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ABSTRACT

A review is presented of the perturbative, variational and functional approaches
to the nuclear response functions. The charge and spin (both transverse and longitu-
dinal) responses to electromagnetic and hadronic probes are ezplored. The relativistic
and subnucleonic aspects of the problem are also shortly addressed.
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1. INTRODUCTION

In this report we shall be concerned with the response of the nucleus to an external
probe. This topic “stricto sensu” would cover essentially the whole of nuclear physics
and one is thus forced to make an “a priori”selection of the themes to be treated:
our choice will be largely focussed on nuclear physics at intermediate energies.

Of course, even in this restricted sense, we have no pretence of offering a complete
presentation of the subject; rather we shall deal with some aspects of the nuclear
responses which, in our view, illustrate the richness of the field, what have we learned
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in exploring it and where do the problems confronting us lie. Such an approach
is obviously bound to reflect our own experience and also our general conceptual
attitude toward this area of physics. This is reflected in the attempt of casting the
formal treatment of the nuclear response functions not only in the frame of the old,
but also of the modern Quantum Field Theory (QFT).

For the future developments of nuclear physics and for properly describing the data
which will be supplied by the next generation of accelerators, it appears necessary
to utilize a theoretical framework encompassing the structure of the nuclear con-
stituents beyond the one of the nucleus itself. Indeed, by exploring the nucleus with
larger and larger energies it has gradually been realized that, at the level of nuclear
structure, nature works on a more microscopic basis of what it has been convention-
ally assumed in dealing with the low energy nuclear spectra. As a consequence the
traditional distinction between particle and nuclear physics appears more and more
obsolete.

Accordingly this report is organized as follows. In Section 2 the general formalism
of the linear response theory is outlined in the functional framework.

In Section 3 we discuss the perturbative approach to the polarization propagator II
and, shortly, a few aspects of the variational one, both for infinite nuclear matter

and for finite nuclei.

In Section 4 we shall deal with the nuclear response to an external electromagnetic
field, considering the charge longitudinal as well as the transverse response. Also
the role of the meson exchange currents (MEC) will be illustrated.

In Section 5 the nuclear responses to hadronic probes will be investigated, the em-
phasis being on the "surface RPA” (random phase approximation) approach.

In Section 6 we shall be concerned with the relativistic aspect of the nuclear response
and we shall extend our investigation to the so—called EMC and cumulative effects.
In this connection the relationship between the nuclear and the nucleon structure
functions (the alternative name for the response functions) will be discussed.

Finally, in Section 7, we shall address the path integral formulation of the nuclear
response theory. In our view this method offers the best perspectives to obtain
a consistent description of how the nuclear system responds to an external probe,
especially in order to fulfill general requirements as gauge invariance and relativistic
covariance.
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2. GENERAL FORMALISM OF THE LINEAR RESPONSE THEORY

In this section we shall treat the response of the nucleus to an external perturbation.
If the latter is assumed to be weak then a linearized theory is both adequate and
workable. To build the framework of such a theory let us start from a nuclear
hamiltonian (without specifying whether it is relativistic or not, expressed in QFT
or in potential theory) with the associated eigenvalues equation

HI'(/',, >= Enln > . (2'1)

We now let the nucleus to be coupled with a "classical” external field ¢(z) (or, in
general, with a set of external fields) carrying some bosonic quantum numbers and
vanishing sufficiently rapidly at infinite times. Then the time evolution of the system
will be ruled by the new hamiltonian

B9 = i+ [de i(e)é(e) (2.2)

where z is a four-vector and the nuclear degrees of freedom are embedded in the
operator j(z), expressed in the Heisenberg picture.

The actual form of j(z) obviously depends upon the problem one deals with. Thus,
e.g., for the response of the nucleus to an external pionic field, then @(z) will just
be a classical isovector field and the axial isovector density of the nucleon

ja(z) = ip(z)1s79(2) (2.3)

will be the one to be considered (eventually in the non-relativistic limit). For the
response to an electromagnetic field then ¢(z) will coincide with the standard four-
potential A, and j(z) with the nucleonic vector current, namely

iule) = B (2) (2.4)

or with the corresponding non relativistic version. Note the use of a " to indicate
quantal operators in order to avoid confusion with classical quantities. For the
Hamiltonian (2.2) the evolution operator is

Uy(t,t) = T exp {—i /t 'td:co / dx j(m)¢(m)} (2.5)

T being the chronological product and the subscript ¢ reminding the functional
dependence of the evolution operator upon the external field.
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Now, although Uy(t,t') embodies the whole physics concerning the nucleus, including
its interaction with an external probe, and its knowledge is sufficient in deriving the
linear response theory, we prefer, for the same purpose, to utilize the generating
functional

Z[¢] =< ‘I’o|U¢(OO,—OO)|‘I’o >, (2.6)

the expectation value being taken in the exact nuclear ground state.
The physical content of Z[¢] is transparently displayed by its functional derivatives

with respect to ¢ (more exactly, by the coefficients of its Volterra expansion), which
read

2|, = i < lita)l 20 > 25)
_b-_zﬂ(L = (—1 2 Az)3
6¢(z)5¢(y)|¢=o = (—1)° < @o|T(j(=)i(¥)]| %o > . (2.9)

Thus the first functional derivative just yields the mean value of j(z), the second
is closely connected to the well-known polarization propagator and the third one is
related to the three-particle Green’s function.

Concerning the polarization propagator we remind that it is usually defined with the
term < ¥o|¥p > in the denominator, for the purpose of cancelling the disconnected
(divergent) diagrams in the perturbative expansion. The same goal is achieved in
the generating functional framework via the introduction of the new functional Z.
defined as

2(4] = exp {iZ.[4]} (2.10)

which generates connected diagrams only (hence the subscript c) and obeys the
relations

Z[0]=0 (2.11)
824l < Woli(z)|¥o >
60 |, <Wol¥> (2:12)
_8?Z9] | _ ] < lTl(=)i)] % >
66(=)86(v) |, _, < To|T >

_ < ali(@)|%o > < oli(y)| %o > } (2.13)

< Uo|¥o > < Uy|To >
By introducing then the standard current deviation operator:

(o) = i(e) - <ol lZe> (214)
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it is an easy matter to verify that (2.13) can be recast as to exactly reproduce the
standard form of the polarization propagator, namely

82 Z.[¢] _ < %o|T(3(=)3(9)]| %o >

66(2)00(v)|,_, TS T > = ~Ii(z,ylj)- (2.15)

The physical meaning of II, the fundamental theoretical tool to deal with the nuclear
responses, is best illustrated by exploring how the average value of an operator (in
the present case j(z)) is altered by the presence of an external classical field, which
we assume to be weak. Then the expansion

< Bli(e)lEo > _ < Boli(z)12o >,
< ¥o|¥o > < To|To >  lg=0

§ < ‘Iolj(:l:)l‘yo >
+ [ d
/ Y56(y) < TolTo > |¢=o

=< 3(2) >|yg + [ Ay Tz 411)00) + O(4) (2.17)

$(y) + O(¢%) (2.16)

is justified and transparently shows that the small fluctuations of the expectation
value of j(z) around its unperturbed value are indeed described by II.

Furthermore, once the latter is known, one can derive in the context of the linear
response theory the inelastic inclusive cross section for the scattering of an external
probe off the nuclear target. To illustrate this result, sometimes referred to as the
fluctuation—dissipation theorem, let us consider as an example the case of the pion,
assuming the following interaction Lagrangian

Lr=igP(z)ysT(z) - $(z) = 934 - & (2.18)

Then the total inclusive cross section for absorbing a pion with momentum q on a
nucleus, at the lowest order in the coupling constant g, reads

Tincl = 27"92 Z| < ©ol7a(a)|¥n > |25(En — Eo — wg) (2.19)

with wg = 1/¢% + m2 ( the occurrence of 7 4(g), instead of 4(g), the Fourier trans-
form of (2.3), reflects the absence of elastic processes). Now II, in momentum space,

can be cast in the form

I(g,w) = < Tol3a(q) 34(9)| %0 >

1
w—H+ Ey +1in

1
+ < Yo7 = ] T > 2.20
Bl T F T p 2.T]JA(Q)I 0 (2.20)
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and the Lehmann representation of the first (retarded) term of the above equation

reads \
_ 1< Bol3a(0)|¥n >
Mret(g,w) = Zn: o Eot B (2:21)

Hence, since the advanced part of (2.20) is purely real for w > 0, one immediately
finds the connection

2
Tinel = —g?ImII(q, wg) (2.22)
between II and the cross section.

This procedure holds valid in general for absorbed particles on and off the mass shell
(the latter case corresponding to a photon emitted by an electron or a pion emitted
by a proton or a heavy ion). Obviously, for the situations corresponding to the
exchange of a virtual particle, the amplitude < ¥o|7(¢)|¥» > should be implemented
with the contribution arising from the vertex associated with the external probe
and from the propagator of the exchanged quantum. This turns out to be basically
disconnected from the nuclear dynamics in the non-relativistic regime and for not
too strongly interacting probes. Accordingly, the formula

2
Tincl = —UO(Q1wq)g;IrnH(q,wq) (223)

can be used with og, a real function in principle under control, embodying all the
informations concerning the non-nuclear part of the cross section. Unfortunately
relativity complicates such a picture and strongly interacting probes require as well
a more elaborate treatment (these points will be more closely examined in the Sec-
tions 5 and 6).

In general the linear response theory can be safely applied to the cases where the
nucleus absorbs one particle only: in this case the nuclear responses are fully en-
grained into the polarization propagator. If more than one particle is absorbed then
linearity is lost and higher order Green’s functions are needed to properly describe
how the system has been perturbed by the coupling with the strongly interacting
probe.

3. CALCULATION OF II

In this section we address the problem of the actual calculation of the polarization
propagator II. First we consider nuclear matter whose simple geometry (reflected
in the translational invariance of the system) substantially helps in simplifying the
calculations. It becomes thus possible to reach a high degree of sophystication in
the treatment of the polarization propagator I, both in the perturbative as well as
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in the variational framework, hardly obtainable in the case of finite nuclei. We shall
deal with the latter in the second part of this section.
3.1 Nuclear Matter
To start with let us consider the Fermi gas, a system characterized by a single

physical parameter, namely the Fermi momentum k.. The associated polarization
propagator reads (see for instance Fetter and Walecka, 1971)

M°(q,w) = —% / d*%Go(k + q)Go(k) (3.1)

and the non interacting single particle Green’s function is

O(k] —ke) | 6(ke — [KI)
ko —wic +1in ko — wk — i1

where wy, = hk?/2M (k stands for a four momentum and M is the nucleon mass).
Upon integration one obtains for the imaginary part of (3.1) the expression (Alberico
et al., 1989)

M o0
Il®(g,) = - /W dkkO(ks — £)0(jq + K| — ke)

_ Mk?® (2Mw .
B _87rh'~’q{ hik? O(w)o(1 — Ynr — EH
R B
where ) l(ﬂ—lﬂ g) o, )
T ke \hg 2/ ke (3.3a)

will be later referred to as the non-relativistic scaling variable, constrained by the
limits:!)
1< 2 <. (3.3b)

It thus appears that
i) even for a non—-interacting system like the Fermi gas, II° embeds correlations of
statistical nature among the nucleons (referred to as Pauli correlations),

1) The scaling variable has been originally introduced by West (1975) with the
letter y, which we shall mantain in the non-relativistic responses.
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ii) for ¢ > 2ke, the quantity ¢ImII®(g,w) is no longer a function of momentum and
energy separately, but only of the single variable v,

iii) physically y corresponds to the minimum momentum a nucleon can have inside
the system without violating the energy conservation.

By proceeding further, one faces two problems:
a) which interaction should be switched on,
b) which theoretical framework should be used.

In this paper we will not dwell on point a): we shall simply utilize effective or
realistic (and meson carried) NN interactions whenever necessary, referring to the
literature for critical discussions. Now, instead, we tackle point b) by considering
perturbation theory.

The general perturbative scheme

In first order six Feynman diagrams (displayed in Fig. 3.1) are contributing to the
polarization propagators. They correspond to the direct and exchange self-energy
dressing (a,b,c and d) and to the direct and exchange first—order fermion—fermion
interaction (e and f). When iterated up to infinite order these diagrams build up
the Hartree-Fock (HF) mean field and the random phase approximation (RPA)
correlations, respectively. Noteworthy, the seeds of these two key elements of the
nuclear responses are the only ones appearing in the first order.

o) o

C

O ¢’ O

Fig. 3.1 — Diagrams representing the polarization propagator II in the first—
order perturbation theory.
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Going to second order, the proliferation of diagrams becomes impressive as we shall
see in the next subsection. Thus the perturbative approach, already on shaky ground
since a small expansion parameter is missing for a dense strongly interacting many-
body system, does also seriously challenge even the present days computational
capabilities.

The idea is then to sum up infinite classes of diagrams and this is done for the already
mentioned HF and RPA frameworks through the corresponding well-known equa-
tions, and for the ladder diagrams through the Bethe-Goldstone equation. Thus,
given a two-body realistic nucleon-nucleon (N V) interaction, one could, in princi-
ple, account for the mean field (HF), long (RPA) and short (ladder) range correla-
tions in the nuclear responses.

To illustrate the virtues and the limitations of these approximation schemes for the
nuclear responses it is convenient to consider the particle-hole propagator

< Qo|T (D (22)brral(e Bl (24 brs(25)} To >
< ‘I’ol\ro >
- Gaﬁ(zlyzZ)GG‘y(zi)ZIZ)’ (3'4)

which is simply linked to the polarization propagator through the relation

ph T A
Gaﬁ,q’&(zl’zz’wl’ZZ) =

I(z,z') = %G‘;‘;ﬁﬁ(z,z;w',m') (3.5)
in coordinate space and
i [ d'p d%k
I(e) = 3 /W(z_w)—‘* GPh ok + g, k;p + ¢,P), (3.6)

in momentum space. Again the denominator in (3.4) is just for the purpose of
cancelling disconnected diagrams and G is meant to be the ezact single-particle
propagator.

Now perturbation theory allows to write the following general expression for the
polarization propagator

i [ d

I(g) = —3 _(51)7_4 {Gaa(P + ¢) Gpa(p) (3.7)
i [ d%

3 WGM(P + 0)Gxa(D)Taprw (P + &, k52 k + 0)Gu(k)Grp(k + q)},

in terms of the fully reducible four-points vertex function I' and of the single-particle
Green’s function G (here and in the following indices denote spin—isospin variables).
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Fig. 3.2 - Graphical representation of eq. (3.7) for the polarization propagator
in momentum space. The arrows show the four-momentum flow.

Equation (3.7) is diagrammatically illustrated in Fig. 3.2. Therefore the calculation
of II is based on the calculation of ' and we shortly outline here how the evaluation
of the latter can be achieved.

In lowest order I' merely corresponds to the bare direct and exchange N N interaction
according to the formula

TS0t (PyP13 P2 P+ P1 = P2) = Eaxt B U(p — p2) — & S U(p2 — 1) (3:8)

where, for the sake of simplicity, a spin-isospin independent NN interaction U is
assumed.

To proceed further it is important to realize that the four points of I identify in
fact three different channels (see, e.g., Blaizot and Ripka, 1986), namely a particle—
particle (I''?) and two particle-hole ("% and I''4) ones. More precisely I''? corre-
sponds, in lowest order, to the bare NN force, and, in general, it includes all the
diagrams describing the NN interaction irreducible with respect to the cutting of
two particle propagation lines. In other words a given diagram contributing to I
is irreducible when it cannot be split into a part containing the lines {1,2} and a
part containing the lines {3,4} only. Analogous definitions hold as well in the other
two particle-hole (p—h) channels.

On the basis of this classification, in each channel an equation of the type
I =TI —T“GGT (3.9)
can be shown to hold valid. The solution of (3.9), for a given perturbative approx-

imation to I, yields IT when inserted into (3.7). The I' thus obtained turns out,
however, to violate basic requirements of the theory, e.g. the antisymmetry.
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To avoid such a shortcoming three coupled equations should be introduced, namely
r'2 =¥ -r3GGr - TGGT
P3=PN—P“GGF—%F“GGF (3.10)

1
ﬂ4=rN—r”GGr—§r“GGn

I'N being the set of the diagrams irreducible with respect to all the three previously
defined channels (in other words I'"V represents the intersection of the ensembles of
the diagrams I'*7). It can then be proved that the simultaneous solution of (3.9)
and (3.10) (hard to obtain as it might be) would provide the correct, symmetry
respecting, I'. The latter, inserted into (3.10), would in turn yield the exact nuclear
response.

But in addition one can prove that any perturbative approximation to the ensemble
TV leads to a I still preserving the basic symmetry requirements of the theory: the
equations thus obtained are commonly referred to as “parquet equations” (Jackson
et al., 1982).

An alternative path to the evaluation of the nuclear responses resorts directly to the
integral equation, originally derived by Galitskii and Migdal (Galitskii and Migdal,
1958; Pines, 1962), for the p—h propagator

GP s(k+¢,k;p + ;) = —Gary(p + 9)Gip(p)(27)*6(k — p) (3.11)

i d*t
+ £ CGar(k + 0)Gup(k) /WI‘}&',W(’“ +a, kit + g, t)GE, s(t+ 6, 5P + ¢,P)-

Note that I''3 is precisely the same quantity appearing in the parquet equations
(3.10) and that, beyond (3.11), two other integral equations can be established for
the two—fermion Green’s functions in the channels {12} and {14}.

A common and simple approximation to (3.11) retains the lowest order for T2 only
(i.e. the bare p-h interaction) and in addition neglects the exchange term. Utilizing
then the single-particle Green’s function G in the HF approximation, (8.11) reduces
to:

GPs(k + 0, ks p+ ,p) = ~Gay (p + 9)Gi5 (p)(27) 8(k — P)

d*t
GHE (k + g)GYE (KYURND (q) [ 7oy Gon?s(t + 4,2 + 4,P)
o ( ¥

2 ) '
(3.12)

i

3
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where the superscript (r) reminds the ring structure of the diagrams summed up by
the above equation.

By integrating over the variables k and p, according to (3.6), one finally arrives at
®(q) = I (q) + T (q)U()TT")(q), (3.13)

ITHF being the HF polarization propagator. The above (3.13) is the well-known
algebraic (for nuclear matter) equation for the polarization propagator in the ring
approximation, which is frequently exploited to get an orientation on the nuclear
responses to external fields.

The second order polarization propagator

A comprehensive classification and treatment of the diagrams contributing to
II in the second order of perturbation theory has been recently carried out by De
Pace and Drago (1989). Without entering in details, we simply illustrate here the
second order contributions of relevance for the nuclear responses closely following
the analysis of these authors. Indeed there is a growing consensus on the importance
of such terms in shaping the nuclear response.

Fig. 3.3a - The Feynman diagram F—(A) generates the six topologically inequiv-
alent Goldstone diagrams (a—f). In the latter the arrows indicate par-
ticles and holes.

Apart from the ones already included in the HF and RPA treatments, second order
diagrams arise from the first term in the r.h.s. of eq.(3.7) via the insertion of



-13 -

the second—order self-energy on the fermionic propagation line. One finds that six
Goldstone diagrams are thus generated from the Feynman diagram F—(A): they are
shown in Fig. 3.3a. Their physical significance is transparent: (a) and (b) describe
NN correlations in nuclear matter, (¢) [(d)] the second—order dressing of the particle
[hole] propagator (which of course is not embodied in the HF framework) and (e)
and (f) the influence of the correlations on the nucleon self-energy.

We consider next the second-order contributions stemming from the second term
in the r.h.s. of (3.7). In order to classify them one should realize that five (and
only five) diagrams (and as many exchange-ones) contribute to I' in second-order.
Some of them already enter in the antisymmetrized RPA, others account for the
medium corrections to the T NN vertex (e.g. for an interaction carried by the pion).
Those expected to play an important role in the many-body response functions are
generated by the Feynman diagrams F-(B), F-(C) and F—(D) of Fig. 3.3b, 3.3¢c
and 3.3d, respectively.

N, Q0 Qo

70 0@

Fig. 3.3b - The Feynman diagram F-(B) generates the five topologically in-
equivalent Goldstone diagrams (a—e). In the latter the arrows indicate
particles and holes.

Five Goldstone diagrams, displayed in Fig. 3.3b, stem from F-(B). Their physical
significance is again transparent: (a) accounts for NN correlations with the probe
linked to two different fermionic lines, whereas (b) and (c) strongly reflect the inter-
ference between the p~h and the 2p—2h sectors of the nuclear excited states; finally
(d) and (e) are well-known to provide a screening of the p-h interaction.
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Fig. 3.3c - The Feynman diagram F-(C) generates the eight topologically in-
equivalent Goldstone diagrams (a~h). In the latter the arrows indicate
particles and holes.

The eight Goldstone diagrams (Fig. 3.3c) arising from F—(C) still describe NV
correlations [(a) and (b), but with the probe linked to different bubbles], and p-h,
2p-2h interference [(c) and (d)]. However new dynamical elements appear in the
diagram (e), (f), (g) and (h), which are known to play an important role in describing
the short range correlations in the electron theory of metals. Unfortunately the role
they play in the nuclear response has not yet been ascertained to our knowledge.
The same physics is essentially embodied in the five Goldstone diagrams associated
with F—(D), which are displayed in Fig. 3.3d.

It thus appears that the second-order perturbation theory brings into play new
important features of the nuclear responses, beyond the standard mean field and the
RPA correlations. As we shall see in Section 7, these new elements also naturally
arise in the loop expansion for the polarization propagator provided by the functional
approach. The latter has, however, the great merit of grouping them into classes
according to the prescriptions of the loop expansion, which thus provides a guide
for the diagrams one should keep in order to achieve a consistent treatment of the
nuclear responses. The conventional perturbative framework, instead, is obviously
untenable since it is based on the order dictated by the coupling constant of the
strong interactions.

Yet, as already mentioned, several calculations have demonstrated that second order
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Fig. 3.3d - The Feynman diagram F—(D) generates the five topologically in-
equivalent Goldstone diagrams (a—e). In the latter the arrows indicate
particles and holes.

perturbative diagrams do play a most relevant role in the nuclear response, hence
the necessity of accounting as accurately as possible for these type of contributions
in a well-founded theoretical scheme.

The variational approach

As for the binding energy, also for the nuclear responses an alternative approach
to the perturbative one has been developed with variational techniques. Its modern
version relies on the so—called CBF (Correlated Basis Function) method (Feenberg,
1969; Clark et al., 1979; Clark and Krotscheck, 1983; Fantoni, 1984; Manousakis
and Pandharipande, 1986), which in fact attempts a linkage of the variational and
of the perturbative theories. We briefly revisit here the method, closely following
the presentation of Fantoni (1988).

The essence of the scheme lies in the use of the orthonormalized many-particle,
many-hole correlated states (ONCS)

1
lpl ...pn,hl ...hn) = \/_ﬁ(SHFij)lpl . ..pn,hl ...hn >FG (314)

where |p; ... Pn, h1 ... h, >pg is a n—particle, n-hole Fermi gas state, N anormal-
ization constant and the two—particle correlation operator,

Fyy =Y fP(ri;)07(i4), (3.15)
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is built out of the eigth two-body operators

Opzl's(ij) =1; 0;-05 Ti-Tj (U'i . ﬂ'j)(‘l‘,,; . Tj); Sij;
Sij(ri-T5); L-S; L-S(ri-7;) (3.16)

Si; being the tensor operator and the S in (3.14) the symmetrizer of the product

I1 Fij-

Without entering into the heavy formal development of the theory, for which we
refer the reader to the literature quoted by Fantoni (1988), we recall that, while the
variational aspect of the latter is embodied in the function Fjj, chosen in such a way
as to minimize the nuclear matter binding energy, the “perturbative” aspect of the
method relies on the splitting of the hamiltonian into an unperturbed, Hyp, and an
interaction, Hr, term defined by the equations:

< m|Hp|n >= < m|H|m > dmn = Humbmn (3.17a)
< m|Hiln>= < m|H[n > (1 = 6mn) = Hmn, (3.17b)

|m > being a generic ONCS and the matrix elements being calculated with the
FHNC/SOC (Fermi Hypernetted Chain) technique (Rosati, 1981).

To calculate the imaginary part of the polarization propagator (here, for the sake of
illustration, we shall consider the charge longitudinal channel) one starts from the
formal expansion

. 1 L "
Iml(g,w) = ) (-1)" < OlpIHo By — (HIHO “Eo-w- in) Al >
" (3.18)

which, in the CBF framework, can be cast into the form:

Imll(g,w) = ZXS(i)GO(i)XO(i) =Y X3(6)Go(i)Hi;Go(5) Xo(dy + ..., (3.19)

ij

pr being the nuclear charge operator. In turn, (3.19) can be compactified by means
of the following Dyson-type integral equation:

X (i) = Xo(3) - Z Hi;Go(5)X (5) (3.20)

J

Imll(g,w) = E X ()G ()X (3). (3.21)

In the above X (i) =< 0|pL}i >.
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The various perturbative contributions are then obtained by including p-h, 2p—2h,
etc. ONC states, derived by solving eqs. (3.17), in the sum over the intermediate
states appearing in the expansion (3.19). It is clear that a variety of approximations
are thus possible in dealing with this theoretical framework. For example, by set-
ting X () = Xo(4) and restricting the states |¢ > to the p~h sector, one recovers the
“zeroth—order” polarization propagator. The latter, however, has the great advan-
tage of accounting, already at the level of zeroth—order perturbation theory, for the
correlations embedded in the CBF states.

Fig. 3.4 - Correlated basis diagrams contributing to the response func-
tion. The circled crosses and the dots denote the vertices Xp
and the non-diagonal matrix elements H;;, respectively.

If, instead, the equations (3.20) and (3.21) are fully solved within the p-h sector,
then one recovers a RPA-type (ring) polarization propagator, which again engraines
the CBF correlations. Finally the inclusion of 2p—2h ONC states allows to account
for more complex dynamical correlations (see Fig. 3.4) whose physical meaning is
perhaps less transparent than for the corresponding diagrams of perturbation theory
always because “correlations” enter here both at the variational and at the pertur-
bative level. However, as already remarked in the previous section and as we shall
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see in Section 4, these 2p—2h diagrams do appear to play an important role in the
charge response.

On a general ground, for the variational approach it remains to be faced the problem
of getting the binding energy of nuclear matter at the correct density, but this, of
course, is also a problem for perturbation theory. What one would desire more is
the extension of the method to treat interactions effectively carried by mesons, since
they appear more in touch with the way nature works at the microscopic level.

3.2 Finite Nuclei

As a first step toward the evaluation of the polarization propagator in finite systems,
we introduce here the semiclassical approximation (Schuck, 1984; Stroth et al., 1984).
Indeed it allows to account for the finite size of the nucleus and, in spite of its
simplicity, is fairly accurate for not too low momentum transfers.

To start with, notice that one can write the independent particle IT in coordinate
space as follows:

Ho(rl,rz;rl',rz') =< r1r2’[H°(H1,H2)|r1 'I‘z > (3.22)
with

pr — Hy)0(Hy — pr) — 0(pr — H1)0(Hz — pr)
hw — H]_ + Hz + iT] ’

0
n°(H,, H;) = ( (3.23)
H; being the single particle Hamiltonian within a chosen shell model and pr the
chemical potential (Fermi energy) of the nucleus.

Now the Thomas-Fermi limit of the single-particle density operator p = 6(ur —
H) is simply obtained by replacing the quantum hamiltonian H with its classical
counterpart H¢. Accordingly the semiclassical version of (3.23) is obtained by the

replacement:
2

H; = Hf = 2”—]:/! + V(R:), (i=1,2), (3.24)

R; being the distance of the i—th particle from the center of the nucleus.
This leads to a II® which corresponds to the Wigner transform of (3.22) with respect

to the particle and hole variables. In practice one gets the semiclassical expression
of TI° via the prescription:

R
QI(q,w, ke) — 47r/0 dR R*TI(gq,w, k=(R)), (3.25)
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Q being the nuclear volume. Notably II depends upon the radius R through the
nuclear density (i.e., through k). The latter becomes position—dependent, according

to the equation:
k*(R). k=*(0)
2M ‘(R) 2M*(0)

which keeps the chemical potential constant at any point of the nucleus, and the
normalization condition:

+V(R) = +V(0), (3.26)

/ d*RO(R. — R)p(R) = / d*RO(R,. - R) (2 ) - = 4, (3.27)

which fixes k(0). In turn the upper limit of integration is set by the requirement
k-(R.) = 0. (3.28)

It is worth pointing out that the non-linear problem associated with the set of
eqs. (3.26)—(3.28) must be self-consistently solved.

Expression (3.25) for the polarization propagator is shown (Stroth et al., 1984) to
correspond to the lowest order in the % expansion of the Thomas—Fermi theory and
it may also be referred to as a “local density approximation” to II as far as the
excitation operator (i.e. the external vertex) is a local one. Stroth et al. (1985) also
proved that this approximation compares favourably with an exact calculation at
least when, at sufficiently high momentum transfer, the shell effects are less relevant.
We notice that V(R) is a mean field which may be either deduced from a realistic
Hartree—Fock calculation or somehow parametrized, e.g. by means of a Wood-Saxon
well. Finally, in (3.26) an explicit R-dependence of the effective nucleon mass is
usually introduced to account for the well-known density dependence of the latter.

In order to deal with an ezact finite nucleus calculation, let us focus on the nuclear

response to a pionic field [see eqs. (2.19) and (2.20)]. The corresponding polarization
propagator in coordinate space (with explicit isospin indexes) will read:

)
T p(xt, %) = =3 < Lol T{T%, (1), (x'#)} ¥o > (3.29)

where the second-quantized axial current operator is expressed in terms of the field
operators (in Heisenberg representation) as follows:

T xt) = [ardli(s, 03505 - y)dar.0)
=Y < alfa@)IB > alra(ama(t). (3.30)
of
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In the above
< a3 (x)|B >= / dyl(y)53(x - ¥)s(y) (3.31)

are the matrix elements of the current, evaluated in the first quantized scheme,
between the single—particle states 9,(y), and &t, @ the anticommuting fermion op-
erators.

Assuming now a pseudovector 7NN coupling the current j4 (in coordinate space)
will read:

ja(x-y) = T“(—;r? / dq(e - q)e~ (=) (3.32)

7°(a = 2,y,z) being the Pauli isospin matrices of the nucleon. Furthermore the
Fourier transform of (3.29) in momentum space can be written in the form:

1 @ .
I 5(9,q'5w) = > < alig(a)lB >< 7lia(=a)lE > Apa,ve(w), (3-33)

aps
with
Mows(e) =857 [S Tolalap|Tn >< nldhas|To >
paye(w) = ;[ hw — (En — Bo) + i1
< \1:0|a1,a6|'11n >< ‘I’nldl&pl‘l’o >] (3.34)
hw + (En — Eo) — i
and
<aliz(@lp>=i [dyplz)r(e- @ o) (3.35)

The polarization propagator (3.33) can be now evaluated, e.g., in the independent
particle approximation, which amounts to replacing |¥, > with Slater determinants
of single-particle wave functions, denoted by |#, >. For the sake of illustration let
us consider the harmonic oscillator (HO) basis for spin 1/2, isospin 1/2 particles:

¢£{0(r) = R o1, (7)Y mo () XsaMtas (3.36)

with eigenvalues €,_;, . The intermediate states |$, > will be p-h states of definite
angular momentum [, spin o (coupled to a total angular momentum J) and isospin
T.

After some algebra one obtains:
2J

+1 . . -
I3 (a0, q'5w) = Gap ) et AICRLY) > an[l%(g, ¢'s @)l age (3.37)
7 w
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where
. 1 1 '
0 . = Jl _ JUsg 1
[IIJ(q) q ,LU)]u ; ph(q) [hw _ (Ep _ €h) + 17’ hw + (Ep — fh) _ ZT]] Qph. (q )7
(3.38)
I(0) =< Gpini TNIo3 T > 8,0(=i) (=) 4[m(2l, + 1)(20 + 1)/?
Ll
Iﬂ n P 9 .
Iln,l,n;.l;.(‘]) = q/d’r'r‘zjl(q'l‘)Rnpzp(T)Rnhz,,(r) (3'40)
and
LIl
ay = (J010}0) = (—1)'\/21 +1 (OPOhO ) . (3.41)

In the above the Py are Legendre polynomials and j;(z) the spherical Bessel func-
tions. Notice that ph is a shortcut for (nplyjp, alnjn). The imaginary part of the
propagator (3.37) is shown in Fig. 3.5 and compared with the same quantity in
infinite nuclear matter.

Fig. 3.5 - The quantity —ImIIJ 3(q,q;w)/A, from eq.(3.37) at ¢ =
1.27fm™! is compared with the free nuclear matter propa-
gator.
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The RPA expression for the polarization propagator (3.33) can be naturally derived
utilizing the random phase approximation for Ags,ys(w). The latter obeys the RPA
equation

AZPA (W) = Afy 1s(w) + E AS an(@) < An7HV]op™ >p AFS (W), (3.42)
Anop

where < A~ '|V|ap~! >p is the direct p-h matrix element of the NN interaction
(as in (3.13), we actually neglect, here, antisymmetrization) and

M) = st [, g)f(el:) +6z)77 h%i?eg)—g(j?,)_—F z')n’ (343)

F denoting the Fermi level.

By inserting (3.43) into (3.33) and performing the usual multipole decomposition,
one ends up with the RPA equations for the quantity [{1;]ir, which enters into the
full RPA propagator as in (3.37):

(5P 4(q,¢'sw)lur = [115(g, ¢'s @)]ue (3.44)
+ (571;_)3"/0 dkk? %;[Ho(q’k s ) luty (U (kg1 [TL554 (R, s )it

where [Us(k)]i,1, is the corresponding multipolarity of the full p-h force entering
into the channel selected by the external probe. We will come back to this point
later, in dealing specifically with the spin—isospin responses.

Equations (3.44) are a set of integral equations, coupled or not depending upon the
nature of the force Uy. The corresponding solution has been obtained both within a
certain approximation scheme (Alberico et al., 1986) which allows to find analytical
expressions, and by numerical methods (Ichimura et al., 1988; De Pace et al., 1989).
It has also been extended to account for the continuum of states above the Fermi
level.

4. THE NUCLEAR RESPONSES TO AN EXTERNAL
ELECTROMAGNETIC FIELD

The double differential cross section, in the laboratory system, for inclusive electron
scattering from nuclei, is usually written in the form:

d’c

e =ou{(F) Beaw) + (5 |+ ) Brtaw)}. (41
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Here an electron with incident 4-momentum K* = (¢, k) is scattered through an
angle 6 to 4-momentum K'* = (¢',k') and Q* = (K — K')* = (w,q) is the 4-
momentum transferred to the nucleus and hence carried by the spacelike (Q* < 0)

virtual photon exchanged in the process. Furthermore, L(T) refers to responses
with longitudinal (transverse) projections of the nuclear currents and the Mott cross

section is given by
acos(6/2) }2
= ——1" 1, 4.2
M {2esin2(0/2) (4.2)

For an electromagnetic current operator J w = (5, ). Accordingly the longitudinal
and transverse responses can then be expressed as (Alberico, De Pace et al., 1988)

Ri(qw) = (é—i)z{R(QQ;qw)

2 w? ]
- Fw z —qquz(QJ; qw) + o Z —q—lq%—Ru,(JJ; qw)} (4.3)
1 u

and

Rr(q,w) = Z( w = -q-lq%'-)Ru'(JJ; qw) (4.4)
1w

where “Q” and “J” are used to label how the responses contain the bilinear combi-
nations of # = 0 and g = 1,2, 3 projections of the 4—vector current, respectively.

The charge—charge (R), charge—current (R;) and current—current (R;:) responses
are so defined:

R(QQ;qw) = 3 6(hw — En + Eo)6qp, < olp!|¥n >< Talp|®e > (4.50)

R(QJ;qw) = Y 8(hw — En + Eo)Sqp,
1 . .
X §{< \IJolJ,TllIJn >< Ua|pl%o > + < \I!olpTI\Iln >< T, >} (4.5b)

and

Ry (JJ;qw) = Z §(hw — Ep + Eo)dq,p.,

1 R R R R
X §{< ‘PolJ,fI‘Iln >< U, |Ju ¥ > + < ‘IJOIJ,TI\IJn >< U\ 01| T >}, (4.5¢)
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In the above |¥ > is the ground state of the system and |¥, > a complete set of
excited states, with energy E, and (in an homogeneous system) momentum p,.

If we restrict ourselves to consider the pure (non-relativistic) nucleonic current in
the non-interacting, symmetric nuclear matter framework then, for example, the
charge longitudinal response becomes:

Rp(q,w) = R(QnQn;qw)

2 2 37I'2A dk hz 2 hz 'k
= @I [ otk - yo(ta-+1d - k)6 (- T - )
wlA
=f2(Q2)3kF3 (—%)Imﬂo(q,w) (4.6)

where we have exploited current conservation (gauge invariance) to reduce (4.3) to
the pure charge—charge response. The form factor f(Q?) takes into account the
finite size of the nucleon: for practical purposes it can be assumed to be the usual
dipole electric form factor Gg(Q?).

The transverse response (4.4), instead, (neglecting the small contribution from the
nucleonic convection current) reads:

h’q 3nfd, 1
R(q,) = 5otz (3 + 2)GH(Q) 5 (

P77 )ImHO(q,w) (4.7)

T
where p1,(,) are the proton (neutron) total magnetic moments (in units of the Bohr
magneton).

Obviously (4.6) and (4.7) can be generalized, not only to include correlated inter-
mediate states, but also other components of the electromagnetic current, which
are present in a nucleus beyond the pure nucleonic one. In particular, the charged
mesons exchanged between the nucleons can couple directly to the external photon,
giving rise to the so—called meson exchange currents (MEC). The latter are, by in-
trinsic nature, two-body currents and naturally induce 2p—-2h excited states, whose
relevance will be later explored.

4.1 The Charge Longitudinal Response Function

The Rosenbluth separation of the experimental longitudinal and transverse response
functions in the energy domain of the quasi-elastic peak (QEP) gave rise to a chal-
lenging problem for the nuclear physicists. Indeed the total response function in
the QEP was previously believed to be accounted for fairly well by the Fermi Gas
Model with a few additional ingredients to explain the experimentally found shift of
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the response peak with respect to the Fermi Gas prediction. Thus, utilizing a Fermi
Gas-inspired model with three parameters (effective mass, nucleon average binding
energy and the Fermi momentum kr) Moniz (1969) succeeded in getting in touch
with the experimental data for a variety of nuclei.

The achievement of the transverse/longitudinal separation drastically changed this
situation, asking for a subtler interpretation of the underlying physics. To analyze it
we first focuss on the charge channel. Here experimental data are presently available
for a large set of nuclei, ranging from 3He to *%®U (Altemus, 1980; Quinn et al.,
1988; Marchand et al., 1985; Dow, 1987; Barreau et al., 1983; Meziani et al., 1984;
Meziani et al., 1985; Blatchey et al., 1986). The main features of the experimental
results are:

1. the charge response considerably varies over the nuclear chart,

2. differences are present even at the level of the isotopes of a given nucleus like,
e.g., *°Ca and *8Ca,

3. for moderate momenta the frequency behaviour of the charge response tends to
be rather flat, but for the lightest nuclei.
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Fig. 4.1 — The experimental longitudinal response function (divided by Z) from
(e,e') scattering in C'?, Ca??, Ca?® and Fe®®, at ¢ = 300 MeV/c. Data
are taken from Barreau et al., (1983); Meziani et al.,(1984,1985).
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The Fermi Gas model is clearly unable to encompass these features, (see, e.g., the
experimental data at ¢ = 300 MeV /c displayed in Fig. 4.1) and accordingly we resort
to the RPA based on the Landau-Migdal effective ph interaction (see for instance
Migdal, 1967)

VPP =Co[Fo+ Flomi-m+Goo1-02+Gom -1y 01 03] (4.8)

where clearly the two first pieces only are relevant for the channel we are interested
in. As we have seen in Sect. 3, for infinite nuclear matter the following expression

_ 1°(g,w) 1°(g,w)
(g,w) = 3 {1 4G, FI(q,w) T 1 - 4CoF'TI(g,w) } (4.9)

yields the ph propagator in RPA. In the above

nih?

Co = e M* (k) |kmbp

(4.10)

(M* being the nucleon effective mass) as prescribed by the Landau theory.

Using (4.9) we can examine the influence of the RPA correlations on the nuclear
responses setting, for simplicity, 7 = F'; then it is immediate to get

m (q’ w)

= 4 - (4.11)
{1 — 4CyFReIl?(q,w)}" + {4CoFImII’(q,w)}

ImII(g,w)

Now, at the top of the peak, i.e. at w = ¢?/2M, the real part of I1°(q,w), which
coincides with its advanced part, is negative, being approximately given (for ¢ > 2kz)
by

0, (g w) & — ;+—q’;—/m (4.12)
As a consequence, for a repulsive interaction F, the denominator in (4.11) is surely
larger than one and accordingly the response is quenched. Moreover the retarded
part of II%(g,w) is negative for w < ¢*/2M and positive on the other side of the peak.
Therefore Rell®,, (¢, w) tends to deplete the response for w < ¢?/2M and to enhance
it for w > ¢?/2M. Thus the RPA correlations induced by a repulsive interaction not
only reduce (quench), but also deform (harden) the QEP and, in addition, they do
not conserve the total strenght. Actually, as we shall see, the physical situation is
more involved of what above outlined, since two different Landau parameters enter
into the longitudinal response.

The problem of their determination however cannot yet be considered fully solved.
Indeed while the repulsive nature of the force in the isovector channel is a well
established fact, a considerable uncertainty remains in the isoscalar one. For instance
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the phenomenological analysis of Speth et al., (1976) yields Fp ~ 0 and F'o ~ 0.65
respectively. On the other hand the Landau-Migdal parameters obtained from the
Skyrme forces [a translation from the particle-particle to the particle-hole channels
for these interactions may be found, for instance, in (Alberico, Cenni et al., 1982)]
turn out to vary quite extensively: for example the values for Fy range between
—0.45 and 0.74 whereas F'q is at least always repulsive. In particular Skyrme III
yields Fo ~ 0.3 and F'q ~ 0.87.
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Fig. 4.2 — Charge RPA responses evaluated in nuclear matter with the force
of Speth et al., (1976) (continuous line), and with the Skyrme III
(dotted line) and Ska (dot-dashed line) interactions. The free Fermi
gas response is also displayed (dashed line). The momentum transfer
is ¢ = 300 MeV/c.

For the purpose of illustration we display in Fig. 4.2 the charge RPA responses cor-
responding to the force of Speth et al., (1976) and to two Skyrme forces (III and
Ska). One can there appreciate how the effective interaction works in reshaping the
independent particle charge response; it is especially remarkable that if o corre-
sponds to an attraction (as in the case of Ska) then a rather flat response might
indeed result (an outcome on which we shall later comment).

Obviously a realistic approach should not treat the Landau parameters as such,
since they are related to relevant macroscopical properties of the nuclear matter and
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moreover should properly deal with the surface of the system, whose important role
is transparently illustrated, e.g., by the comparison of the experimental responses of
12C and 4°Ca shown in Fig. 4.1. It is indeed apparent that the response is strongly
enhanced at low energy for the nucleus with a larger (with respect to the volume)
surface.

We have seen in Sect. 3 that two methods are available to include surface effects
in the formalism. One corresponds to directly evaluate the response for a finite
nucleus in the framework of the continuum RPA using effective interactions like
the Skyrme ones (Cavinato et al., 1984); the other is the semiclassical approach,
which introduces a radial dependence (see Sect. 3.2) for M*, k. and the Landau
parameters. The latter method, although obviously less accurate, has the advantage
of linking more clearly the calculations with the underlying physics.

We thus utilize the polarization propagator II of eq.(3.25) letting k- and the effective
mass to carry an R-dependence dictated, e.g., by a Wood-Saxon potential well.
In addition the effective interaction in the o,7 channel will also be R—-dependent
according to the expression

Vil @) = M@ e B (4.13)

(a g—dependence has also been ascribed to the effective force; unfortunately, at
present, not much is known on the momentum evolution of the parameters 7, F).

Now, the Landau parameters we are interested in are related to the compression
modulus and to the symmetry energy coefficients (Migdal, 1967) through the rela-
tions

3M*(R)

Fo=F'="——"K-1 (4.14)
k2

F(; = F(;)’l = 3]Wk ER) bsymm -1, (4.15)
'F

K and bsymm being R—dependent in a nucleus. In particular, for what concerns the
compression modulus X, one may identify a volume and a surface contribution and,
for 4°Ca, a microscopic calculation based on Skyrme III yields (Blaizot et al., 1976)

Ky =~ 40 MeV , Ks =~ —16 MeV. (4.16)

The relevant point here is that the compressibility is expected to be negative in the
surface region, where the density is very low and consequently nuclear matter far
from stability: nuclear matter prefers indeed much higher densities in order to gain
in binding energy.
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Fig. 4.3 — Radial behaviour of the isoscalar V:,);IO(R) and isovector
Vg;ll (R) p-h interactions in °Ca, as given in eq.(4.13), at
g = 300 MeV.

We may accordingly assume for K the smooth density dependence

K(p) = ap + bp? (4.17)

with a and b set by requiring K(po) = Ky and K(po/2) = Ks, po being the usual
nuclear density well inside the nucleus (R = 0).

For byymm microscopic calculations suggest (Siemens, 1970)
o\ /3
Y
bsymm(p) - bsymm (P_O> (418)

with
boymm = 70 £ 10 MeV . (4.19)
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The behaviour of the effective interaction thus obtained (including the factor A7(g)
on which we shall later return) is plotted as a function of R, at ¢ fixed, in Fig. 4.3. It
is seen that the negative compressibility leads to an effective interaction Vp,’lo nega-
tive too on the nuclear surface and much stronger than in the interior of the nucleus
[remarkably a self-consistent continuum RPA calculation for '%2C provides essen-
tially the same trend (Cavinato et al., 1988)]. As a consequence the contribution to
the nuclear response associated with the surface region will be quite different from
the one arising from the bulk of the nucleus and, at low energy, will be controlled

by the isoscalar force only.

Indeed, just as we have previously argued [cfr. eq.(4.11)] that a repulsive interaction
implies a quenching of the norm and a shift of the peak of the charge response to
higher energies, in the same way the opposite features can be shown to hold (although
to a lesser extent) for an attractive force. Accordingly the surface component of the
scalar-isoscalar effective interaction tends to enhance the low energy side of the QEP.
It is in fact remarkable how such an interaction, whose strength is set by the negative
K s, is not only able to organize a surface collective mode (the breathing mode), but
also strongly influences at finite ¢’s the charge response. As a consequence the latter
turns out to be much sensitive to the actual values of the nuclear symmetry energy
and, even more, of the compression modulus, on the surface, thus reflecting a subtle
balance between volume and surface effetcs.

It remains to be seen whether this picture is sufficient to explain the experimen-
tally observed flattening of the longitudinal QEP. To illustrate this point in Fig. 4.4
some typical longitudinal responses are reported, together with the separated con-
tributions in the T = 0 and T = 1 channel. One sees that while the shape of the
charge response is indeed fairly well reproduced by the RPA theory with the above
discussed values for the parameters, the norm is far from being so.

In connection with the norm two different (and in some sense complementary) inter-
pretations have thus far been offered: the first one simply amounts to introduce more
complicated Feynman diagrams (of course in a many body problem a well defined
criterion for selecting classes of diagrams is always searched for), the other postu-
lates a modification of the nucleon electromagnetic form factor inside the nuclear
medium.

This last possibility stems from the consideration that in the MIT bag model the
quarks are confined inside the nucleon by an external pressure, which may be weak-
ened if other nucleons are nearby, as it happens inside a nucleus. Note that this
swelling of the nucleon can be invoked not only to account for the depletion of the
longitudinal response (Noble, 1981; Celenza et al., 1985), but to interpret the EMC
effect as well (Close et al., 1985; Cleymans and Thews, 1985). To give an example
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Fig. 4.4 - Comparison of the theoretical and experimental charge responses in Cat?
at ¢ = 300 MeV/c (a) and ¢ = 370 MeV/c (b). The theoretical curves are
in semiclassical approximation: the dotted line is the independent particle re-
sponse, the thick continuous line the RPA one [evaluated with the interaction
(4.13) and with the usual e.m. dipole form factor]; also shown are the isoscalar
(dashed line) and isovector (dot—dashed lme) contributions. In (b) the effect of
amodified e.m. form factor (A? = 10.8fm™?) on the RPA response is illustrated
by the thin continuous line.
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of how it affects the nuclear response, we display in Fig. 4.4(b) the RPA charge re-
sponse evaluated utilizing a modified electromagnetic form factor (the usual cut—off
of the e.m. form factor, A = 18.1 fm~?, being replaced by A = 10.8 fm_z). As
previously mentioned, a phenomenological g—dependence of the Landau parameters
has been introduced as well; for details see (Alberico, Czerski et al., 1987).

One sees that, when tested against the experimental data, the swollen nucleon con-
jecture seems indeed to work quite well. Its interpretation however requires a great
deal of caution, because it is not clear which microscopic phenomena are responsible
for the swelling of the nucleon and, moreover, whether the latter should be thought
of in QCD or within the meson theory.

In the mesonic framework it has been suggested (Ericson and Rosa-Clot, 1986) that
an increase of the e.m. radius of the proton may be obtained by including vertex cor-
rections with particle-hole intermediate states. In the language of the polarization
propagator this amount to include the second order perturbative contributions to II
discussed in Sect. 3.1 and displayed in Figg. 3.3. These diagrams indeed span both
the 2p—2h sector of the excited states and the p-h one. An advantage of this scheme,
when compared with the MIT bag model, is that the vertex corrections should be
channel dependent: accordingly the photon would see different radii of the proton
in the longitudinal and transverse channel, a prediction that can be experimentally
tested.

Furthermore, since the 2p—2h excitations have an enlarged response region, as com-
pared with the p-h ones, a significant imaginary part of I127=2% should be present on
the right side of the QEP. Thus, as already remarked, the second order polarization
propagator partly brings in additional strength on the tail of the QEP by spanning
the 2p—2h sector of the excited states, partly it depletes the QEP when it involves
instead intermediate states of the p—h sector. A recent calculation (Co’ et al., 1988)
indicates in fact that the second order propagator induces a further depletion of the
QEP, more pronounced at small energies. The contribution of 2p-2h states has been
also examined in the context of the y—scaling in ref. (Butler and Koonin, 1988) for
large negative y, i.e. well outside the QEP, and it has been found quite relevant.

In this connection it is also worth mentioning the nuclear matter variational approach
of Fantoni and Pandharipande (1986), which appears to be remarkably successfull
in quenching the longitudinal response. This is shown in Fig. 4.5, where the curve
labelled by Ry ¢ clearly displays the reduction associated with 2p—2h ONC states.
These results, however, deserve a few comments: i) the above mentioned 2p—2h are
included via a complex optical potential, which accounts only approximately for
the full complexity of this type of contributions; ii) the important surface effects,
which have been previously discussed at length, are obviously ignored by a nuclear
matter treatment; iii) at higher momentum transfers (say 500 MeV/c) the approach
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Fig. 4.5 — Longitudinal response function of nuclear matter at ¢ = 300 MeV/c,

: evaluated with variational techniques and compared with the exper-
imental data on Ca!® and Ca*® (at ¢ = 290 MeV/c) and U238 (at
g = 300 MeV/c). The error bars are large enough to contain both
the Saclay and the Bates results. [Taken from (Fantoni and Pandhari-
pande, 1986)].

is clearly insufficient to account for the data.

In spite of all these investigations, therefore, we have not yet reached a convincing
solution of the problem of the norm and of the tail of the charge longitudinal QEP.
In the quest for the latter it is of great help to explore these questions also in the
context of the so—called Coulomb sum rule: here they are generally referred to as the
missing strength problem. In this connection it is of importance to shortly revisit
the derivation of the Coulomb sum rule, focussing the attention on the assumptions
lying at its basis.

Let us then consider the longitudinal response to the charge fluctuation operator.
To start with we assume the following form for the operator:

_ < ‘I’olﬁ(:c)]‘I’o >
< Uo|¥y >

(e) = 91 (e) 52 4(2) (4.21)

#(z) =p(=) (4.20)
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which amounts to conceive the nucleon as a pointlike particle, i.e. without an ele-
cromagnetic charge form factor. With this definition for the charge operator we
proceed to evaluate the quantity

S(g) = / Ru(g,w)dw . (4.22)
0
which, recalling the connection between Ry and II, also reads
1 [ o 1 o0
S(q) = —;/ImII""(q,w)dw = —;/Iml'[(q,w)dw; (4.23)
0 0

since the advanced part of the polarization propagator has no imaginary part for
positive energies. The Lehmann representation for II immediately provides

S(a) = 3 1< Lali(@)| %o >I* (4.24)
n#0

where the charge fluctuation operators 5(g) has to be thought of in Fourier transform
and in Schrddinger picture. To proceed further we only need to apply closure and to
explicitly introduce the nuclear ground state, thus arriving at the final, well known
result

S@)=2+2(2-1) [ Fadyexp lia- (x-y)}a(xy) - ZIF@F (425

g(x,y) being the pair correlation function of the protons inside the nucleus and F(q)
the elastic form factor, both normalized to unity at zero momentum transfer. Since
it is conceivable that the pair correlation function in Fourier transform vanishes for

q — oo, we conclude that
lim S(q) = Z. (4.26)
g—oo

This is the Coulomb sum rule. In passing we note that the explicit evaluation of the
pair correlation function is possible for simple models; for example the free Fermi
gas yields

3¢ ¢
S(q) = { ka (1 - 12,%2) for ¢ < 2kz, (4.27)
1 for ¢ > 2ks,
which clearly shows the influence of the Pauli correlations for ¢ < 2ks.

Now the data presently available for the nuclear charge response refer to momentum
transfers presumably still far from the limiting situation (4.26): to assess how much,
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Fig. 4.6 — Coulomb sum rule in Ca*": open circles are the experimental data,
the squares represent the RPA sum rule with the free nucleon e.m.
form factor, whereas the black points correspond to the modified form
factor.

however, it is a very challenging question, also related to the difficulty of disentan-
gling the nucleonic degrees of freedom from the nuclear ones. Indeed the situation
illustrated in Fig. 4.6 clearly shows the fall off of the experimental data due to the
presence of the nucleon e.m. form factor, which we have not included till now in our
considerations.

Assuming, as a working hypothesis, a simple factorization to hold, then the Coulomb
sum rule would read

S
m (‘-’)z = Z. (4.28)
GE(q?) being the Sach’s electric form factor. If we stick to this minimal (but nu-
merically most relevant) assumption, then the experimental sum rule at the largest
measured momentum transfers appears indeed far from the saturation point.

Two possibilities should then be considered: either the frequency integration has
been performed over a too narrow range, so that some strength in the sum rule is
being missed at higher energies, or correlations of some kind strongly influence the
pair distribution function well beyond 2kg.

Concerning the first possibility, we have already mentioned that 2p—2h excitations
give rise to some strength located in the energy region beyond the QEP (of course
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in the space-like region) and the data appear to show that some hard to detect
response is indeed there, but it seems doubtful that this can account for the whole
missing strength.

The second option instead lead us to question whether the strenght is missing at
all. In this connection a correct interpretation of the Coulomb sum rule requires as
a preliminary a discussion of the following important points:

1. Can the original assumption (4.20) on the charge operator be trusted? The
diagrammatic analysis requires that each diagram entering the perturbative
expansion of Il must be multiplied by G%(g?), hence the factorization of the
latter. However this procedure clearly neglects off-shell effects. In fact Gg
is just the on—shell representation of the true form factor which, on the other
hand, also depends upon the initial and/or final momenta of the nucleon. When
inserted into a many body system the nucleon may be off-shell as well and the
factorization (4.28) is likely to break down. One recognizes here the interplay
between the properties of theory in the vacuum (true QFT effects) and the
effects of the medium (many-body effects) and unfortunately a theory handling
at the same level the QFT aspects of a process and its many-body corrections
is not yet available.

2. The NN correlations also asks for a deeper investigation. We have seen in
Sect. 3 the reach variety of Feynman diagrams contributing to the nuclear re-
sponse. We shall return on this issue in the section dedicated to the functional
methods. At present essentially phenomenological calculations have been car-
ried out, for example using the quasi—deuteron model (Ericson et al., 1988),
but we don’t know yet which Feynman diagrams are being parametrized in it.
Also the role of the short range correlations in channels different from the quasi
deuteron one is poorly know. Furthermore we are aware of the importance, for
the charge response, of the dynamical correlations carried by the pion. These
have been explored in the first order of perturbation theory. What about the
contribution in second and higher order?

3. Finally the RPA correlations themselves are in need of further studies given
their pronounced sensitivity to the density dependence and to the poorly known
momentum evolution of the effective p—h interaction. Clearly the RPA corre-
lations vanish at large ¢ thus allowing the recovering of the limiting value of
the Coulomb sum rule. However, in this kinematical domain a non-relativistic
treatment of the many-body problem is doubtfull. In addition relativity entails
that as ¢ becomes large the nucleon form factor acquires a substantial magnetic
component: accordingly it might be unwarranted to divide the data by the elec-
tric form factor G%(q?) alone as done in (4.28). We shall return on this most
important point in Sect. 6.



- 37~
4.2 The Spin Response Functions

Unlike their charges, the spins of the nucleons in an atomic nucleus appear to respond
to an external electromagnetic field just as a piece of nuclear matter. Indeed the
main features of the nuclear spin responses appear to be
1. a certain degree of universality (they change very little all over the nuclear
chart),
2. a certain quenching with respect to the independent particle model, as far as
the transverse coupling is concerned,
3. a substantial modification of the properties of the A resonance, with respect to
the ones in the free space, when the latter is involved in the nuclear response.
When discussing the spin responses in nuclei one should realize from the outset that
these fall into two categories, namely the spin-transverse and the spin-longitudinal
ones, driven by the operators

Or = (0 x q)1, exp {iq-r} (4.29)

and X
Or = (0-q)1, exp{iq-r} (4.30)

respectively. Only the transverse response can be induced by an electromagnetic
probe, whereas the spin-longitudinal one, which has proved to be quite elusive,
requires the use of hadronic projectiles.

The formal treatment of the spin excitations should again include, as for the charge
longitudinal channel and at the very least, the Hartree-Fock mean field and the
RPA correlations. However, in addition to the short range component of the p-h
interaction (4.8), now embodied in the Landau-Migdal parameter g', long range
components of the force here come into play as well, at variance with the charge
channel.

In the mesonic model these are carried by the pion and by the p meson. Accordingly,
in the momentum space, the p—h force reads

2 . .
Vo) =T {g10r 0 - EEAE D my aa)

in the spin longitudinal channel and

2 2
_ 2, 2y Ir 2, 22 Jo (01 X q)(02 X q)
Vr(g,w) = {I‘W(q“)ﬂ_frg’dl .0y — I‘p(q#);’% o ,uf, — (r1-72)  (4.32)

in the spin transverse one. In the above we have arbitrarily ascribed to the parameter
¢' the momentum evolution of the 7 V.V form factor I'r(¢%). As already mentioned
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in the context of the charge longitudinal response this is a topic which needs further
investigations. One should, however, keep in mind that the G-matrix calculations of
Dickhoff et al. (1981) does not foresee a violent momentum dependence of g’ up to
2-2.5 fm~!. The momentum evolution of the p-h direct matrix elements [V;(g,w)
and Vr(g,w), respectively] of the interactions (4.31) and (4.32), at zero frequency,
are displayed in Fig. 4.7.

V,;,(Q.O)
(MoV:fm?)

1000

Fig. 4.7 - The spin—transverse and spin—longitudinal particle-hole interactions
as a function of ¢, at zero frequency.

We shall consider later (see Section 5) the expected features of the spin-longitudinal
response, as induced by (4.31). Here we focus the attention on the spin-transverse
one, as measured by inelastic electron scattering. Arguing along the same lines as
we did for the charge response, it is immediately apparent that the transverse p-h
force, which is essentially repulsive up to large momenta, will produce quenching
and hardening in the (¢ X q) RPA response:

Rig? Ird
Br(g,w) = —57 (K + #2)CR(Q*) T3 ImIIE (g, 0)
R g? 3rd

= o (1 + #i)Gig(Qz)ﬁ
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. { O (g,w) + H?;(@l,wg o } (4.33)

1 - Vr(g,w)[MIy(g,w) + ITY

In the above the free A-hole propagator, II%, has been added to the N — N~! one,
since the operator (4.29) can excite the A33 resonance as well. A more detailed dis-
cusssion of this topic will be presented in the next subsection. Here we only remind
that the imaginary part of II,, is vanishing in the quasi-elastic peak region, but
the real part is quite sizable, thus emphasizing the RPA quenching of the trans-
verse response. Also we notice that, for simplicity, a universal NN, NA and AA
interaction is assumed, although a truly realistic calculation should account for the
distinction among the various forces. In particular the VA interaction is known to
be substantially weaker than the NN one.

Fig. 4.8 shows the comparison of the theoretical curve (4.33) with the experimental,
transverse response function of Fe®® (Alberico et al., 1982). In the low—energy region
the RPA cross section fits the data fairly well, while at higher energies the theoretical
curve is lower than the experiment, although it correctly reproduces the hardening
of the peak (whereas the free Fermi gas response would fail on both items).

5‘;.
q= 330 ”OV/C

400

200

X x
o
1 1 1
(o] 80 100 150 MeV

Fig. 4.8 — The separated transverse, magnetic response in FeS% at ¢ =
330 MeV/c as a function of fiw. The experimental crosses are
taken from Altemus (1980). The continuous line is the RPA
response (4.33) with g’ = 0.7; the dot-dashed line is the free
Fermi gas response.

This shortcoming points to the relevance of more complicated excited states: the
data in the region of deep inelasticity and in particular in the so—called dip-region
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(between the quasi-elastic and the A-peak), cannot be accounted for without in-
cluding 2p—2h states. The latter come naturally into play when two-body currents,
beside the nucleonic one, are coupled to the external photon. Among these currents
we shall first consider here the longest range components of the MEC, namely the

ones mediated by a pion.

AN

X,,(kz - k1)4t1 fE,

]4t1.7:E

Fig. 4.9 — The meson exchange current diagrams. In the upper graphs the
pion-in—flight and contact terms are shown; in the lower graphs the
pionic current is coupled to a A intermediate state.

In connection with the nuclear quasi-elastic response, the MEC have been first
considered by Van Orden and Donnelly (1981). The non-relativistic expression of
the mesonic currents associated with the pion read:

d‘-kz

(4.35)

(4.34)
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and
Ja(py — P1,Py — P2) =

8Mik*hfr(2Ma + 3M)
3VImZ(MZL — M?)

a- kz
[(q X k2)5s’131x:‘; mxa:%z
k

+
t o
+ (q X kl)x"x ,‘:2—_—2-x'16’25'32t1 Fp (436)
w

{+m
_AMKhfR(2Ma+ M)[ 0Ky '
3V2m12r(M12§ _ MZ) Xs1t k% + msanX,l’q

X (k1 X 0)Xs,

1‘ c-k,

t
- Xa’lq X (k2 X ”)XnX.,': k22 + m%Xa: 4t FE,

where
Fr = (1= 8t,6,)(1 — 858, )(1 — b(esea)s (4.37a)

.7'-D = 6t'ltl 6t'212. (4.37b)

and k; = p} — p1, k2 = py — P2, 9 = ki + k. The x’s are the standard Pauli
spinors, s;(s;') and t;(t;) being the third components of the initial (final) nucleonic
spin and isospin. The quantities Jr, Jcont and Ja are commonly referred to as
the pion-in—flight, contact and delta current, respectively. They are illustrated in
Fig. 4.9. In the above expressions h? = 0.29 and k* = 5.0 are the 7VA and YNA
coupling constants of the Peccei Lagrangian (Peccei, 1968 and 1969), m, is the pion
mass and M, is the mass of the delta resonance.

In addition to these currents one has to consider processes where the photon couples
to a pair of correlated nucleons; for consistency (and gauge invariance) requirements
one must include at least the pion—correlated two-body current, which is illustrated
in Fig. 4.10 and reads (in the non-relativistic limit):

o 4M? f2 XI',(“Z A L
Jeorr(P1P13P2P2) = 3~ 0 — 13— Mo — ' “k
V:m: ki+mi: |2Mw-q-(p}+pi—ks)

X [XI; i(o X a)(kz - 0)Xa, [(s + 2t2410) Fr + t2(pto + 2t1144)F D)
+(py +Pp1 — kz)xrll(kz - 0)Xs, [(1 4+ 2t2) Fp + t2(1 + 2t1)-7'-D]]
1

"~ 2Mw —q-(p} +p1 +kz)
X [(tts = 2t260)FE + ta(pto + 2t1 1) Fp)

+ (p; +p1 + k2 )XIII(kz - 0)Xs, [(1 - 2t2)FE + t2(1 4 2t )J:D]] }
+ {1 — 2}, (4.38)

[} itz - ) x @),
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Fig. 4.10 — Diagrams for the coupling of a photon to a pair of correlated
nucleons (w—correlation “current”).

Once inserted into (4.4) (with |2p2h > intermediate states) the above currents pro-
vide three different classes of contributions to the transverse response:

1. pure MEC response,
2. pure two-body w—correlations,
3. interference MEC-correlations.

It is important to note that the contributions of class 2 coincide with the ones derived
in second-order perturbation theory for the polarization propagator (see Subsection
3.1), as far as the NN interaction is mediated by the pion only.

The explicit evaluation of the spin—-transverse response associated with some of the
above 2p—2h contributions can be found in (Alberico et al., 1984). Fig. 4.11 illus-
trates their relevance: indeed the 2p—2h response (which is added incoherently to
the RPA one) remarkably improve the agreement with the data in the quasi-elastic
peak region. At the same time they yield a significant contribution in the energy
range between the quasi-elastic and the A-peak.

Before concluding this section let us briefly consider the spin-response within a finite
nucleus RPA framework. Here of course the loss of translational invariance does not
allow to write simple expressions like (4.33) for II#P4, In fact, the calculation of
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Fig. 4.11 — The separated transverse magnetic response in Fe®® at ¢ = 410 MeV/c as a
function of iw. The experimental points are taken from (McCarthy, 1980). The
dot-dashed line is the pure RPA response, while the continuous line contains,
in addition, the whole 2p—2h contribution.

the spin-isospin (o, T) responses in the nuclei requires, in principle, the solution of
three coupled integral equations, a situation contrasting the nuclear matter problem
which reduces to two uncoupled, algebraic equations only. The detailed treatment
of the spin—isospin RPA responses in nuclei will be presented in Section 5. It is
worth pointing out here that the resulting transverse electromagnetic response does
not differ dramatically from the nuclear matter one [see (Alberico et al., 1986)];
indeed the electron can penetrate well inside the nucleus, thus probing the bulk of
the nuclear density, which is fairly well described already in nuclear matter. An
example of this finite nucleus RPA calculation is shown in Fig. 4.12.

4.3 The A—Excitation

Above the quasi-elastic peak, the spin-transverse response displays an impressive,
broad peak, which is associated with the excitation of the Ajz-resonance. For
energies above the m—threshold, the A can be directly excited by a transverse photon,
through the vertex YNA. The complicated structure of this vertex (Jones and
Scadron, 1973) is known to be dominated by the M1 term. The corresponding
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Fig. 4.12 — The separated transverse magnetic response in Ca%® at ¢ = 410 MeV/c as
a function of fiw. The experimental points are taken from (Meziani et al.,
1984,1985). The dashed line is the finite nucleus RPA response, the continuous
line is obtained by adding the 2p—2h contribution evaluated in nuclear matter.

(transverse) current, in momentum space, reads

Ja(a) = axj(q) (4.39)

with
(o) = 222 [ #pdl (o + @)STyd(e) + hc., (4.40)

%a(z) being a 4-component non-relativistic isospinor and S and T the spin and
isospin transition operators converting a nucleon into a A. A relativistic treatment of
the Rarita—Schwinger field would be also possible (Peccei, 1969; Weber and Arendvel,
1978) but only at the tree level. However, since in the following self-energy insertions
for the A-propagator, which require renormalization, will be considered a non-
relativistic fully renormalizable scheme is preferable (Cenni and Dillon, 1980).

The main experimental features of the cross section associated with (4.39) are:

a) the total cross section in the A-region is essentially linear with A,
b) the A-peak appears remarkably larger in a nucleus than in the vacuum.

The first property, experimentally established by Chollet et al. (1983) for the A-
photoexcitation and by O’Connell et al. (1984) for the electro—excitation, is simply
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interpreted in terms of a sum rule, which closely reminds the Coulomb sum rule
described in Subsection 4.1. Indeed, in the hypothesis of the “A-dominance”, which
simulates with an effective yNA coupling the excitation of the A, the associated
response function reads:

Rr(q,w) = 4% E Z&(En — Ey — hw)

A=+l n
X € < ‘I’n|/d3rjA(r) exp{—iq-r}|¥o > 2 (4.41)
and the corresponding sum rule is:
5a(0) = [ doRr(g,0) (4.42)
= %Agl < ‘I’o|/d3rd3r' L () -Ja(r)exp{iq- (r' — r)}|Tq > .

In (4.42) the evaluation of the remaining integrals is straightforward if no A are
present in the ground state. In such a case < Tk (r')Pa(r)|¥o > = §(r' — r) and
the remaining operators, at variance with the Coulomb sumn rule, do not introduce
correlations, but simply count the number of nucleons, yielding (Cenni et al., 1985)
2
g° 8

S = —_-A4. 4.43
ale)= L2 (4.43)
The above sum rule is supported by theoretical estimates of the A-component in
the nuclear ground state, which turns out to be about 5% (Anastasio et al., 1979;

Cenni et al., 1989).

An analogous result, for the photon absorption in the A region, may be obtained
from the corresponding cross section

o(w) = % 2‘_;1 > 8(En — Eo — hw)

& < ‘I’nI/dsrjA(r)exp{—iwq-r}IlIJO > . (4.44)

™
X —
w

With the approximation E, — Eyp & hwp (the resonance energy), some simple algebra
leads then to the energy-weighted sum rule (Cenni et al., 1984; Arenhé6vel and
Giannini, 1985)

/dw o(w) = %i:—;vzﬁ Z /dsr d*r' exp{iwgpg- (r — ')}
T oA=41

X < To|[7a(x), [H, 12 (x")]]| Lo >, (4.45)
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Fig. 4.13 — Photoabsorption cross section per nucleon: data are taken from Chol-
let et al., (1983). The dashed line represents the predictions of the
free Fermi gas model (k- = 1.3fm™'), the dotted and dot-dashed lines
correspond to an RPA model with p-exchange and short range corre-
lations (¢' = 0.3 and ¢' = 0.5, respectively). The solid line is the result
of the self-consistent calculation (¢’ = 0.3) of Cenni et al., (1984). The
effective value of f,na is 0.116, according to Koch and Moniz (1979).

where R i ) R )
H=Tny+Tas +Ua + Vnn. (4.46)

is the total hamiltonian of the system, Tn and T the non-relativistic kinetic ener-
gies of nucleons and A’s, Vyn the NN potential and

O = 6M / & g (r)da (x)- (4.47)

accounts for the mass difference between N and A. The sum rule (4.45) becomes
then:

_ A7 fyNa hw}2 oM
/dwa'(w)_ T me [6MA+2MAA— TR <Tn>-2<Vyn>|, (448)

where only the last two terms in the r.h.s. may get a contribution from the surface of
the nucleus. However they are quite small, being of the same order of magnitude of
the nuclear binding energy, while the first term, proportional to the mass difference
between N and A, is ten times larger. Thus the latter, clearly a volume effect,
dominates the sum rule (4.48).
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For what concerns the shape of the A-peak, the experimental data show that its
width is remarkably increased with respect to the free resonance. The interpretation
of this finding requires a more detailed knowledge of the A dynamics in the medium.
The simplest approach to describe the A-peak utilizes a A-hole propagator similar
to the free p—h propagator of the Fermi gas:

0 16 [ d°p 0(ke — p)
H (k )_ 3‘/(2 )3 hz 2 2 (4.49)
™ p h(p+k)
hw+——2M—6M————2M + I‘()

which accounts for the natural width of the A in the vacuum, I's, (somewhat sim-
plifying the kinematics, however, in order to facilitate the analytical evaluation of
(4.49) (Brown and Weise, 1975; Cenni and Dillon, 1983). Within this scheme, which
embodies the spreading of the peak due to the Fermi motion, the nuclear response
both to real and virtual photons is easily evaluated (see, for example the dashed
line of Fig. 4.13 and the dash—dotted lines of Fig. 4.14). Clearly the shape is badly
reproduced, since the height of the peak is overestimated and the Fermi motion
spreading is insufficient to explain the width of the resonance inside the medium.

One is thus lead to consider the effect of the medium on the A propagation. Since
the dominant dynamics of the A-resonance is the one of a strongly interacting # — N
pair, the most relevant self-energy diagram for the A is, likely, the one illustrated
in Fig. 4.15. The nuclear medium affects this diagram in two different ways:

i) inside the medium the Pauli principle substantially blocks the intermediate
states available for the nucleon (Cenni and Dillon, 1980; Moniz and Sevgen,
1981) yielding (contrary to the experimental evidence) a narrowing of the res-
onance;

i) self-energy corrections, induced by the nuclear medium, affect the pion propa-
gator. In other words the internal pion line in Fig. 4.15 are dressed by p~h and
A-h insertions. Actually this effect is the dominant one.

Formally the pion self-energy may be expressed as

Br(g,w) = 2 (q,w) + ) (g, w) (4.50)
where
&p dE
(N) _ 1rNN 2.2 p at _ _ E 4.51
B(g0) = 4L (o) [ TE 6 0p - gl B- )G B)  (451)
and
16 f2 d® dE
28 (qw) = —— fana [ 4P 8,5 2 (12)G(p - al, E - w)Ga(E,p) (4.52)

9 m? (27r)3 271
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Fig. 4.14 — The (e,e') cross section on C!? at fixed scattering angle, in the A
region: data are taken from Barreau et al., (1983). The dot-dashed
line represents the free Fermi gas predictions (k- = 1.3fm'1), the
dotted line corresponds to an RPA model with p—exchange and short
range correlations (g’ = 0.3), the solid and dashed lines are the result
of the self-consistent calculation of Cenni and Dillon, (1984), with two
different choices of the model parameters.

correspond to the p~h and A-h insertions, respectively. In the above G denotes
the nucleon propagator, for example in the HF approximation, and G, is the A
propagator

1
GA(p,e) = 2 s 2 . (4.53)
E-L _sM+iME--L)-Zs(pE)
2Ma 2 2Ma AV

Strictly speaking the A—self-energy should account for both the renormalization in
the vacuum and the corrections induced by the medium. Actually the free width T’
corresponds to the renormalized self-energy in the vacuum and all the many-body
contributions are accounted for by £a. Two phenomenological form factors, vy and
va, have also been introduced. It is worth pointing out that in the A-h polarization
propagator the relative momentum k of the # N pair intervenes, instead of the pion
momentum gq. 2)

2) Vertex corrections, parametrized as usual with the Landau parameter g', should
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The A-self-energy in the propagator (4.53) reads instead
_ _fina [ d'q dv f
EA(p)E) = - m‘?r (27‘_)3 27ri(s : k)(S k){G(lp C]_I,E w)A(qaw)
= Gie=o(|p — 4|, E — w) Ak =0(g,w)} (4.54)

where the contribution of the vacuum has been subtracted out to ensure renormal-
ization and A(g,w) is the pion propagator in the medium:

1
- qz - m?r - Ew(q’w).

Ag.w) = = (4.55)
The set of equations (4.50)—(4.55) forms a system of coupled non-linear integral
equations for the unknown complex functions ES,A) and TA.

Fig. 4.15 — The coupled Dyson equations, which define the 7— and A-
propagators in a self-consistent way.

To solve this problem is clearly very difficult. However, a numerical solution has
been found (Cenni et al., 1981; Cenni and Dillon, 1983), utilizing the so—called
“quasi-particle approximation” (QPA) for both the pion and the A propagators.
Within QPA the two propagators display a single-pole structure, reading

_ Z(p)
Ga(p,E) = E — E*(p) + iT(p, E) (4.56)

and

W) = z(q)
2UJqA(q’ ) - w _w(q) + %‘7(q,w), (4.57)

also be accounted for. Here they are neglected for sake of simplicity. See (Cenni
and Dillon, 1983) for details.
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Fig. 4.16 — The self-consistent w—dispersion relation in the medium
at k. = 1.36 fm™! (solid line) compared to the first—order
result (dotted line). The dashed line is the free m—dispersion
relation. The hatched area corresponds to the p-h excitation
region.

the widths being approximated by

T(p, ) = T(p, E(p)) + (B - E(p)) 5. | (4.580)

E=E(p)’

(4.58b)

9y
1(gw) 2 y(gw(@) +(w-wl@) g | _ o
Then the problem reduces to solve a set of coupled equations for the dispersion
relations E(p), w(g), the residua and the widths. The obtained solutions display a
non-trivial structure: for example, already by approximating the pion self-energy
with its lowest order value [i.e. neglecting T in eq. (4.53)], the so—called multiple
eigenmodes of propagation appear (Lenz, 1975; Moniz, 1975; Lenz and Moniz, 1975).
In fact for a fixed momentum q the pion propagator may display three different poles
(see, e.g., the dotted line of Fig. 4.16), which implies that the iterative procedure
starting from o = 0 breaks down. Choosing a more convenient starting point
convergence is instead achieved after a rather small number of iterations. In Fig. 4.16
the pion dispersion relation coming from the solution of the above set of integral
equations is also displayed.
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A few comments are in order on this approach to the A propagator:

1) the procedure, by summming up a complicated series of diagrams with any
number of p-h excitations, should yield a substantial increase of the A-width
(as well as of the one of the pion). The relevance of many particles—many holes
excitations in the A self-energy has also been emphasized recently by Oset and
Salcedo (1987).

2) The QPA is still valid even if it breaks down at the lowest order. Nevertheless
QPA badly accounts for off-shell effects. Moreover other diagrams, which are
expected to be weakly momentum- and energy-dependent (at least around the
A mass shell) have been neglected (for instance the direct A interaction with
the surrounding medium). To account phenomenologically for these effects one
could add a potential V; (eventually complex) to the A self-energy. Obviously
how to determine V; and how to go beyond the QPA remain open questions.

Once the solution of the self-consistent equations has been obtained, the polarization
propagator and the response function follow. This has been done by Cenni et al.
(1985) for the case of the photon absorption (Fig. 4.13) and by Cenni and Dillon
(1984) for the case of the electron scattering (Fig. 4.14) with a satisfactory agreement
between theory and experimental data. One would thus conclude that the present
approach appropriately describes the A dynamics in the medium at least in the
region of the resonance. However off-shell behaviour, short-range correlations and
other possible effects (providing they are slowly varying with energy and momentum)
are instead parametrized. Consequently the present approach should be improved
upon before being extended, e.g., to the dip-region, in particular in order to avoid
double—counting with the contributions discussed in the Subsection 4.2.

5. THE NUCLEAR RESPONSES TO HADRONIC PROBES
IN THE SPIN-ISOSPIN CHANNEL

Many efforts have been made in the recent years to understand the spin-isospin
nuclear responses, both experimentally and theoretically. In the low energy region
the strong N N interaction induces collective effects giving rise to the well established
giant Gamow—Teller (GT) resonance (Gaarde et al.,1982) and, as we have seen in
Section 4, to a pronounced quenching and hardening of the transverse e.m. structure
function. The collective nature of the o7 responses at finite momentum transfers,
however, seems still to be somewhat elusive, particularly in the pionic channel.

Indeed, only hadronic [e.g. (p,p')] or semihadronic [e.g. (e, e'r)] probes are suitable
to measure both the spin—transverse and the spin-longitudinal nuclear responses,
but they cannot penetrate the nuclear interior owing to the strongly absorptive
hadron—nucleus interaction. As a consequence, what is actually probed in a hadronic
process is the surface response of the nucleus rather than the volume one. A relevant
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question is then to ascertain how much of the collective features of a volume response
are left out in a surface one.

Experimentally two attempts have been made, until now, to unravel collective effects
in the o nuclear responses at finite momentum transfers. The first one, carried out
in Los Alamos (Carey et al., 1984; Rees et al., 1986), measured the polarization
transfer coefficients in the deep inelastic, inclusive, polarized (p,p') scattering. The
ratio R between the spin-longitudinal (R%") and spin-transverse (R7") responses,
a critical test of their contrast, can then be extracted. A second experiment, which
however cannot ezplicitly separate the transverse and longitudinal channels, mea-
sured the charge-exchange (He®, t) reaction cross section in a wide range of momen-
tum and energy transfers (Bergqvist et al., 1987).

Before commenting on these data, let us briefly remind the naive nuclear matter
theoretical expectations (obviously referring to volume responses). In this framework
the RPA responses driven by the operators (3.29) and (3.30) read:

oT _ 24 RPA 24 Ho(q w)
Riir(q,w) = e Imll77)(g,w) = - Im { — VE?T)(q,:u)HO(q,w) , (5.1)

where Vp(r) is the direct o,7 = 1 p-h matrix element of the interaction (4.31)
[(4.32), respectively] and T1° = I, + II%.

The effects on the transverse response of the (essentially repulsive) p-h force Vr
have been already discussed at length in the Subsection 4.2 [actually (4.33) and the
above R differ by trivial factors]. Instead, for momenta larger than, say, 1 fm~!
the attractive nature of Y, (see for example Fig. 4.7) should induce a softening and
an enhancement in the spin-longitudinal response. It is worth stressing that these
features would reflect the strengthening of the pion field inside the nucleus, clearly a
precursor effect of the pion condensation in nuclei. Indeed, in a schematic notation,
the longitudinal polarization propagator can be rewritten as follows:

°(g,w)

RPA
_ 2
I (g w) = 7= (¢ + Vo )II'(g, ) (5:2)
_ Ho(Qaw) 1 _ Ho(Qaw) ARPA(q’w)
1-g'T%(qw)1 - V,rl—_%,ir(lﬂo'(—“%w—) 1-g'%g,w) A%g,w)

which clearly shows how the RPA dressed w—propagator (ARP4) becomes larger
than the bare one (A°), since the repulsive g’ obviously lowers II(g,w).

According to the previous considerations, there exists an intermediate range of mo-
mentum transfers for which, being Vr repulsive and Vi attractive, the collective
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RPA effects on the corresponding responses should be quite different: in particular,
one would expect large values for the ratio R = R{"/R%™ at low frequencies and for
momenta of the order of 1.8 + 2 fm™!

The measurement of this ratio, obtained with polarized proton scattering on 90Ca
and 298Pb, has shown no evidence for such an enhancement of R (Carey et al., 1984;
Rees et al. 1986) This finding points to the inadequacy of a nuclear matter treat-
ment for comparing with hadronic processes. 3) In particular no mixing between the
spin—transverse and spin-longitudinal couplings affects the RPA treatment of the
translationally invariant nuclear matter. Now the above mentioned, different collec-
tive behaviours of the two channels arise from the opposite nature of the longitudinal
and transverse p—h forces; therefore a mixing between the two spin—-couplings, which
occurs in finite systems, could partly smear out the sharp effects predicted in nuclear
matter.

5.1 Volume Spin—Isospin Responses

Before dealing specifically with hadronic responses, we shall develop here (with some
more details than in Sects. 3 and 4) the RPA theory for the spin-isospin responses
in finite nuclei. In this context it is both appropriate and advisable to distinguish
between volume and surface responses, according to the leptonic or hadronic nature
of the external probe. Indeed if the projectile is, e.g., an electron, it can penetrate
deeply inside the target nucleus, thus involving any nucleon in the nuclear volume.
On the contrary, the incoming wavefunction of an hadronic projectile can be dis-
torted by the strong interaction and eventually get absorbed within a short distance
from the surface of the target nucleus. In this case the peripheral nucleons only will
directly respond to the external probe (Esbensen et al., 1985).

Let us then consider the o7 polarization propagators in nuclei. Since in the finite
system translational invariance no longer holds, one can now define three differ-
ent p-h polarization propagators, according to the nature of the operators (0 L Or
OT) in the two (external) vertices: transverse-transverse (Myna,nb ), longitudinal-
longitudinal (II, ) and transverse-longitudinal (Il mp oF Ilna ), the latter being
identically zero in nuclear matter.

The RPA equations for these propagators read (a,b,c,d are isospin indices):

dk
EPA (q,q'sw) = T, (9, Q'5w) + / '(Er')_sngna,c(q, w VAR R (k, q'sw)

3) It should also be kept in mind, however, that a consistent isoscalar contami-
nation in the experimental ratio, as compared with the purely isovector theoretical
one, can be responsible for a sizable reduction of the collective effects on K.
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dk
+4 Z /(27(.)3Hgna,lc(‘lak;w)ch(k)Hﬁﬁ{g(k,q';w), (5.3a)

dk
DX 4(q,q'w) =TI 4(q, q'sw) + / aw—)sﬂﬂ,c(q,k;w)nﬁ(k)ﬂﬁf A(k,q'sw)

dk
+4 Z /(21)3Hg,te(q,k;w)VcE(k)HﬁﬁA(k,q';w), (5.3b)
1=0,+1

dk
IE0M g, q'sw) =103 4(a,q'5w) + / @r)sﬂﬂ,c(q,k;w)nﬁ(k)ﬂﬁfs“(kd;w)

dk
> / G ene( @IV (WML (o a5w),  (5:3¢)
1=0,£1

It is worth pointing out that in using the operators (3.29) and (3.30), we are neces-
sarily dealing with volume responses. In fact the plane wave exp{iq-r} is nothing
but the product of the undistorted incoming and outgoing waves of the projectile.

As in the example illustrated in Section 3, we shall describe the nucleus within the
usual HO shell model, with the residual p-h interactions (4.31) and (4.32): in this
framework the independent particle propagators, can be analytically evaluated [see,
e.g., eq. (3.37) for Hg’b]. The eqgs. (5.3) are integral equations, coupled among each
other through the mized propagator II, 5. Notably, in (5.3a) and (5.3b) both inter-
actions Vi, and Vr are present, at variance with the corresponding RPA equations
for nuclear matter. This mixing between the (¢ x q) and (o - q) couplings, although
differently weighted in the two channels, tends to smear out the contrast between
the collective features of the longitudinal and transverse responses.

By performing the usual multipole expansion in the angular momentum basis, the
three above equations reduce to the unigque set of RPA integral equations (3.44) for
the different multipolarities (which embody the dynamical part of the propagators).
It is clear from egs. (5.3) (as remarked in Section 3) that the p-h force entering
into (3.44) is the full spin-isospin interaction, including both the longitudinal and
transverse components:

[Us(k,w)lyt, = an, Vi(k,w)an, + Vr(k,w)(8,1, — an,am,), (5.4)
with the aj; given by (3.41).

The equations (3.44) have been solved (Alberico et al., 1986) with an approximate
method, originally proposed by Toki and Weise (Toki and Weise, 1979), which ex-
ploits the quasi-diagonality of the propagators in momentum space, a property well
satisfied for medium-heavy nuclei and in the quasi-elastic peak region. This ap-
proximate, algebraic solution of egs. (3.44) requires the introduction of an average
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momentum §, whose value for fixed g,w and J is set by certain mathematical rela-
tions. This represents a convenient shortcut to the heavy numerics entailed by the

continuum RPA equations with finite range forces.

The transverse and longitudinal o7 responses:

oT 1
RT (qaw) = _; Z 6m,n1tnnm3,n3(q, Q;w)7 (55)
m,n
oT 1
Ry, (Qaw) = —ghnHS,S(q,q;WL (5-6)

can then be analytically expressed. For the sake of illustration we report here the
transverse one:

L& (7 +)(gw)
R7 (¢, w) = — Im { -
’ 16x* ng 1 - 35 Vr(§w)I%(,w)
(J+ DI (gw)
[Q’ 4 A - -
1- (2n)? Vr(d, w)H?,_l (§,w) + z—JJﬁfJH(q, w)

J11
s 341(9:) } (5.7)
1- )3 vT(Qs "")HJ+1(q,w) + 2J+1 T Fr1(g,w)

+

where
=)= 22 7w — G w ﬂ?,+1(q,w)—f1?,_1(q‘,w) a
-7:J—-1(q’ )— (27!')3 [vT(q, ) VL(qa )] 1— ﬂ%vr(q,w)ﬂf’,_l(q',w) (5'8 )
Frn(@0) = (s V(@) - (gl ;e B

3 — —.
1- (_‘211q|-)_3vT(q’ w)H?I-H (g, w)

In these nuclear matter-like responses 7 ~ 7/ R (R being the nuclear r.m.s. radius)
and the functions F embody the effects associated with the non-uniformity of the
nuclear density. They are, however, also partly embedded into §. The volume
response (5.7) has been successfully compared with the electron scattering data:
the degree of quenching and hardening provided by this finite nucleus RPA is quite
similar to the one achieved in nuclear matter. In addition the effect of the mixing
between the two spin—couplings remains small, at most of the order of 10%. This
last outcome stems from two reasons: the first one lies in the weakness of Vp in
the momentum range of interest for the (e,e’) data. The second one is linked to
the selecting character of the mixing with respect to the various multipolarities:
indeed it affects more the high J’s than the low ones. Now the volume responses are
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only little concerned with the highest multipolarities, since they involve peripheral
nucleonic orbitals. As we shall see in the next subsection, this behaviour is far more
relevant for hadronic interactions.

5.2 Surface Spin—Isospin Responses

As mentioned before, the most recent measurements of the spin-longitudinal and
transverse responses have been obtained with hadronic probes. For them the nu-
cleus is a strongly absorptive medium and the scattering is confined to the surface
region. A proper treatment of these processes should employ, for example, the
DWIA (Distorted Wave Impulse Approximation) framework (Ichimura et al., 1989):
the associated formalism, however is quite cumbersome and the numerical results
are in qualitative agreement with the ones illustrated in the following, which are
based on Glauber’s theory. Accordingly, we shall obtain the o7 surface responses by
modifying the external vertices of the polarization propagators as follows (Alberico

et al., 1988):
Opr— 03¢ = F(r)OL1r. (5.9)

Before sticking to the determination of F(r), we notice that the vertex (5.9) entails
the introduction of two new propagators, one with a volume and a surface vertex
(I1*) and the other with two surface vertices (II’*). Then, instead of eq. (3.44), we
get the following two “chain” integral equations:

[HRPA ‘"(q, q'; w)]ll' = [Ho “(q’ ql§w)]11'

+ 5 32 [ bR sl [0 6574 s s ), (510)

[HRPA ’(q,q sl = 17 (g, ¢'s )+

(2 E gj / dk k219 (g, k3 )], [Us () (504 (ky g5 0))ipr. (5.11)

They are diagrammatically illustrated in Fig. 5.1, where a black vertex represents the
vertex (5.9). It is clear from this figure that the excitation is bound to be produced
in the outer region of the nucleus, but it can then propagate to the interior through
the residual interaction.

The equations (5.11) can be solved with the same approximate method utilized for
the RPA volume propagators; one obtains the following expressions for the transverse

Imi{ (27 + DD (g,))s
1- s Vr(@,w)%(3,w)

R;‘urf(q,w) — R(:)r,aurf(q’w) _ _167 +
J=1



i

@@

Fig. 5.1 — Diagrams representing the surface RPA equations (5.10) and (5.11)
for the dynamical propagator; the p-h propagator includes both N-h
and A-h excitations.

AL (@)t + VI HT) (5" (g, )]s 41,0-1
1~ ooy VT(q,"’)HJ (g w) + 2J+1-7:J+1(Qaw)
J[H(l) "(q,w)]J+1 71+ VIT + DIP* (q,0)] 71,541 } (5.1'2)
(Z‘q?VT(q,w)HJ+1(q,w) + 1L Fra(qyw)
and for the longitudinal
R} (q,w) = Rp™ (g, w)-
- %Imi{f (15 (@)1 = VIO DI (gl
o 1— 2 vu(g )T, (7,0) + 255 G (3,0)
A 1)[11(1)'"(4, Nrsr,041 = VIE + DI (g, 0o, J+1} (5.13)
1- (:zl,gr)—va(q,w)HJ.pl(q’ w)+ 5757 67-1(3w)

+

J=0

surface response functions. In the above formulas the [ﬁf,l)”’] 7,0+ are the first—order
surface propagators.
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In order to determine F(r) we resort to Glauber’s theory (Glauber, 1959). Within
this framework, the effective number of nucleons taking part in the (one-step) reac-
tion is given by the expression

(1) oo
Nyg=21-= ! / db2rb x(b)ex(®), (5.14)
Ttot Otot Jo

where x(b) is the phase—shift function

x(b) = ot / " & p(r _ m) (5.15)

-0
p being the nuclear density and o, the total probe-nucleon cross section.

On the other hand, for a spherical nucleus and at momenta large enough to neglect
the Pauli correlations, N.;; can also be expressed in terms of the sum rule:

Neys =/0 dw R** ¥ (q,w) = 41r/(; dr 2| F(r)|?p(7)- (5.16)

By comparing (5.16) and (5.14) one can thus fix the form of F(r). The integrand of
the rhs of eq. (5.16), e.g. for g:ot = 40 (55) mb, turns out to be peaked in the surface
region, at p = p = 0.28pp (p = p = 0.20pg), po being the central nuclear density.

There remains to be seen whether in such dilute media the p-h interaction is still
able to set up collective effects, either locally or by spreading inside the system, and
how the corresponding surface responses compare with the experiment. We remind
that this surface RPA formalism for finite nuclei accounts, notwithstanding the
above outlined approximations, for the mixing between the o-q-¢ X q couplings, for
the non-uniformity of the nuclear density (which involves the coupling of different
angular momenta in the multipole expansion of R‘I’-J”'T) and finally for the surface
absorption of the external probe. As a matter of fact, all these factors work against
collectivity, but not necessarily wash it completely out.

Let us compare now these surface responses with the experimental data, starting
from the above mentioned ratio R. As already remarked, the (p,p') experiment
cannot separate the isovector contribution (7 = 1) from the isoscalar one (7 = 0);
thus it actually measures the combination

- 2.15\ 3.62R}=!(g,w) + R7=%(q,w)
= . 5.17
R (4.62) 1.15R7=!(q,w) + RF™%(¢,w) (6:17)
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Fig. 5.2 — The ratio R at ¢ = 1.75fm ™! as a function of fiw. The dot-dashed
line is the prediction of the RPA theory of the volume responses; the
surface RPA prediction is given by the solid and dashed lines, with
and without the (& - q)—(¢ X q) mixing, respectively; g’ = 0.7.

Both the numerator and the denominator are obtained as ratios of the corresponding
quantities in Ca*® (or Pb?°®) and H?.

To compare with the experiment the ratio (5.17) has been evaluated utilizing the
surface RPA responses (with o4o: = 40 mb) in the isovector channel and the inde-
pendent particle surface responses in the isoscalar one; the results are displayed in
Fig. 5.2, at ¢ = 1.75fm~!. With respect to the old predictions of nuclear matter
the ratio R appears to be considerably reduced: in particular the surface character
of the process helps in bringing it down towards unity, as it can be inferred from
the comparison with the corresponding ratio between the volume responses, which
is also shown in the figure. The effect of the mixing between the two spin—modes
is quite sizable, since at this momentum transfer the rather large transverse p-h
interaction strongly affects Ry.

With respect to the experimental points there remain discrepancies on the low energy
side. However it is worth pointing out that the measured R lies even below unity:
this could be an indication of the presence of some collective effects in the isoscalar
channel. Indeed, treating the R™° as independent particle responses seems to be
a suitable approximation, since the central 7 = 0 p-h force is known to be rather
weak. But from sum rule considerations there is some evidence (Orlandini et al.,
1986) for a collective (and of opposite nature than the isovector ones) character of
the isoscalar responses.
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Turning now to the analysis of the charge-exchange (He3,t) reaction cross sections
measured at Saturne (Bergqvist et al., 1987), a few points should be kept in mind:

i) the He3 projectiles undergo an even more peripheral scattering than the protons;
indeed the effective oo to be used in the determination of F(r)is 040t = 55mb
ii) The charge exchange reactions are pure isovector processes, but no observation
of polarization transfers were made in the Saturne experiment; thus Bergqvist
and collaborators essentially measured a mizture of the ¢ - q and o X q nuclear
responses (with the He? bombarding energy of 2 GeV the non-spin—flip NN
amplitudes are practically negligible).
In the single step approximation, the cross section for this reaction may be written
as follows:

d’c
d) dw

= Neff{(lﬁlz + |e[*)Rr(g,w) + |6|2RL(q,w)}FF2, (5.18)

FF being the (He?,t) form factor, A and ¢ the charge exchange spin—-transverse NV
amplitudes and § the spin-longitudinal one.

Before considering the cross sections in detail, it is interesting to look at the po-
sition of their peaks (wpr),which is displayed in Fig. 5.3 for different momentum
transfers, together with the curves representing the peak positions in a free Fermi
gas (both non-relativistic and relativistic). While at small momenta the experimen-
tal points exhibit a hardening with respect to the Fermi gas, at larger ¢ they display
an increasing softening.

This outcome could be nicely interpreted in terms of collective effects providing that
at small ¢ the transverse response (which is quenched and hardened by the RPA
correlations) be the dominant one, whereas at large ¢ the longitudinal response (en-
hanced and softened) should be the major component in the rhs of (5.18). Indeed,
this seems to be the case at the incident energy of about 700 MeV /nucleon of the
Saturne experiment: the ratio [8]2/(|8|% + |€|?) is almost linearly increasing from
0.4 at ¢ = 1.4fm™! to 1.5 at ¢ = 2.4fm™'. Thus, although Ry and Rr cannot be
separated, one can envisage a natural explanation of the above mentioned behaviour
of war, by ascribing the low momentum hardening to the dominant transverse com-
ponent and the high momentum softening to the longitudinal one.

The cross section (5.18) have been evaluated utilizing the surface RPA responses
with the vertex function F(r) corresponding to o¢ot = 55 mb; in spite of the low
density at which the excitation takes place, still some collective effects are found in
both channels. In particular, at ¢ = 2.4fm~! and with ¢' = 0.7 the softening of
the peak, with respect to the Fermi gas, is of about 8 MeV, to be compared with
the experimental value of ~ 18 MeV. However, a smaller value of g’ might be more
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Fig. 5.3 — Peak position of the QEP in the reaction C'2(He?,t) at 2 GeV (black
dots) and Ca*®(e,e’) (circles); theoretical predictions for the volume
RPA (black squares) and the RPA + 2p-2h (triangles) isovector trans-
verse responses are also displayed; the empty squares are the surface
RPA predictions for the (He3,t) reaction; solid and dashed lines rep-
resent the peak position of the non-relativistic and relativistic Fermi
gas responses, respectively.

suitable here, since at such a low density the assumption of universality is no longer
valid and the A is likely to experience a weaker short range repulsion (Hosaka and
Toki, 1986). An effective value, e.g., g' = 0.6 yields a downward shift in the cross
section of ~ 11 MeV.

In Fig. 5.4a—d we compare the surface RPA cross sections with the available ex-
perimental data, for ¢ ranging from 1.4 to 2.4 fm~'. The agreement between theory
and experiment is fairly good, but for the highest momentum, where the calculated
softening does not fully account for the observed one. In order to cure this failure
one should probably utilize a better treatment of the distortion, rather than the
Glauber’s approach employed here. Also, one should not forget the influence of
relativistic effects: indeed, as it appears in Fig. 5.3, already at the level of the free
Fermi gas, the use of relativistic kinematics provides a substantial softening of the
peak (with respect to the non-relativistic one) at the higher momenta.

One can conclude that the observed features of the spin—isospin nuclear responses
are not incompatible with a collective interpretation of the processes. In particular



- 62—

020 qeL 75"

015

- \\
002 \

o
3
& 0/d0dw (mb/sr MeV)

o 0/dQdw (mb/sr MeV)

had
[~
3

e
———

002 -
0075

0.01 |-

¢ 0/d0dw (d/sr Mev)
1
& 0/d0Qéw (MD/sr MeV)

[] J 1 L
L TR .

Fig. 5.4 — Experimental and surface RPA (solid line) cross sections for the
(He3,t) reaction as a function of w; g' = 0.6. The cross section for a
non-relativistic Fermi gas (with k, = 0.79) is also shown for compari-
son. Arrows indicate the peak position.

it seemns natural and appealing to ascribe the rather spectacular effects measured in
the charge exchange (He,t) reactions, at such low densities and short wavelengths,
to the long range nature of the pion, whose role in nuclear structure deserves further

investigations. 4)

4) In this respect one should also remind that the experimental data show an even
more pronounced (and appealing) softening in the region of the A peak.
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6. RELATIVISTIC ASPECTS OF THE NUCLEAR RESPONSES

Since in the near future the investigation of the atomic nuclei is expected to be
carried out with increasingly energetic probes, the nuclear many-body problem will
be more and more confronted with in the relativistic domain: a challenging issue
indeed, exactly solvable only for a non—interacting system.

Therefore in this section we shall treat, to start with, the relativistic Fermi gas
(RFG), a topic naturally bringing us to deal with the scaling properties of the
response functions. The next step beyond the RFG, which entails the introduction
of the forces, will be limited to the first order of perturbation theory, by switching
on the pion—carried interaction. We shall also explore how RPA scales, however in
the non-relativistic regime.

Finally we shall shortly outline a possible scheme for a fully relativistic description of

the nuclear dynamics, focussing in particular on the connection between the nuclear
response functions and the nucleon’s structure functions.

6.1 The RFG

For this system the inclusive responses to an e.m. field are (Alberico, Molinari et
al., 1988)

NV
= ——(ep —I')0(er — T
Bir = fem (er —T)0(er — T)x
2
[t ma) - we + e, forr, O
2Wi (1) + Wa(1)A, for T,
where 1
AE%{g(spz+€FI‘+I‘2)+A(€F+I‘)+A2} —(1+7). (6.2)
In the above we have introduced the dimensionless variables
K=q/2M
9/ = r=r? -2
A=w/2M (6.3)

e = ke /M, &r = /14 7?
and the combinations

Wi(r) = TG (T) (6.4a)
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We(r) = (GE(T) + 7G%(7)) (6.4d)

of the Sachs electric Gg and magnetlc G form factors. Note that to get the full

inclusive cross section, the sum of two contributions with V' = Z (and G%, G%)
and N = N (and G, G};) should be taken. Furthermore in (6.1)

T’ = max {(EF - 2)A),y- = ky/1+1/7 - /\} , (6.5)

the first option holding in the Pauli blocked region.

Now, in the non-relativistic case, the inclusive cross section for ¢ > 2ks

e =@ { (%) + (5|5 + o ]) Bt + b} 4T 20
(6.6)

is clearly factorized into the product of a purely nucleonic term and a many-body
one. In the above we have introduced the scaling function

2

Fy) = _;’ﬁ Im T1°(q,w), (6.7)
p being the nuclear density. Thus, as already remarked in Section 3.1, the many-
body content of (6.6), namely the function F9, becomes function of the single scaling
variable y when k > 7 (or ¢ > 2kg). In contrast the same does not occur for the
RFG, the reason being that in calculating the responses the single nucleon current
should be Lorentz transformed from the rest frame to frames moving with velocities
dictated by the nucleon momentum distribution in the nucleus.

Yet one would like to recover in the relativistic domain some factorization as well
by choosing
a) a scaling variable ¢ vanishing at the peak of the QEP and being £1 at the
borders of it;
b) a scaling function S(¢,7r) parabolic in the scaling variable and satisfying a sum
rule.

These are logical conditions, if one wishes to naturally recover the non-relativistic
regime and are met with the definitions (Alberico, Molinari et al., 1988)

1 +1 A=

Y= E('y_—l)x{_1 A< o, (6.8)

where v_, defined in (6.5), has the physical significance of the minimum “energy”,
compatible with the overall energy conservation, a nucleon can have inside the nu-
cleus, and

3ée

S(ysme) = (1= 9%)0(1 - ¥*) =5 i~ (ér =er —1). (6.9)
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They lend the following factorization of the cross section

dz
dQ;, == 4AA£RUMX(9, 7,95 10 ) S (%5 ), (6.10)
with
X(0,m, i) = [Wz(‘l‘) 1 2, () tan? g] (6.11)

[ 1) (3 (2) s o]

which unambiguously prescribes for what the cross section should be divided for,
namely the function X, in order to extract” the scaling function. Remarkably
the function X, besides mildly depending upon 7, also allows to recover the free—
nucleon cross section for 7. — 0, as it can be proved with an explicit calculation.
Moreover the scaling function obeys the sum rule

Z = /0~°° dAS (Y1) (6.12a)

3r [ 1 1 ]
=220 M) |14 —+ =2+ A

e L R

ruvrt+1 Y K2 .Y
- —~————— |E | arcsin —, — E | arcsin —, 4/ ——

e Er -K k241 K k241

(6.12b)

— 26{1 4+ O(7x2)} (6.12¢)
— 1+ O(52), (6.12d)

where E is the Legendre integral of second kind. Note that ¥ at first grows with &
and then stabilizes to unity for asymptotic values of &, thus reflecting the constancy
of the width of the relativistic QEP (namely 2ks). This is at variance with the
non-relativistic situation where the Ry for a Fermi gas fullfils the sum rule (4.26)
because the 1/q factor in Ry, [see (3.3) and (4.6)] is compensated by the width of the
QEP, linearly growing with the momentum: clearly then Rp, only scales if multiplied

by gq.

In general the concept of scaling has any hope of being realized in nature only
for large negative ¢, namely for large momentum transfers and on the low energy
side of the QEP, where the nucleonic internal degrees of freedom and multiparticle—
multihole excitations can be safely neglected. In this connection it should be noticed
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that all the various scaling variables introduced in the past, notable among them
the one introduced by Ciofi degli Atti, (1987) , while coming very close to the
RFG motivated expression (6.9), differ substantially from the latter precisely for
large negative v, as shown by Alberico, Molinari et al., (1988). However in all
the approaches to scaling the asymptotic scaling function turns out to be simply
expressed in term of the nucleon momentum distribution, providing that separation
energy and/or final state interaction effects can be ignored, which seems plausible
for large k. For example a generalization of the RFG model to allow momentum
distributions different from the f—function utilized in deriving (6.1) leads to the
asymptotic scaling function

S(4) — /7 h den(v/e —1). (6.13)

R Jy_=gppitl
an expression indeed simply related to the nucleon momentum distribution n(p).

In fact, in the context of the generalized RFG model, this outcome holds valid only
as far as the transverse response is concerned, which anyway dominates the cross
section in the asymptotic regime, but fails to be true for the longitudinal response
which turns out to be characterized by a quite involved relationship between the
asymptotic scaling function and the nucleons momentum distribution.

Concentrating on the global cross section, a central issue to be faced is how scaling
is approached. For the purpose of investigating this point one can utilize momentum
distributions generated, in the Briickner—Hartree-Fock (BHF) scheme, via a Reid
soft core potential (Van Orden et al., 1980) and insert them in the RFG framework.
To show then the importance important of properly selecting the quantity one di-
vide the cross section for in order to obtain the scaling function, we explore two
prescriptions: the first (a) corresponds to divide by the single nucleon cross section
(i.e., by X in the limit 7 — 0), the second one (b) by the full function X. The results
obtained within this generalized RFG model, displayed in Fig. 6.1, show that:

a) for moderate excursions from the QEP the scaling is quite good;

b) for both prescriptions, as « increases, the scaling functions “increase” until
they reach a maximum for some x = K. Then, for £ > & the scaling functions
decrease approaching the asymptotic value (6.13). We refer to this effect as
“false scaling” and its “onset” is clearly prescription dependent. Indeed, for
# = 10°, § ~ 8 GeV/c for prescription (a), but only 1.6 Gev/c for prescription
(b);

c) the violation of scaling is also prescription dependent. For example, at § = 10°
and ¢ = —2, for § = 2 Gev/c the scaling function is twice as large as the
asymptotic limit for the prescription (a), but only 30% larger for the prescription
(b).The latter practically scales at ¢ = 10 GeV/c, whereas the former even at
100 GeV/c is still 50% too large (!);
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Fig. 6.1 — The scaling function derived from the total (L+T) cross section for
0!8 at § = 10° for three—-momentum transfers ranging from 0.2 to 4.0
GeV/c by steps of 0.2 GeV/c and progressing from right to left in the
plots. The cross sections were calculated using the momentum density
of Van Orden et al., (1980). The dot-dashed line is the asymptotic
answer in this model; the dashed line is the same quantity, but for the
RFG.

d) finally, and importantly, the approach to scaling is 6-dependent. Thus, at
6 = 180° (cross section purely transverse) the scaling regime is rapidly reached;
at § = 90° prescription (b) is comparable with prescription a at ¢ = 10°. This
indicates that Ry is the major responsible for scaling violations, the reason
being the substantial magnetic cotribution to the charge response induced by
relativity at large momenta [see (Alberico, Molinari al., 1988)].

Obviously, as we have seen in Section 4, other important correlations are at work
inside nuclei, notably the RPA ones. Since they cannot be presently treated within
a fully relativistic scheme, let us explore how they affect scaling limiting our consid-
erations to a non- relativistic framework: this will be sufficient for exploring more
deeply the connection between scaling and Coulomb sum rule. In fact, also for fulfill-
ing the latter, it is clearly of crucial importance to control the momentum evolution
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of the correlations and, more specifically, how fast they die with increasing ¢g. This
is best appreciated by changing the integration over w into an integration over y
(which introduces a factor g¢/M). The latter just accounts for the replacement of
Ry with Fr:

Fi(y,q) = 37 Ri(g). (6-14)
It thus follows that the scaling hypothesis, if fulfilled, authomatically implies the
saturation of the Coulomb sum rule as well, hence the importance of examining how
the nuclear dynamics breaks the y-scaling.

Now, we have seen that the function (6.14) scales for the free Fermi gas [see Sec-
tion 3.1 and eq. (6.7)]. The same is no longer true within the Hartree—Fock approx-
imation, although, at least within a schematic model for the nucleon self-energy,
the scaling hypothesis still holds valid, up to quite small deviations, providing one
performs a suitable change of the scaling variable ref[Ce-Ci-Sa-88).

Concerning the RPA correlations engrained, e.g., in (4.9), we first notice that the
retarded part of the free polarization propagator, “scales”: i.e.

LT (q,0) = £°(v) (6.15)
while its advanced part (always real in the positive—energy region) violates scaling
[it depends, in fact, on the variable (w+ g*/2M)M/q] already at the level of the free
Fermi gas ( recall however that the previously discussed BHF correlations prevent
anyway an early occurrence of scaling since they affect both the retarded and the
advanced parts of the polarization propagator). Be as it may we ignore in the
following BHF, writing in the pure RPA scheme (g > 2ks)

RPA _ Fg(y)
FE09) = Ty Rad (g o)) + (ep 2V RGY

This equation shows that the onset of the scaling regime is opposed by the presence,
in ReII?, of its advanced part, by the occurrence of a factor g% in the second term
of the denominator and obviously by the g-dependence of the p-h interaction. Of
course this by no means implies a violation of the Coulomb sum rule since the ¢-
dependences referred to above are washed out in the limit ¢ — oo thus allowing the
recovering of scaling. As a consequence, the frequency integral of the longitudinal
response function exactly counts the charges of the nucleus in the asymptotic regime.
In other words the RPA correlations are entirely compatible with the Coulomb sum
rule, although possibly inducing a strong depletion of the QEP at finite g.

The crucial question for an experimental test of the Coulomb sum rule is, however,
whether a large, but finite, momentum exists, such as to allow a simple disentangling
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of the nucleonic dynamics from the nuclear one, which is the underlying hypothesis
of (4.26). Equivalently at that momentum the internal degrees of freedom of the
nucleon should still be somewhat frozen. The next question, from the theoretical
viewpoint, is then whether a non-relativistic approach is still adequate for large ¢
and we are inclined to think that this should not be the case.

Nevertheless sticking to the non-relativistic scheme, we like to remark that the
reverse of our arguing is also true: indeed if the Coulomb sum rule is satisfied,
then the scaling hypothesis is certainly verified. Notice also that the latter should
obviously not be identified with the absence of correlations, as it is well illustrated
by the BHF scaling function we have previously considered.

6.2 The Pion in the RFG Response

To provide an orientation on how the RFG response is acted upon by the interaction,
we consider in this subsection the polarization propagator dressed, in the first order
of perturbation theory, by the interaction carried by the pion. The corresponding
contributions are those displayed in Fig. 3.1 [(a) and (b) of course identically vanish
for a spin-isospin force and (e) is neglected for the present purposes]. They are
naturally obtained, utilizing formulas (4.3)-(4.7), by adding to the purely nucleonic
current (2.4) the two-body MEC and pion correlated currents, whose fully covariant
expression is well-known. Indeed the previously reported currents (4.34)—(4.38)
represent nothing but their leading order in the non-relativistic expansion.

In going beyond the extreme non-relativistic limit, we shall keep, closely following
Alberico et al., (1989), all the contributions up to the second order in the expansion
in powers of 1/M as far as the pionic currents are concerned. The purely nucleonic
current instead will be treated in an approximate relativistic form, which gives results
within, say, a 10% accuracy with respect to the fully covariant one. The rationale
for this procedure stems from the recognition that, in the problem of identifying the
expansion parameter for the non-relativistic reduction of the response of a collection
of pions and nucleons to an external e.m. field, two scales are in fact present. The
first one is associated with the dynamics of the system (namely the nucleonic motion
and the exchange of pions) and is naturally identified with the expansion parameter
q/M, the second instead is introduced by the e.m. interaction and it emerges already
at the level of the single nucleon, being essentially related to the large anomalous
magnetic moment of the latter. It is precisely this second scale which forces one to
keep as far as possible the fully covariant nucleonic current, otherwise meaningless
results could be obtained in pushing the investigation of the nuclear responses up
to momenta of the order of, say, 1 GeV/c.

Although with obvious limitations the model we are discussing has the merit of
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consistently dealing with the dual role played inside the nuclear structure by the
pion, which is simultaneously glue of nuclear matter (OPEP) and current carrier
(MEC). Furthermore it allows to test fundamental properties as the gauge invariance
of the theory, which can only be fulfilled providing there are MEC in the current
and pionic correlations in the dynamics, i.e. in the Hamiltonian.

Current 0o(1) O(x) O(x?) O(x®)

On & —

@ @ ®
|

QMmEc — —

Qcorr ® — —
Iy — ® — b2
ImEc — ® — ®
I corr — ® — &®

Table 1. Orders in & = ¢/2M of the non-relativistic
expansion of the nucleonic, MEC and pionic two-body
currents.

We also like to argue that, as far as the nuclear responses are concerned, in the
region of deep inelasticity the pion might be the most relevant component of the
NN interaction, this not being the case in the dynamical situation characterizing
the ground state of nuclear matter. In this connection it would be of much interest
to test this conjecture by comparing the responses of the present pionic model with
the ones obtained from other relativistic nuclear models, notably the one of Walecka,
which resorts to the use of the o and w mesons (Serot and Walecka, 1986).

We restrict ourselves here to consider the responses within the p-h sector of the
nuclear excitations [although the two-body currents we are considering also play an
important role in the 2p—2h sector, as we have seen in considering the transverse
response (Section 4.2)], because in the QEP the interplay between the MEC and
the correlation current is more transparent. In order to keep track of the various
contributions to the nuclear responses, we indicate in table 1 (with self-explanatory
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notations) all the terms in the non-relativistic expansion up to the order 1/M 3 of
both the nucleonic and pionic currents entering in the present analysis.

We have already given the explicit expressions for the space—components of the
pion—in—flight, contact and w—correlation currents in Section 4.2. Here we report
the corresponding charges. They read:

2M f i o ky o-k;
(et k) = =7 1o X lmxﬂx’f’m""
x [(p'3 - p2%) = (p'? - P1?)|4t1 F, (6.17)
2M fi < ks
Qcont(ki, k2) = —ﬁ'f_ [X o (Pl + Pl)XuXI kz +me Xeaa
c-k
leﬁXnX , O (pz + pz)xu] 44 FE (6.18)
and
Qcorr(pipl;pQPZ) =
16M° f2 XI’, (kz ‘”)X’lxla(kz )X

Q2 m2 {2Mw - q- (p} + p1))? — (q-kz)?}(k} + m2)
X {[2Mw — q - (p} + p1)]2t2F& — (a- k2)[FE + t2(1 + 2t1)Fp]}

+ {1 «— 2}, (6.19)

respectively (£ is the volume enclosing the system). Notice that the MEC charges are
O(1/M?), while the leading term of the non-relativistic reduction of the correlation
current, [(eq. (6.19)] is of O(1) (see Table 1). The next term in the expansion of the
latter (of order 1/M?) is given by a quite cumbersome expression, not reported here
(see Alberico et al., 1989).

With the above ingredients one can calculate, according to (4. 3) and (4.4), the
longitudinal and transverse response functions entering into the (e, €') inclusive cross
sections. Just for the purpose of showing how the latter look like, we report here
the contributions to Ry and Ry coming from the correlation current. They are
separated into self-energy and exchange terms (corresponding to the diagrams (c,d)
and (f) of Fig. 3.1) and read

6
AR o) = @2 L
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a.—vO 3a/(2 )30(LF k)o(la+k| - kp)5(w+a— 258, L h]?(['k)
(p—k)? (a+k-p)
= (e s A

and

corr

A‘RL(e:m:h) (Q’ w)

2MEy f2 dk K21Q?| Hhlq-k
= @B L [ o, — mola+ ki - by (e - S - LK)

x/ dp 0(ke — p){ — : e ~p)

(2m)3 q- (k-p)[(k-p)?+mi
(a+k - p)?
q-(q+k—-p)(a+k—p)?+mZ]
(¢*+2q-k);  (k-p) (a+k —p)? e
- 2M?g? [(k p2+m2 (q+k-p) +m3r] (@)}’ (6.21)

for the longitudinal response, and
AR y(9,w)

) 36a f;‘: . 0 dk
-7 (Q )2Mkp3 m2 il—r% Oa J (27)3

x6(w+a— Al _ h;llk) /(;7:))39(@—17)[42(#3&#3)

O(ke — k)0(lq + k| — &¢)

oM
(q-k)? (a+k-p)? (p - k)
+4k? -4 pe H(q+k—p)2+m3,—(p—k)2+m3r] (6.22)
and
AR oeny(€:w)
- £a R*Q? A’q-k
==’ )2Mk3m2/(2 E ~E)f(la+ k| - )(h‘”' oM M )

1 1

x [(3#3 ~2){q-(a+k-p)} - 4(a+k-p)*(k-p- (i%‘!ﬂ)]
1 1
~ 2Mw-q-(q+2p)(p—k)2+mi

X [(3#3 —p2){a-(p -k} —4(p - k)’ (k p- i‘-"—‘jﬁ“—"’—))] } (6.23)
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for the transverse one. In the above formulas {4 = 3724, p, = p, + pn and
Py = fip = fin)-

One should notice that the energy conserving §—function has an w-dependence dif-
ferent from the corresponding non-relativistic expressions since in it |Q?| = |w? — ¢?|
(instead of ¢?) appears. This affords an approximate (but accurate) treatment of
the relativistic nucleonic current and makes a significant difference when consider-
ing large w, especially on the high energy-loss side of the quasi-elastic response.
Analogous arguments suggest the use of the Sach’s form factor Gg(Q?) whenever
the generic f(Q?) occurs.

Concerning the gauge invariance of the correlation current, the self-energy contri-
bution (6.20) exactly fulfills it, being expressed through the charge—charge response
R(Q NQcorr; qw) alone [see also eq. (4.6)], whereas the exchange term (6.21) breaks
gauge invariance, although mildly so, through the term proportional to (¢%/Q?): in-
deed the above currents, while being gauge invariant both in the fully relativistic and
in the extreme non-relativistic cases, do not necessarily satisfy this property at each
order in the non-relativistic expansion in 1/M. The numerical evaluation of these
unwanted deviations shows, however, that, to the order 1/M? included here, they
are very small. Analogous considerations apply as well to the MEC contributions.

In Fig. 6.2 we display the longitudinal response including all diagrams with one
pionic line and all contributions up to 1/M? in the non-relativistic reduction; also
shown is the free RFG response. At small ¢ a substantial depletion of Rz on the
low—energy side occurs, mostly induced by the correlation term and due to the
coherent effect of the self-energy and exchange terms. Instead, on the high energy
side, they tend to enhance the RFG response. These effects gradually fade away
and are entirely washed out when the momentum transfer reaches, say, 1 GeV/c.
Concerning the MEC contributions, they remains altogether small, although less so
in the transverse channel, where the A—current increasingly reduces R (up to 30%
for ¢ =1 GeV/c).

These results bear some consequences both on the Coulomb sum rule and on the
scaling behaviour of the responses. The evaluation of the former can be performed
according to the prescription of Donnelly et al. (1988): this allows an almost model
independent parametrization of the dividing factor for the relativistic Rz (obviously
providing the correct asymptotic value). The Coulomb sum rule is shown in Fig. 6.3,
where it is clearly seen that the pionic correlations deplete Sz up to ¢ ~ 900 MeV/c.
We remind the reader that, as previously discussed, RPA correlations deplete the
sum rule as well: however in the longitudinal channel they are not carried by the
pion and, moreover, they hardly lend themselves to a relativistic treatment.

The scaling properties of the cross sections evaluated within this “pionic” model
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Fig. 6.2 — Longitudinal response function at ¢ = 300 MeV/c. The dotted line
is the RFG response, the dashed line is the correction due to pionic
correlations [eqs. (6.20) and (6.21)] and the dot—dashed line the one
due to MEC. The continuous line is the total response.

and divided by the function X [eq. (6.11), as suggested by the RFG approach] turn
out to be somewhat affected in the negative 1 region and for not too large g—values.
Obviously once the pionic correlations are faded away, the same considerations apply

as for the RFG.

6.3 Beyond the Nucleon’s Degrees of Freedom

The last decade has witnessed an impressive growth of the search for manifesta-
tions of subnuclear degrees of freedom inside nuclei, more at the level of theoretical
speculations than on the experimental side. Indeed, although the evidence till now
accumulated is admittedly limited, yet the subject has attracted such an intense
and widespread interest that it is an easy prediction to anticipate that the hunt for
quarks inside nuclei will be much strengthened in the future. Here we just want to
give a glance to this new field, which has added a truly new dimension to nuclear
physics.

As a first comment it is appropriate to remind that the advent of these new degrees
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Fig. 6.3 — Coulomb sum rule with the correlations and MEC of the “pionic”
model discussed in this subsection (continuous line). The longitudinal
response has been divided by the “form factor” suggested by Donnelly
et al., (1988). The dashed line corresponds to the RFG sum rule.

of freedom has changed our conception of nuclear forces at short distances. Indeed,
the repulsive core, which for years has been the most empirical component of the
NN interaction, baffling any theoretical interpretation, begins now to be understood
precisely in terms of quarks degrees of freedom. In fact it has been possible to
show, relying on group theoretical methods, that the symmetry properties of the
quarks states produce a node in the nucleon—nucleon wave function at short distances
(Faessler et al., 1982). Notable, in this connection, is the analogy with the forces
governing molecular physics.

Concerning the response of the nucleus to both electromagnetic and hadronic probes,
in extreme kinematical domains, the hope here is of unfolding the nucleonic structure
inside the nucleus. Clearly the hard question is how large the energy employed in
exploring the nucleus should be in order to unambiguously detect quarks degree of
freedom. The difficulty in answering such a question lies in the present situation
of intermediate and high energy nuclear physics where, in principle, a well-founded
theory, QCD, is available, which is however extremely difficult to handle in practice.
Accordingly, for use in the non perturbative regime, one is forced to reduce QCD to
models like skyrmions, bags of various kinds, the confining quark model of Horowitz
et al., (1985) and the like [see, for example, (Skyrme, 1961, 1962), (Adkin et al.,
1983), (Thomas, 1983)]. As a consequence the interpretation of the available data
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in terms of an underlying microscopy is never fully convincing. Yet the experiments
points to the occurrence of some new dynamics inside nuclei and here we shortly
summarize the related evidence.
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Fig. 6.4 — The EMC effect.

The first one is provided by the celebrated measurement, carried out in 1982 by the
European Muon Collaboration (EMC) (and, since then, in different laboratories as
well) via deep inelastic muon scattering, of the ratio

> F. ZA(Q2 ) X )

R=Fr@.x) (6:24)
between the structure functions of iron (A=56) and deuteron [normalized to a single
nucleon, FA = (1/A)F4!] as a function of the Bjorken variable X = Q*/2Mv (v =
K*Q,/M). We remind that for small scattering angles the structure function F} is
the dominant one, see (6.25). The results are displayed in Fig. 6.4, where the band
embodies the Q?-averaged experimental points, available up to the Summer 1987
(Van Hove, 1987), and it is indeed remarkable how reach is the physics conveyed by

the data.

The growth in region IV stems simply by considering the momentum carried by a
nucleon inside the nucleus (the Fermi motion). This quantity is in fact a fraction
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1/A of the total nuclear momentum, thus allowing the Bjorken variable X to exceed
the maximum allowed value for a free nucleon, i.e. the unity, and such an effect is
obviously more marked in a heavy nucleus than in deuterium.

The evident minimum of region III has been ascribed (Akulinichev et al., 1985);
Chanfray et al., 1984; William and Thomas, 1986) to the binding effect which, by
reducing the nucleon mass, correspondingly increases the value of the Bjorken vari-
able. It is striking to see how a small effect can have such a conspicuous consequence
on the ratio R.

The decrease of R in the region I is thought to reflect the partial absorption of the
virtual photon exchanged between the muon and the nucleus before the occurrence
of the “hard” scattering. This process, referred to as “shadowing”, has first been
observed in the case of photon absorption in nuclei (% = 0) where it is associated
with the well-known dominance of a vector boson in the hadronization of the photon
wave function. Here, at large Q2, it may possibly reflect instead a modification of
the gluon and quark distribution in nuclei.

The same distortion of the quarks and gluons distribution inside nuclei has been
especially invoked, as it is by now well-known, to account for the experimental
increase of R in region IL. This (see also Section 4.2) might lead to “swollen” nucleons
inside the nucleus as a result of partial deconfinement, which in turn would entail
colour conductivity. It should however be kept in mind that an enhancement of
the nuclear sea (equivalently, of the pion field inside the nucleus), a conjecture
which appears to be supported by the previously mentioned charge-exchange (He3,t)
experiment (see Section 5), would also lead to the observed increase of R in region
II (Ericson and Thomas, 1983).

Further experiments are obviously needed to clarify this issue and so we are brought
to examine new types of processes which could contribute for this purpose, namely
the Drell-Yan ones. They correspond to purely hadronic collisions leading (quite
rarely indeed) to the production of a dilepton. As a consequence the reaction is
controlled by the structure function of the proton (in an p-p scattering) or of the
proton and the pion (in a 7—p one) thus complementing, in the time-like region,
the deep inelastic lepton scattering above referred to. Remarkably an experiment
carried out at CERN (Bordalo et al., 1987) with a beam of negative pions impinging
on deuterium and tungsten targets with laboratory energies of 140 and 286 Gev
appear to confirm the modification of the nucleon structure function suggested by
the EMC data.

Finally of much relevance are the experiments of inelastic proton scattering, with
bombarding energy of 1 Gev, on a variety of nuclei. In fact here one observes the
production of particles in the region kinematically forbidden in the scattering by a
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free nucleon. This finding, referred to as “ cumulative effect” (Andronenko et al.,
1983), also points in the direction of a possible new dynamics inside the nucleus.

To establish contact with the formalism of high energy physics, providing at the same
time some hints for a better understanding of the physics discussed above, we just
remind here that the double differential cross section for deep inelastic scattering of
electrons out of the proton is expressed in terms of the invariants Q? and v according
to the formula

d’c  4wa’ e, (0

ddv -~ QF e 5) [Fz(Qz"’H%Fl(Qz,V) tan’ (g—)] (6.25)

In the lab system (where, incidentally, v = (Q*/2M) = € — € = w) it is an easy
matter to connect (6.25) with (4.1) by suitably defining formal relations between
the nucleon structure functions Fj 2 and the nuclear response functions Ry, 1.

As it is well known, the F;’s can also be looked upon as a function of X and Q? and,
if the quarks are pointlike, in the limit of large @ and X finite they become functions
of the scaling variable X only, thus leading to the celebrated Bjorken scaling.

For interpreting the physics addressed in this subsection a knowledge is clearly re-
quired of how the nucleon structure functions, expressed in terms of quarks degrees
of freedom within the parton model, change in going from the free space to the nu-
clear medium and how the nuclear response (structure) functions are related to the
corresponding nucleonic quantities. This is a chapter of physics which is currently
undergoing a rapid development: accordingly we will touch upon it only very shortly
without entering in details.

An important clue to the solution of the above problems is offered by the “rescaling”
hypothesis of Close et al., (1983) (CRR). It states that for two nuclei with mass
number 4 and A’, respectively, the following relation

Fz '(X’ Qz) = FzA{Xa EAA’(Qz)Qz}’ (626)

holds, £ 4.4:(Q?) being a function, independent of 4, A', whose Q? evolution is totally
controlled by QCD. In other words the structure functions of nuclei, as a function
of X, are connected by a change of scale in Q? which is universal.

A different approach to the same problem is the so—called convolution model which
decomposes the nuclear wavefunction into basic components, the nucleons in the
simplest case, and then add incoherently the structure functions of the constituents
to provide the one of the nucleus. While there is no fundamental derivation of
convolution model, various attempts have been made to build this bridge between
nuclear, nucleonic and quark degrees of freedom. An example is offered in the
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paper of Molinari and Vagradov (1989), who worked out the above connection in
the framework of a fully covariant mesonic model of the nucleus.

7. THE PATH-INTEGRAL APPROACH
TO THE NUCLEAR RESPONSE

In this section we aim at a more consistent theoretical foundation, as well as to
a more advanced computational treatment, of the nuclear response functions, the
motivation being that, in our view, a unified approach and a fully consistent ap-
proximation scheme are still lacking. In fact the Parquet equations, leaving aside
the computational difficulties associated with their solution, in practice can only
be tackled to a given order of approximation for their input, namely the set of ir-
reducible diagrams I'J, and the criteria for selecting these diagrams are euristic.
On the other hand the variational scheme, although remarkably successfull in many
instances, represents more an empirical approach to the nuclear responses than a
truly theoretical framework.

With the same attitude, in all the cases previously discussed in this report, we have
always chosen certain classes of diagrams, expected to describe the most relevant
features of the experiment under consideration, without paying much attention to the
mathematical coherence of the theory. In other words, the various approximation
schemes were not conceived as a truncation of a well-defined power expansion of
proved convergence properties in some parameter. Even when a set of diagrams was
summed up to infinite order (as in the HF or RPA cases) no argument was given,
beyond the relevance for the physics of concern, for their dominance.

At first sight this may not appear so important, since one aims, above all, to a
sound description of the experimental data from the physical point of view. Yet to
disregard too much the formal aspect of the theory may have serious drawbacks. The
first one concerns, as above mentioned, the difficulties one encounters in dealing with
the corrections to a given approximation scheme. The obvious example is the RPA
itself. It is indeed hard to answer the question: under which conditions does RPA
work and when, instead, it should be expected to give unreliable results? Another
one concerns the violation of general theorems, which should hold valid for the
exact many-body hamiltonian, induced by approximate frameworks. For example
the Hugenholtz—Van Hove theorem (Hugenholtz and Van Hove, 1958), stating that
at the Fermi wave number k, the nucleon self-energy should be equal to the nucleon
binding energy, holds good in HF, but breaks down in Briickner-HF. Analogous
considerations apply to the compressibility sum rule [see e.g. (Pines and Noziéres,
1966)], which links the second derivative with respect to the density of the binding
energy with the static limit of the polarization propagator for vanishing momenta.
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Of more direct concern for the nuclear responses are, as we have already seen, the
constraints imposed by the gauge invariance and, if a relativistic description of the
nuclear many-body response is attempted, by the covariance of the theory. In this
connection the experience shows that the enforcing of these constraints is often
realized through the cancellation of different diagrams, hence the failure in ensuring
them might results in incorrect theoretical predictions.

Remarkably these drawbacks are not present in the approximation schemes of QFT,
namely the perturbative approach and the loop expansion. Indeed in QFT it usually
happens that a theorem, once proved in general, holds true as well order by order
in the above mentioned expansions. Accordingly we shall pursue in this section the
aim of dealing with the nuclear response functions in the modern QFT framework
following, in so doing, the tradition, which goes back to the pioneering works of
Migdal, Galitskii, Goldstone and others [see (Pines, 1962)], of closely linking QFT
and many-body theory.

7.1 Response of a System of Nucleons and Pions
to an External Pion-like Field

Consider as a first example a system of nucleons interacting via the exchange of
pions. As usual we write the (unrenormalized) lagrangian of the system in the form

—_ 1 2 m2 —_
L=9(p-M)p+3(0.2) - —2’%2 — igysTY - B (7.1)

with obvious meaning of the symbols. The corresponding response function is im-
mediately built up according to the prescription of Sect. 2, by adding to £ a further
term describing the interaction of the system with a classical external pion-like field
[recall eq. (2.3)]:

Lo L =L-ja(z) o(z) (7.2)

and then by applying eq. (2.15). Now the generating functional Z[¢g] is suitably
represented in terms of Feynman path integrals as

Zle)= 5 [ Bt F] ex {z [ d=le - iata) -qo(w)]} . (13)

This expression deserves the following comments
1. all the quantities appearing inside the functional integral have to be regarded as
classical variables (eventually anticommuting when referring to fermion degrees
of freedom);
2. from the generating functional all the physically relevant quantities are deduced
by means of functional differentiations. In particular any theorem, when stated
for Z, automatically holds (or it is immediately translated) for its derivatives;
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3. in (7.3) the nuclear medium does not explicitly appear. However the presence of
a nucleon back-ground (finite or infinite) is hidden in the boundary conditions
to be imposed on the classical fermion fields ¥(z) and (=) for t — too and
must be kept into account when integrating over them.

4. In general for lagrangians as (7.1) one faces the renormalization problem. The
procedure for solving it is well known in QFT (Bogoliubov and Parasyuk, 1957;
Bogoliubov and Shirkov, 1959; Zimmermann, 1970), but in addition one can
prove that each diagram in perturbation theory remains finite (with the same
set of counterterms) in presence of the nuclear medium (Alberico, Cenni et al.,
1988).

Once the generating functional Z is known, it may be expanded in Feynman dia-
grams yielding the conventional perturbation theory, but one may also directly work
on Z, thus eliminating some degrees of freedom by means of a functional integration.

The idea of dropping unwanted degrees of freedom is quite old in nuclear physics
(Feshbach, 1962; Brandow, 1967): for example the pionic ones can be eliminated
(Gari and Hyuga, 1976) by means of the Feshbach’s projection technique or via
the Foldy-Wouthuysen (FW) transformation. In the functional scheme a simple
gaussian integration leads to the same result. Indeed one sees by inspection that the
exponent in (7.3) is bilinear in the pionic field, thus allowing the explicit integration
over ®. One gets (up to irrelevant constants)

2ig) = [ D] exp{i [ del(e) (- 30) i)
~ L [ dedyia@)oa - 0ia) - [ daia(z)-9l@)]}- (14)

(A being the free pion propagator).

Eq. (7.4) embodies ezactly the same physics as (7.3), since in its derivation use
has been made of an identity, but the remaining integration variable may now be
interpreted as the physical fields to deal with and the exponent inside the integral
as an effective action. In other words, without loosing any physical information, we
have translated the original lagrangian in an effective one, reducing the degrees of
freedom, since the pions have disappeared, being replaced by a quadrilinear non-
local energy—dependent NN interaction. Of course the same result can be achieved
in the frame of the FW transformation, but here we get the formal gain that the
renormalization of the theory is ensured and needs not to be performed “by hands”®

5) Actually this statement is not fully correct. In fact a furter term should be
added to the lagrangian, namely a factor A/4!(%$?)?, even if the renormalized value
of ) is assumed to be 0, because in any case its counterterm must be present.



- 82—

The alternative approach of eliminating the nucleonic degrees of freedom instead of
the pionic ones is not trivial in the context of the FW transformation, but is simple in
the frame of Feynman path integrals, because the fermion fields too appear bilinearly
in the lagrangian and consequently may be again integrated out. In fact with the
change of integration variable

2(2) - B(z) - (o) (1.5)
the functional integral is recast in the form
Z(¢] == exp {iso- Aa‘so} [ plove)
N 242
X exp {z’ [Jso"zp +38 AT - gia B —}4» : Ao_l‘l’] } , (76)

So being the free nucleon propagator and the space-time integrations being under-
stood. Then the integrations over i and 1 are elementary yielding

20 =x e { e a5t} [Pl
X exp {i[%&-Ag‘@-V,{&H—;é-A;‘ ]}, (7.7)

where the effective interaction V,, reads

(=

Ve[®] = —itr Z 111 [igysT - Qso]n
1 [ aya:m e ) a)n) + 0, (78)

where IT*/ = I1°6;; notably coincides with the free polarization propagator, of course
with suitably defined vertices.

The following comments are then in order

1. the physical system described in (7.7) appears to be different from the original
one, since the functional integration is carried out on the pionic degrees of

This term prevent functional integration of the field ®. Eq. (7.4) should then be
regarded as the 0t* order of the perturbative expansion in A. Higher orders should
cancel divergences connected with the 7 — amplitude which remain already present
in (7.4). In other words the divergent diagrams with four—vertices closed fermion
loops are still to be renormalized by hands.
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freedom only. However the correspondence between the integration domain of
the functional integral and the Hilbert space of the quantum system implies
that we are dealing with a collection of pions interacting by means of an indeed
complicated, highly non-local, self-interaction. Nevertheless eq. (7.7), together
with the definition (7.8), embodies exactly the same physics as (7.3).

. Once the nucleons have been integrated out, their dynamics is fully accounted
for, together with the boundary conditions over the nucleon fields. In fact,
while (7.3) shows no explicit dependence upon kg, in (7.7) the k- dependence
is exhibited by Sp. For example, depending upon the boundary conditions, So
can be the usual Feynman propagator Sr of the nucleon in the case of fermions
and pions in the vacuum, or we could take for it the expression corrected by
the Fermi sea, namely

g+ M
2E,

58 (q) = Sr(q) + 2mi6(go — Bq)8(ks — q) (7.9)

and in this case we face the already mentioned problem of the renormalization
of the theory in the medium and the complexity of the many-body problem
(Alberico, Cenni et al., 1988). Finally we can use the simple expression (3.2)
when dealing with the non-relativistic many-body problem. It is remarkable
that in any case the topological structure of the theory is exactly the same.

. Finally the structure of the effective lagrangian is clear: its first term is simply
the lagrangian of the free boson field, whereas the second one is a “potential”
term which may be described in terms of Feynman diagrams of the original
theory. In this frame V,[®] is given by the sum of all the diagrams containing
one closed fermion loop.

7.2 The Perturbative Expansion

In this paragraph we shortly outline the structure of the perturbative treatment of
the effective lagrangian derived in the previous section. If we introduce for sake of
simplicity the function

1,
7= EAOI«P (7.10)

and consider Z as a functional of 9, the second derivative of Z. with respect to ¥
[recall eq. (2.10)] is just the pion Green’s function with the two external legs cutted
out, i.e. the total (reducible) pion self-energy.

The perturbative expansion is then immediately obtained in the closed form

1 3 14 i
Zlvl = p7 exp {-;-1 - Ao‘Y} exp {—in [; 5] } exp {—-;-1 . on} (7.11)
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as it can be seen, for instance, by multiplying by A the effective potential, expanding
in powers of A and then setting A = 1 at the end of the calculations.

It is worth noticing a topological analogy between (7.11) and the hole-line expansion
for the Green’s functions deducible from Z. We have already mentioned that, in
terms of the original theory, the effective potential V includes all the diagrams with
one fermion loop and as many vertices as desired. On the other hand the nth order
contribution in perturbation theory will sum up all the diagrams (of the original
theory) containing exactly n closed fermion loops. The analogy with the hole-line
expansion is then clear since the momentum integration over each fermion loop is
cut at ke (because at least one of the internal lines of the loop is a hole line).

Of course the two expansions are not identical: indeed adiagrammatic analysis shows
that (7.11) embodies both the p-p and the p-h ladders, being in addition well
grounded and uniquely defined, while the hole-line expansion is not.

7.3 The Semiclassical Expansion

Another typical tool of QFT is the semiclassical (ki or loop) expansion. At vari-
ance with QFT, in the present case perturbation theory and loop expansion do not
coincide, because the potential V is not a monomial.

To understand how the semiclassical expansion works here let us consider first the
lowest order, which simply amounts to evaluate the functional integral in the Station-
ary Phase Approximation (SPA). The saddle point [eq. (7.7)] satisfies the equation
of motion

(04 m2)B(2) = = Va(®) — 7(z) (1.12)

5
i®(z)
which describes the evolution of a classical pion field (we solve in fact the classical
equation of the motion) under the effect of the potential V; and of the external field
4. Once a solution of (7.12) has been found [let it be ®o(z)] the SPA amounts to
set

/D['I’]exp {z [—;—&-Agl'ﬁ—Vﬂ[éH-‘I"‘Y]}

= exp {'l [%‘}0 . A0_1§0 - V,r[§0] + §0 . ‘Y] } (7.13)

The exact solution ®¢(z) cannot be written down explicitly, but in practice it is not
needed, an expansion up to the 2™ order in 7 being sufficient. The latter is easily
obtained by noticing that the sum in V, [see eq. (7.8)] starts from n = 2, which
entails that §V,($)/§®(z) is at least linear in ®. Consequently if we let ¥ — 0 into
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(7.12) we find that one solution of the classical equation of motion is & = 0. The
latter is surely not the only one (Cenni and Saracco, 1988), but unfortunately other
non-trivial solutions of (7.12) have not yet been sufficiently investigated.

Assuming nevertheless & = 0 as a starting point for an expansion in powers of v,
we may set

Bo(z) = / dy C(2,9)1(y) + O(). (7.18)

Then, from eq. (7.13), the action evaluated along the classical path is seen to be of
second order in 4: precisely what is needed to evaluate the polarization propagator.

Equation (7.12) is now easily solved, since in §V,(®)/6®(z) only the term with

n = 2 is of first order in 4. Thus, to this order and recalling (7.8), equation (7.12)
will read

- [ @+ mE)C(@ 1)
= [ay a1z - )0, (=) - 7(e) (7.15)
which is satisfied (with standard symbols) by

/ dy C(2,y)1(y) = — / dy Arpa(z — 1)1(9) (7.16)

where
1

Ayt —TI0

is nothing but the RPA-dressed pion propagator. Therefore the classical field solu-
tion is

Appa = (7.17)

2o(e) = - [ dyAreale - ¥)1(0) +O1). (7.18)
Then, from (7.6) and (7.13), one gets for the generating functional the expression

Z[y]

Al/exp {';“7 - (Ao — ARPA)‘Y}

1 1 - -
= — exp {'2?90 . AO 1(A0 - ARPA)AO llp} (7.19)

and, according to (2.15), two functional derivatives lead finally to the polarization
propagator

1 1
Py

1, _ -
= g_on 1(AO — Arpa)Ag t=
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We have thus recovered the familiar RPA expression for the polarization propaga-
tor, but we have also shown that in fact the RPA coincides with the semiclassical
approximation of an effective theory. To go beyond, it is then sufficient to apply
the rules of the loop expansion in QFT. Since the only degrees of freedom in our
effective lagrangian are the pions, to construct the n** order correction these rules
are the following:

1. Associate to any term of the interaction V, a bubble with, say, k vertices,

2. draw all the topologically distinct diagrams with n loops which saturates all the
vertices and with the desired number of external legs, considering the bubbles
as topologically equivalent to points,

3. associate to any line a RPA-dressed pion line,

4. evaluate the diagram according to the usual Feynman rules.

7.4 The Response to an Electromagnetic Probe

We now let our system of pions and nucleons to interact with an external electro-
magnetic field (Alberico, Cenni et al., 1987). The minimal coupling then prescribes
of adding to the lagrangian (7.1) the free e.m. lagrangian and the interaction terms.
Thus

L— [ i—F,,,,F’“’ +juAP 4 B, AR A (7.21)
where
. — 14
ju=ed —2—37,@ +e[® x 0,8, (7.22)
2
B, = etg,, 3+®™ = -;— [®2 + 82] g0 (7.23)

The generating functional [for sake of simplicity we consider the coupling of the
system to an external electromagnetic source, jff(:c), only] will then read

1
Z [j;x] =N D W,¢,§,A#] exp {i/dw [j;"A“]}
X exp {z / dz[L+ Lem. + FuA" + B#,A#Av]} . (7.24)

As before Z (which provides the photon propagator) will be connected to the re-
sponse function through the cutting of the external legs. Note that in (7.24)
Lem. (: —i—F“,,F“”) embodies (although not explicitly) a gauge-fixing term in
order to suitably define the free photon propagator.

Now the e.m. interaction of nucleons and pions does not alter the bilinear structure
of the lagrangian with respect to the fermion (as well as to the boson) fields. Ac-
cordingly either the boson or the fermion fields can be dropped out. We shall focus
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again on the elimination of the fermion degrees of freedom ( the alternative option
leads to the traditional MEC scheme), which yields

Z i =% /’D [, A,] exp {i/dz [-;-(aﬁi-)z - %mf,i-z + Le.m.]}
X exp {z / dz [e(® X 8,8)s A" + B,J,,A“A"]}
X [det 5"1] exp {z / dz [j;"(:c)A“(:c)]}, (7.25)

where

S5z -1y)

= {(z@z - M) - igysT- B(z) +e

2o se-) (120

describes the propagation of a fermion under the action of the pionic and e.m. field.
Its determinant can be cast into the form

det §7' = exp {~iX(4, @)}, (7.27)
where
1Y, _oaltTs "
T(4,®) = ztrnz::l - [(zg'ys'r P -eA 5 )So] (7.28)

describes a fermion loop with any number of vertices, both of bosonic and of elec-
tromagnetic nature.

The response function entailed by (7.25) reads

6*Z
yrtot =
M (2:9) = ~ 5o sty

, (7.29)

a,=0

where the (classical) external e.m. field has been redefined by including the photon
propagator, i.e.

0,(2) = [ dy D3 (z - 1)it(w) (7.30)

To get rid of the e.m. field we keep the coupling with the latter up to the order e?,
retaining only those fermion loops with 0, 1 or 2 external e.m. vertices. Accordingly
we write

SA] = Val8] + con(Ble)44(2) + LB (B4 @A), (18)
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. o~ 1. n
iVy[®] = tr Z:l ;[zg'ysr - P So]
1
=5 dydzIT* (z,y) ®i(2)®1(y)

+%/dZdUdyI[klm(z’u,y)‘f’k(z){),(u)@m(y)+O(§4), (7323)

- -
- - 4
-
N S d
— .-._O.... + vese L 2 + voo
.
¢ ‘ -
P4 Vid [y

§3[A]

eal-‘(@Iz) = 5.4#(1:)

A,=0

1
= a/dydul'[f}(a:,y,u)@k(y)‘}l(u)

+% / dydudtTTH™ (2,5, 4, ) B1(3) @1(w) Bm(2) + O(8*), (7.32b)

L4 4
. .
. .
= *A'WO + &WO-~-' L
. .
y .
. .
and

B §2%[A]
¢ Pu(212Y) = 155 a,0)

A,=0
= Hyu(z’y) + /dzﬂﬁu(z,y,z)i'k(z)

1
+ 5 dzdullll (2,9, z,u)®k(2) B1(u) + o(2%).  (7.32¢)

v
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In the above, the quantities II{}I"JB;;_;{{';& , which correspond to the set of all the closed

fermion loop with n pionic vertices (hence the isospin indices j; ... jn) and k e.m.
vertices (associated with the tensor indices y ... ) have been introduced. They
are just the coefficients of the Volterra series for V., a,, Buv-

Then the generating functional simplifies to:
Z[a,] =% /D [@,A,,]exp{i/dz [%(8,,@-)2 - %mf,éz 4 Lom.
+e(® x 0,8), A" + e’Af‘<I>+§‘] - z'V,,[‘I>]}
X exp{—ie/d:c a,(®|z)A(z) - —;:ez /d:c dy B (B|zy)A¥ (z) A (y)
+i [ dedya (@)D (2 - )40} (7.33)
and a further gaussian integration eliminates the electromagnetic field, yielding
Zla,]) = % /D[@] exp{i/d:c [:,12- (8,8)" — :‘lz-mf,i'z] - iV,,[‘I>]}
X exp{—% / de dy [/ dza®(2)DY (2 - 2) - ea,(®]2)
+e(®x0;2), (:c)] D*(®|zy) [/ dz a”(z)Dg;l(z -y)
— eo, (Bly) + e(® x 9Y®), (y)] } {detD[3]}'/2. (7.34)
In the above a dressed photon propagator has been defined according to:
% / de dy A¥(z) [Df;‘(z ~ )
+ 260, ()8~ (1)5(e — 1) - Bl o) | 4°(1)

= 3 [ dedy 4) Dl Blo9)) " 4(0), (7.35)
or, equivalently,
D[®] = D° — 2¢?D°3* &~ D[®] + * D° B[ 2] D[ 2], (7.36)
which is satisfied, to the order e?, by
D[®] = D° — 2¢?D°3+t3~D° + 2 D°B[2]D° + O(®). (7.37)
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Moreover, with a standard procedure, we get for the determinant in (7.34):
det D[®] ~ exp {-tr(2¢’ D&+ &~ — 2 D°B[%]) + O(e*)} (7.38)

the first term in the exponent just corresponding to an electromagnetic renormal-
ization of the pion mass (cancelled by the renormalization counterterms) and the
second one to a series of fermion loops with n — 2 incoming pionic lines and two
contracted photon’s lines (see Fig. 7.1).

Fig. 7.1 — An example of the diagrams arising from the second term
in the exponent of (7.38).

We thus finally get for the effective action of our system of pions, interacting up to
the second order with the e.m. field, the expression

';‘/ dzdy ®(z)- Ag'(z — y) @ — Va[2]

be [ o) (@) - e[B(e) x B28()

5B =

+e? / dz 0,(2)8* ()2 (2)a"(z) — St(e DO[])

B % / dz dy {a"(a:)D.‘l,:l(vc — y)ak(y) + e’ a¥(2) B (2zy)a* (y)
- 26:201“(§>I:l:)D,o“,(fc —y) [B(y) x a;§(y)]3
+ eza”(§|z)wa(m —y)a’(2ly)

+€* [8(z) x 04 (2)]y Dpu (= — y) [B(y) x 35‘1'(1/)]3} : (7.39)
diagrammatically illustrated in Fig. 7.2. Of course some of the diagrams are irrele-

vant for our purposes. For example any diagram with an internal photon line will
contribute to the order e* and should consequently be dropped.
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Fig. 7.2 — Diagrammatic representation of the bosonic effective action
(7.39).

Let us now deal with the effective action (7.39) in the semiclassical framework. The
starting point is again the evaluation of the generating functional

. B
Zla,] = — / D[®]e 15w (2] (7.40)
N
in the Stationary Phase Approximation (SPA). The stationarity condition

Sx(®] _
#(z) =0 (7.41)
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(roman indices refer to isospin components) has now the following cumbersome
looking
5V (®]
§®i(z)
Sa, (®]2) i
—e/dza,J z) 6';(( ) —efa,(z)(1 — 8i3) B (2)a" ()
§ot(®|2)
2 —_ 7 0 — v . 2
+e [ayas iy Dtz — ¥)e" (21 (7.42)

e? P2
+ -2—/dydza“(z)————ﬁﬁgé(iicl)y)a"( )

+ 20701302 89(2) [ dy DY (o~ ) {[2(0) x 8 2(3)], — =*(2I)}

- [ ayas D2 - ) [B0) x 072(0)], = 0.

(Og + m2)®%(z) + + 2ea,(z)e3:;0% 3 ()

Yet a solution up to the order e? of this equation can be found. For this purpose
notice that (7.42) describes the classical pion field in the presence of an external
e.m. source. Clearly the vacuum expectation value of the pion field should vanish
in the absence of the e.m. field to keep parity and isospin invariance. A non-zero
value of the pion field is however induced by the external source. Accordingly we
set

Bg = 8 4 edV) 4 28 (7.43)
and, by identifying equal powers of e, we obtain for #(9) the equation
V. [®]
e :
(@e + m2)3(e) + Ggi) = (7.44)

satisfied by <I'( ) = 0 since Vy ~ &% 4+ .... As mentioned in Subsection 7.3, this
solution is not unique, other possible ones being associated with the collective modes

of the system. Neglecting collective effects, we take again Q( ) = 0 as the starting
point for our expansion. Then ®¢ should be at least of order e and consequently
[see eqs. (7.32)] the order of the various terms in the expansion of L{A] will be

Ve ~ €
a, ~ € (7.45)
B ~ 1.

Therefore @gl), in turn, will obey

(0, + m2)30(2) + / dy T (z,4) 8 (y) = 0 (7.46)
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again satisfied by (1) = 0. Thus, at least, &y ~ e, which implies

Ve ~ et a#~e4, Buv ~ 1,

6Vﬂ- ) &4_ 2 6ﬁ/.w

—_— ~ N]..
e ¢ 3 ¢ 5@

The equation for ng)(z), the first one being non-trivial, reads
[ #1a3(@ - w55 - @10 ()
1 ; v
-3 / dz dya"(z)IILu(z,y;a:)a (y)=0
and its solution

Bo(z) =€’ 3()(z)

2 .
= %b}s / dy dzduAgppa(z — w)II,,, (y, z; u)a"(y)a” (z)

is diagrammatically displayed in Fig. 7.3.

Fig. 7.3 — The SPA solution for the pion field.

(7.47a)
(7.47b)

(7.48)

(7.49)

Therefore the explicit expression for the classical pion field inside the nucleus, cou-
pled to the order e? to an external e.m. field, is neutral since the e.m. field and the
pion are only coupled through the medium. Note also that the RPA—dressed pion

propagator naturally arises from the theory.
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Having solved the classical SPA equation, one has for the generating functional
Zlaulspa = Fezs"“[%] (7.50)

and for the associated generator of the connected diagrams
Z.= S2[®]. (7.51)

In fact, since &;(z) ~ e?, one easily verifies that, to the same order only few terms
survive in Se% and the second derivative with respect to a, leads then to the simple
expression

Hf“’,f(z, y) = 2B, (Bo|zy) = 1l (2,y) - (7.52)

Thus we see that the SPA yields nothing else than the familiar free particle-hole
polarization propagator, remarkably independent upon the location of the saddle
point.

To go beyond this well known result we consider the next order corrections which,
in the semiclassical expansion, are the so—called quantum fluctuations around the
semiclassical (mean field) solution. The generating functional accounting for the
latter, which describes the well-known one-loop corrections, is

-1/2
zS # Snl2]
off {d t [m] §='§o}

— lex 52 - l T M
=¥ p{ Seer[®o] 2t In [6@ (3)6§J(y):|§=§o}

= iSB [®,] + i52M[&,] (7.53)

ZI

Z [a,#]

and the associated response function reads

52 SB[I] [QO]
da,da,

, (7.54)

HLO:(“” y) = ezﬂ,,,,(:c,y) 0
a"=
with

52521 (3]

ba,da,

= ie? Z{ §:5(1 — bis) [Arpa(z — ¥)96(z — y)

a,=0
+ §3§ARPA(3/ - 2)05Arpa(z — v))

+ / dz du[esaagARpA(Z - :c)ARpA(:c - u)Hff(u,z,y)
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1 ..
- EARPA(u - 2)IL] (2, u,:c,y)]
_ %/dz dudt dw[ARpA(u - z)Hif(z,t,a:)
R 1 ..
X Arpa(t — w)IIff(w, u,y) + EARPA(Z - t)II”s(t,z, u)

X Arpa(u = w)IL, (w,2,y)] } (7.55)

The diagrams accounted for by the above equation are displayed in Fig. 7.4, but for
the last term, which is vanishing.
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Fig. 7.4 - (a) Quantum fluctuation corrections to the polarization propagator;
(b) the RPA dressed pion propagator.

The first two diagrams represent an irrelevant (for the present purposes) renormal-
ization of the photon mass and the hadronic component of the photon wavefunction
(see Subsection 6.3). Concerning the second—order (in the exchange of a bare pion)
terms of the diagrams (3)—(6), they can be recognized in part of the ones already
considered in the Subsection 3.1. However the RPA dressing of the pion propagator
extends the diagrams embodied in the quantum fluctuations around the mean field
up to the infinite order of perturbation theory.
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Final Comment

In conclusion we wish to remind the reader that this presentation of the nuclear
responses largely reflects our own experience in the field. Thus many important items
have not been addressed: in particular we regret the omission of exclusive processes
like (e, e'p), which are disclosing new windows on nuclear structure. Nevertheless the
topics embodied here illustrate how much the intermediate and high energy nuclear
physics has contributed to our understanding of atomic nuclei, how many unexpected
features have come to light in recent years, and how difficult and puzzling are the
problems we are still confronting. As far as the general theory is concerned, we
believe that in the future the theoretical treatment of the nuclear responses will be
developed beyond the linear framework, that the languages adopted at intermediate
energy (nucleons and mesons) and high energy (quarks) will be less disconnected
from each other (although it is hard to foresee whether a unified description will
be ever achieved) and finally that those general requirements like covariance, gauge
invariance, etc. will be more and more closely obeyed. All this will entail profound
modifications in our conception of atomic nuclei.
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