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ABSTRACT
The theories proposed to reproduce, in the framework of the exciton model, the angu-
lar distributions of pre-equilibrium particles are reviewed. It is shown that, contrary
to a widespread opinion, the most refined calculations based on these theories al-
low a satisfactory reproduction of the experimental data, that is comparable to that
obtainable with quantum-mechanical multistep theories.
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1. INTRODUCTION

The exciton model, formulated by Griffin (1966), and improved by several other
authors (see for instance, Williams 1970, Cline and Blann 1971, Gadioli, Gadioli
Erba and Sona 1973), soon proved able to reproduce the angle integrated spectra of
emitted particles and the excitation functions of a large number of reactions (Gadioli,
Gadioli Erba and Hogan 1977).

However, the experimental evidence that the particles, whose emission when inte-
grated over the angles is well described by the exciton model, have a forward angular
distribution, throwed some doubts on the consistency of a formulation based on the
hypothesis of the equiprobability of all the states of a given n-exciton configuration
and of the decay modes of the composite nucleus. The argument is as follows. The
decay rates used for evaluating the angle integrated cross sections do not include any
provision to specify the direction of emitted particles. Rather, if the state densities
count all the possible states corresponding to a given energy and a given exciton
number, assuming them as equiprobable, also every direction of the emitted particle
should be equiprobable and hence the angular distributions predicted by the model
should be isotropic.

To reproduce forward peaked angular distributions one must introduce an angular
dependence in the expression of the decay rates for particle emission.

It may be easily shown (Gadioli et al 1977) that the expression of the decay
rate for particle emission A, (E,e;) may be factorised as follows (for simplicity we
consider nucleon emission):

_ pn—l(U)g Uinv(ec)vpc(ec) ¢
An,c(E,€c)dec = | on(E) Il av Jdec, (1)

where g and V are respectively the nucleon single state density and the laboratory
volume. The first term of this expression (hereafter to be called for brevity Py, (e.)) is
simply the product of the number of excited particles times the density of probability
of having a particular configuration with a particle with excitation energy equal to
€c+B (B is the particle binding energy, and the energy left to the other nucleons
is U). The second is the decay rate for emission of this particle in the continuum.
Let, now, {1 be the direction of the emitted particle with respect to the projectile.
In a generalised expression of the decay rate for particle emission, P, (e.) should
be substituted by a quantity Pn,(e.,02) specifying also the direction of the emitted
particle. The expression of this quantity, may be easily derived, for the 3-exciton
initial configuration, in the case of nucleon induced reactions. It is given by

Ps(ec, ) = 2Pk (€c, ) (2)
where

Prxr(ec, 1) = T a(klf)dk P aiiiék’- (3)
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Fig. 1 - Angular distribution of ~18.5 MeV neutrons from 25 MeV proton bom-
bardment of 1°7Ag. The experimental results (black triangles) are from Grimes et al

(1976).



o(ks)dky is the differential cross section for a single scattering in nuclear matter,
that leaves the scattered particle with momentum between ks and ks + dky in the
laboratory system. Its expression is given by (Hayakawa et al 1955):

_ _ 4dky
olks)dkys = vy1(47/3)k3,

/ o(k,k’)6(k'? — k?)dk. (4)
where v, is the velocity of the incident particle in the nucleus, kr is the Fermi
momentum, k¢ the final momentum of the scattered particle, k3 is the momentum of
the target nucleon and k and k’ are half the relative momenta of colliding nucleons
before and after scattering. o(k, k’) is the free nucleon-nucleon cross-section.

When emission from the first stage of the cascade dominates, the angular dis-
tributions calculated using in the expression of the decay rate for particle emission
Pukk(€c,) instead of P3(e.) reproduce quite reasonably the experimental angular
distributions of ejectiles up to = 90°. A typical result (obtained by assuming in
(4) isotropic free nucleon-nucleon cross sections varying as the inverse of the relative
energy of the two nucleons and considering refraction of the incoming and outgoing
particles at the crossing of the nuclear surface (Gadioli and Gadioli Erba 1980)) is
shown in Fig. 1.

It may be also shown that

/ Pa(ee, 0)dD2 = Pae.) = % (5)

as shown for a typical case in Fig. 2 (there P3 is reported as a function of U=E-B-¢,).
This relation means that to take into account, in a two body interaction, momentum
conservation results in a density of probability of finding a particle with energy be-
tween €, and e.+de., at the beginning of the cascade, that does not differ appreciably
from that calculated using state densities which count all the possible configurations
characterised by a given energy and three excitons. It also follows, that in the approx-
imation that emission to the continuum may be disregarded, a cascade of two body
interactions leads to exciton distributions that are very nearly those calculated by
considering all states as equiprobable. This validates the equiprobability assumption
first introduced by Griffin.

Consideration of emissions only from the initial states does not allow one to
reproduce the angular distributions at backward angles. In what fallows we will
review the various methods that have been developed to describe emissions from
subsequent stages of the intranuclear cascade.

2. GENERALISED MASTER EQUATIONS

These calculations do not take into account all possible dynamical paths in the
course of the cascade and limit themselves to an approximation which consists in
assuming that the classes of states reached during equilibration be characterised by
the exciton number n and the direction §1 of the fast particle.
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Fig. 2 - Comparison of the calculated values of P3(U)/g(¢) (crosses) and p1,1(U)/p2,1
(E) (solid and dashed lines), for a proton induced reaction and (a) E=33 MeV, (b)
E=68 MeV. The dashed line corresponds to level densities calculated using Fermi
Gas single nucleon densities g(e) = grg(€) o €1/2, the solid line to g(¢) = gre(€) for
€ < er and g(e) = grc(er) for € > ep (Gadioli et al 1977).



If P,(Q,t) is the probability of finding the nucleus in a state of class (n,0), at
time t, and the decay rate for transitions to states of class (m,2’) is Ap,m (2 — Q),
the master equation, first introduced by Cline and Blann (1971) to evaluate the time
dependent occupation probability of states corresponding to a given exciton number
n , may be generalised as follows (Mantzouranis, Weidenmiiller and Agassi 1976):

dP(ﬂt) Z/anmn’ Pmn (@ — Q)

~P(@, t)[Z/«m' (= 0) + 2], ©)

where

-y / Ame(E, ) dec )

is the total decay rate for particle emission. The differential cross-section for transi-
tion to channel ¢ is given by

d%c teq P (B ,
de.df) cx/.o Z n(02,2) n,c( y€c)dt. (8)

n,An=2

Assuming that A, (2 — ) may be factorized as the product of an energy times
an angle dependent factor one has

Am,ﬂ.(n — ﬂ') = Am,nG'm,n(n — QI)’ (9)

where Ay, ,, is the usual exciton-exciton decay rate. Diagonalising the intranuclear
scattering kernel G,, » (2 — 0’), according to

/ G (1 = V) Pi(cost!)dY' = py(m, n) Py(cost) (10)

and expanding the occupation probability P, (2 ,t) in series of Legendre polinomials

Po(0,8) = > mi(n,t)Pi(cosh), (11)
l

the generalised master equation (6) reduces to

dni(n,t)

dt = “l(n -2, n)An—2,nnl(n - Zat) + “l(n + 2, n)An+2,nnl(n +2, t)

—[A% + Annta + Anpn—z + (1= pi(n, 0)) An,n|mi(n, 2). (12)



Defining
an) = [ m(m et (13)

one obtains the time integrated master equation

—ni(n,t = 0) = mi(n — 2,n)An—2,n &i(n — 2) + mi(n + 2,7)Ans2,n &i(n + 2)

-[Aft + An,n-}-z + An,n—Z + (1 - I‘“(n’ n))An)n]gl(n)’ (14)
(Akkermans, Gruppelaar and Reffo 1980 and Costa, Gruppelaar and Akkermans
1983).
The double differential cross sections are given by
L0 (0,6) = 00 3 Ane(ee)r(m, ) (15)
ded a,c) =0, n,c(€)7(n, ),

where

7(n, Q) =) &(n)Pi(cos). (16)
!

Mantzouranis et al (1976) proposed for G(f2 — ’) the expression

d 7
GO - Q) = da((zl—rﬂ // a(ﬂ—»ﬂ) (17)
using for do(2 — Q°)/dQ’ the free differential nucleon-nucleon cross section
do  do dflg afly,
—_— ——10 18
an = ang o * ol H G (18)

where {1 and 1 refer to, respectively, the CM system of the two colliding nucleons
and the Lab. System and H is the Heaviside function. With this Ansatz analytical
expressions may be derived for the eigenvalues y; appearing in (9) (which also become
independent on the exciton number n) and for the ¢ (Akkermans, Gruppelaar and
Reffo 1980).

This approximation allows only a qualitative agreement with the data, and ne-
glects important effects like the Fermi motion of the struck nucleons and the Pauli
principle. To account for these effects Sun et al (1982) used for G(Q2 — °) the
energy averaged value of the differential cross section for nucleon nucleon scattering
in nuclear matter as given by (3) and (4):

G(Q - n,) = / o PHKK(63 ﬂ)dea (19)
Ep

where e=¢,+Epr+B is the nucleon energy, after the scattering, inside the nucleus,
and Ep is the Fermi energy. For Py gk they used analytical expression reported by
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Kikuchi and Kawai (1968) in the approximation of energy independent and isotropic
free nucleon-nucleon cross sections. The same approximation was also made in the
papers we will discuss later. Since the energy distribution of each excited particle is
now depending on n, also the eigenvalues y; display such dependence.

The ability of the theory to reproduce the experimental data is greatly improved
expecially at backward angles as shown in Fig. 3 for a typical case. However, the
factorisation of Ay n (2 — Q) in the product of an energy times an angle dependent
factor is certainly incorrect for the first few collisions of the projectile with the target
nucleons when the energy and the angle of the fast particle after the collision are
strongly correlated (a small loss of energy means a small deviation from the original
direction). This correlation manifests itself also in forbidding that in the first scat-
tering the fast particle be emitted at an angle exceeding a value x;(¢) depending
on its energy. The use of energy averaged kernels G(2 — 0’), to which also very
low values of the final energies contribute, violates this kinematical rule, as shown
by Iwamoto and Harada (1984). To take into account the angle-energy correlation
the classes of states reached during equilibration must be characterised not only by
n and (2 but also by the energy of the fast particle. The expression of the generalised
master equation becomes (Iwamoto and Harada 1984)

dPn (1, ¢,
n(dt ) — zm:/dn’/de’Pm(nI,f’,t))\m,n(ﬂ'e' N ﬂe)

—P,(9, e,t)[Z / dde' Ap,m (e — Q') + A2)). (20)
An,m(Qe— Q'€’) is now given as
An,m (e = Q'€') = Ap mGn(Qe — Q'¢), (21)

where A, ,, denotes the total transition rate from the n-exciton state to the m-exciton
state irrespective of {} and e. Iwamoto and Harada suggest for G, (e — Q’¢’) the
expression

Gn(Qle —» Q') = a,G(Re = N'€’) + Fnb(0 — Q')6(e — €'), (22)
with a, and B, satisfying the relation
ap + Bn = 1. (23)

Expression (22) considers both the interactions of the fast particle and of the other
excited particles. Notwhistanding such improvement, the fast particle approximation
is still operative, and in a sense is made stronger. In fact, as shown by Iwamoto and
Harada (1984), the angular distributions calculated using B, #0 are more forward
peaked than those corresponding to f8,=0, since the direction of the fast particle
is preserved to the next stage when in the previous one another particle interacts.
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Relaxing the fast particle approximation means to allow for emission to the continuum
of slow particles that thus increase the large angle yield being their direction much
less correlated to that of the projectile.

Relation (10) applies also to G,(f2e — (1’¢’) resulting in eigenvalues p;(n,e,e’)
depending both on n and the initial and final energy of the fast particle

pi(n, €, €') = anpi(e, €) + Brb(e — €), (24)

where pi(e,€ °) satisfies the relation
/dﬂ'G(ﬂe — Q'e')Py(cost’) = /dQ’PHKK (6,2 — € ,0)Pi(cost’) =

= pi(e, ') Pi(cosh). (25)

Use of relations (11) and (13) in this more general case and integration of (20) over
t leads finally to the time integrated master equation

21+1

ﬂl(n €inc, 5)67; no Z/\m n/de,&(m el)llll(n’e 6)

~&(r D Anym + M- (26)
Iwamoto and Harada (1984), have shown that, in the hypothesis of
An,n.+2 > Arr.,n.a An,n.—2, (27)
20 +1
éi(n,e) =7(n )— / dey / des..... /dé(n—no)/2
xll'l(no, €incy 6l)l‘l(no + 2,6, 52)---11'1("', €(n—n,)/2> 6), (28)

where €1,€2,...¢; are the energies of the fast particle after 1,2,...,j collisions, and

n—2

Aiyit2
=TT g Onm + 30 (29
Defining
7(n,0,¢€) =/ Pp(Q,¢,t)dt = Z&(n €) Pi(cosb), (30)
0

one finally obtains the cross section for the double differential cross section as
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Angle-energy correlation (by evaluating the eigenvalues of the intranuclear scattering
kernel G, (e

— ’¢’) using (25)) was first considered by Costa, Gruppelaar and Akkermans (1983)
in the case of (n,n’) reactions. However, these authors limited themselves to consid-
ering the effect of this correlation on decays from the initial n=3 stage, using for
later stages the energy averaged kernels (19). In addition to that, they considered
also the effect of refraction on the projectile and the ejectile as suggested by Gadioli
and Gadioli Erba (1981). A typical results is shown in Fig. 4. The agreement with
the data is quite good up to about 110°, but at more backward angles there is yet a
substantial underestimation of the measured angular distributions. Calculations by
Iwamoto and Harada (1984) who consider the angle-energy correlation at all stages
of the cascade reproduce less accurately the data.

Sato (1985) suggests that the agreement between calculated and experimental
angular distributions at backward angles could be improved including finite nuclear
size effects that the semiclassical calculation of Gn(fQ2¢ — ’¢’) disregards. To do
that, the nucleon-nucleon differential cross-section is evaluated in plane wave Born
approximation assuming a delta interaction V,6(r-r;) between the fast nucleon and a
bound target nucleon moving in an harmonic oscillator potential. After smearing the
calculated cross section for a nucleon-nucleon scattering leading the struck nucleon
from an n-fold to an m-fold degenerate state, with a Gaussian or Lorentzian weight
function the intranuclear scattering kernel is calculated by relation (17). The angular
distribution of particles emitted at the backward angles is now reproduced quite
accurately as shown in Fig. 5. These results compare quite favourably with one and
two step calculations made with multistep direct reaction theory by Tamura et al
(1982).

We conclude this discussion of the results obtained in the framework of the gen-
eralised exciton model by mentioning the suggestion by De et al (1985) that in eval-
uating the angular distribution of the fast particle one should take into account that
after the first interaction the nuclear temperature is no longer zero. Consideration
of this effect increases emission at backward angles thus improving the agreement
between calculated and experimental angular distributions.

3. LINEAR MOMENTUM DEPENDENT PARTIAL STATE DENSI-
TIES

In these calculations, in the framework of the exciton model, the phase space is
extended to total energy and linear momentum P of the exciton gas, and all excitons
in a given class of states (n,E,P) are treated statistically (this assumption is, then, in
some sense opposite to the fast particle approximation). This approach, disregarding
the dynamics of the cascade of individual scatterings, leads quite naturally, to a closed
form expression for evaluating the angular distribution (Madler and Reif (1980),
Iwamoto (1987)). The decay rate for nucleon emission to the continuum becomes

f pf
2s+1 Pp—l,h(U’ P|| ’PJ_)
AnclE,€e)dee = —— i - )
n,c( afc) €c 252 HEO nv(fc) Pp,h(E,Pﬁ,o)

(32)
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where P|"|=\/2me,-,w,

P"f = Pﬁ — V/2m/(e. + er + B)cosd,

and

Pl = \/2m(e. + er + B)sind.

To evaluate the momentum dependent state densities one starts from the partition
function (Méadler and Reif 1980)

Zpn(8,¥) = Z exp|—fE + V- Pg). (33)
k

Introducing a single particle level density g(e,Q2)=g/4w, replacing the summation
by an integration over single-particle states, if one neglects the Pauli principle, one
obtains

Zyn(B,V) = I%[/./( )dedﬂg(e,ﬂ)exp(—ﬂe—i—V- p)J°

x%[/ /('h) dedQg(e, ﬂ)exp(ﬁe—V-p)]h. (34)

The level density is the inverse Laplace transform of the partition function

oh(E,P) = o f f dBdvZ,p(8,¥)exp(BE —¥-P).  (35)
The application of saddle point approximation to evaluate the integrals yields

exp(Sp,h)

472,/ Dy p ’

where D, 1, is a symmetrical determinant whose elements are the second derivatives of
the natural logaritm of the partition function with respect to # and the components
of V. Sp,p is the entropy given by

pp.u(E,P) = (36)

Sp,h =InZ, 1(8,v) +BE -V - P, (37)
and S and V are obtained by solving the saddle-point equations

azP,h
op

9Zp,n

=—E, 2k _p. (38)

Fig. 6 reports the calculated density of states pp—1,,(U,P|, P1) as a function of the
angle of emission of the neutron in the case of the reaction 93Nb(n,n’) for €;n.=14.38
MeV and €.=5.5 MeV.



15

L T T T T
6 L\m-1
. b n=8 |
— 2 - n:s-
™
>
Q
= 0 -
2 -2 - n=b <
a
5 | -
a
= 1
‘.
i
o 8 T 7
£
’10 ol n:z-
(a)
42 L1 411

0 30 60 90 120150180
8 (deg)

Fig. 6 - Momentum dependent densities of states of the residual nucleus as a function
of the emitted nucleon angle and the exciton number n. The case considered is
neutron inelastic scattering on 93Nb at 61.1 MeV incident energy, the emitted nucleon

energy is 5.5 MeV (Madler and Reif 1980).



16

) S I N D D B SR DR SR D

T T TTT AT

d6/dQ (au.)
l)!‘ T

++
/ﬁ
111

LR
”

raasl
1

\.alll‘elz'l_..

-
°|
TTTIT T

e
1,111

1 \"

\ e

16 | Ege 22-32MeV | €= 32-L2MeV L€, +42-52 MeV_
1 1 1 1 1 J S B | 1 | 1 ) —

0 30 60 90120150 30 60 90120150 30 60 90 120150
8, (deg)

Fig. 7 - Comparison between experimental (Bertrand and Peelle 1973) and calcu-
lated angular distributions of protons inelastically scattered by 2°°Bi at 62 MeV. The
solid curve gives the result of Midler and Reif (1980) calculations, the dashed curve

of MSDR calculations by Tamura et al (1977).



17

The above formalism may be applied when the number of states in an element
AUAP)| AP is much greater than unity

Np_l,h = AUAP”APJ_pP_l’h(U, P”,PJ_) >1

to justify a statistical description of the reaction. Previous inequality is hardly verified
for states of the initial 3-exciton configuration at low incident energies, so the model
should be utilised at rather high incident energies and in cases where emissions from
n>3 states give a substantial contribution.

Fig. 7 show the comparison between data (Bertrand and Peelle 1973) and theory
(Madler and Reif 1980) in the case of the reaction 2°°Bi(p,p’) at 62 MeV. The ex-
perimental angular distributions are reproduced with accuracy comparable to that
obtained by Sato (1985) using the generalised master equation and Tamura et al
(1982) with MSDR theory.

4. GENERALISED HAUSER AND FESHBACH EXPRESSIONS.

Plyuiko (1978) and Fu (1988) propose the following expression for the double differ-
ential cross section of a pre-equilibrium process a+X— CS — b+Y (CS=composite

nucleus) o
d*o(a,b)

deadls k EL:(DL + Br)Pr(cosb), (39)
where
X2
k= 427, +1)(2Jx +1)°
DL=) (-1Y="%2,2, >  TrTFp(n—ns,Uy,Jy,Iy) (39a)
n=n,,An=2
and

By =CY /(=1)" "% Z, 2} (TP Tre TP Ty*)  p(no — ns, Uy, Jy,Tly),  (395)

J are total angular momenta (J without index refer to the CS), IT is the parity,
Zy = Z(loJ1aJ; 30 L), Zy'=i IG“IL“LZ(I,,JI{,J’;jaL} (analogous expressions hold for
Zy and Zp’ ), | and j are the orbital momenta and channel spins.

Plyuiko (1978) compared the angle integral of (39) with the expression provided
by a generalised master equation including spin

do

o = 2 9a(J 0, Jx) i [/0°° dtP(n,J,t)Any(E, J €5, Jy).  (40)

J n=n,,An=2

and, after having expressed the absorption cross section 04(J,€64,Jx) and the inverse
cross section appearing in the decay rate for emissions to the continuum A, 4 (E,J,€e5,Jv)
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by means of the optical model transmission coefficients T3?* and T,? t, obtained the
expression of the generalised transmission coefficients T::,b

[5° dtP(n,J,t)
hp(n, E, J,1I)

TrTE = TP (eq,1a)] ITP (ep, Ip)- (41)

Finally, in (39), >_=sum over J,II, Jy,Ily, Ju, 75, a, s and }_’=sum over J,II, J',IT/,
Jy Iy, Jas 365 las UG, 1s,Is° with the restrictions J# J’, and/or I, # 5’ and/or Iy # 1), ”.

Expression (39) is based on the hypothesis that one can apply the same expres-
sion that holds in case of statistical processes proceeding through strongly overlapped
compound nucleus states to pre-equilibrium processes proceeding through strongly
overlapped n-exciton states, retaining for n> n, the random phase approximation
(which eliminates any cross product of reaction matrix elements with different in-
dexes) and allowing a correlation between matrix elements with different indexes in
the initial n, state. Plyuiko suggested that this correlation should be operating only
for near diagonal terms and assumed a complete correlation for matrix elements with
lo-1,’==%1. Introduction of this correlation, by allowing odd order Legendre polyno-
mials in expression (39) leads to asymmetric angular distributions. However, later,
Fu (1988) remarked that, with this assumption, pre-equilibrium processes initiated
by high energy a-particles on even-even nuclei would always lead to symmetric an-
gular distributions (being not possible, in this case, interference of different I, ’s for
a fixed J), a result contrary to the experimental findings, and tentatively suggested
a partial correlation (C~0.5 in (39b)) between matrix elements with

AJ=0  Al,=Al=1, (42a)
AJ=1  Al,=Al=1, (42b)
AJ=1  Al,=Al=0. (42¢)

This assumption leads to satisfactory results as shown in Fig. 8.
5. CONCLUSION

Previous theories are the ones most usually employed, often with satisfactory results,
to reproduce the angular distributions in the framework of the exciton model. If
we exclude the generalised Hauser and Feshbach theory (that, however, is based on
assumptions that are reasonable, but not yet proved) these theories are still semi-
classical, neglecting, or taking only approximately into account important quantum
mechanical effects due to the nuclear finite size (Mantzouranis, Weidenmiiller and
Agassi 1976), the partial wave expansion of incoming and outgoing particle wave-
functions and distortion effects due to the coulomb and nuclear field. Nevertheless,
they demonstrate the great flexibility of the exciton model and its internal consis-
tency. Even if they are more involved than the theory one utilises for predicting angle
integrated spectra and cross sections the simplicity and physical transparency of the
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model are not lost. Since the basic parameters entering the theories are weakly de-
pendent on the mass of the nuclei involved and the energy, the most valuable feature
of the exciton model is also retained: the ability of reproducing large set of data and
predicting unmeasured cross sections with the use of a fixed set of input parameters.

REFERENCES

Akkermans J M, Gruppelaar H and Reffo G 1980 Phys. Rev. C22 73

Bisplinghoff J, Blann M and Keuser H 1978 Proceedings of the International Work-
shop on Reaction Models for Continuous Spectra of Light Particles, Bad Honnef,
Report of the Institut fiir Strahlen und Kernphysik der Universitat Bonn

Bertrand F E and Peelle R W 1973 C8 1045

Cline C K and Blann M 1971 Nucl. Phys. A172 225

Costa C, Gruppelaar A and Akkermans J M 1983 Phys. Rev. C28 587

De A, Ray S and Ghosh S K 1985 J Phys. G 11 L79

Fu CY 1988 Proceedings of a specialist’s meeting on preequilibrium nuclear reactions,
Semmering, February 10-12, 1988. Edt. B. Strohmaier, NEANDC-245 ’U’, 1988

Gadioli E, Gadioli Erba E and Sona P G 1973 Nucl. Phys. A217 589

Gadioli E, Gadioli Erba E and Hogan J J 1977 Phys. Rev. C16 1404

Gadioli E, Gadioli Erba E and Tagliaferri G 1977 Proceedings of the International
Conference on Nuclear Reaction Mechanisms, Varenna, June 1977, Clued Publ.
Co., Milano

Gadioli E and Gadioli Erba E 1980 Proceedings: Nuclear Theory for Applications
1980, ICTP Report IAEA-SMR-68/1, 1981

Griffin J J 1966 Phys. Rev. Lett. 17 478

Grimes S M, Anderson J D and Wong C 1976 Phys. Rev. C13 2224

Hayakawa S, Kawai M and Kikuchi K 1955 Progr. Theoret. Phys. (Kyoto) 13 415

Hermsdorf D et al 1974 Zentralinstitut fiir Kernforschung Rossendorf bei Dresden
Report ZfK-277 (1974)

Iwamoto A and Harada K 1984 Nucl. Phys. A419 472

Iwamoto A 1987 Phys. Rev. C35 984

Kikuchi K and Kawai M 1968 Nuclear Matter and Nuclear Reactions North Holland
Publ. Co., Amsterdam

Madler P and Reif R 1980 Nucl. Phys. A337 445

Mantzouranis G, Weidenmiiller H A and Agassi D 1976 Z. Phys. A276 145

Marcinkowski A et al 1983 Nucl. Sci. Eng. 83 13.

Plyuiko V A 1978 Yad. Fiz. 27 1175 (Sov. J. Nucl. Phys. 27 623)

Sato K 1985 Phys. Rev. C32 647

Sun Ziyang, Wang Shunuan, Zhang Jingshang and Zhuo Yizhong 1982 Z. Phys. A305
61

Takahashi A et al 1983 Report A-83-01 of the Intense Neutron Facility, Osaka Uni-
versity

Tamura T, Udagawa T, Feng D H and Kan K K 1977 Phys. Lett. 66B 109

Tamura T, Udagawa T and Lenske H 1982 Phys. Rev. C26 379

Williams F C jr. 1970 Phys. Lett. 31B 184



