopic interpretation. We expect, in that case,
to get a deeper insight into the structure of isoscalar resonances not only for deformed
nuclei, where the preliminary calculations look encouraging, but also for transitional
nuclei, which can hardly be treated by any theoretical model.
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