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ABSTRACT

We intend to wrute the semiclassical scattering amplitude as a sum of terms, each
of them being associated to a trajectory. First of all we study the classical equations
of motion, considering both the analytical (real and complex) solutions and a certain
type of singular solutions, which behave similarly to the diffracted rays in optics; in
particular, in the case of a central nuclear potential, we single out classical effects
like rainbow and orbiting and also wave effects like diffraction and direct reflection.
Successively, considering the Debye expansion of the scattering amplitude relative to a
central nuclear potential, and evaluating asymptotically each term by means of the sad-
dle point technique, we determine the decay exponents and diffraction coefficients rela
tive to such a potential.

RIASSUNTO

Intendiamo scrivere 1'ampiezza di diffusione semiclassica come somma di termini,
ciascuno dei quali & associato ad una traiettoria. Prima di tutto studiamo le equazioni
classiche del moto, considerando sia le soluzioni analitiche (reali e complesse) sia un
certo tipo di soluzioni singolari, che si comportano in modo simile ai raggi diffratta-
ti in ottica; in particolare, nel caso di un potenziale nucleare centrale, isoliamo ef-
fetti classici, come 1'arcobaleno e la spiralizzazione, ed anche effetti ondulatori co-
me la diffrazione e la riflessione diretta. Successivamente, considerando 1'espansione
di Debye dell'ampiezza di diffusione relative ad un potenziale nucleare centrale, e va-
lutando asintoticamente ciascun termine per mezzo della tecnica del punto a sella, de-
terminiamo gli esponenti di decadimento ed i coefficienti di diffrazione relativi a ta-
le potenziale.



1. Introduction
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A well-known, the wusual WKB approximation fails
when one considers the scattering due to an absorptive
and/or raplidly varying potential. Knoll and Schaeffer(Cl]
overcome this dirficulty by considering not only real
zolutions of the classical equations of motion, but also
gome of the complex ones (see also the numerous references
gquoted 1n [C11); 1n this approach the scattering amplitude
13 exprezsed a3 a s3um of terms, each of them being
interpretable as a contribution from a given (real or
complex) trajectory. Unfortunately, in the case of a
tranaparent or weakly absorbing potential, this method does
not  apply when one considers trajectories with angular
momenta cloge to the orbiting angular momentum, since the
WKB phase shift has a branch point. On the contrary Brink

and Takigawal2] extend the semiclassical solution of the

three turning polnt scattering problemL31 to the case of a

complex potential, obtaining an approximate scattering
amplitude which is suitable also in the case of a

transparent (or weakly absorbing) potential; however such a

cattering amplitude is not directly interpretable in terms

[

.

of trajectories, 3ince 1t i3 expressed as a partial-wave
series.
une of the purpo3e3 of this paper 1s to fill such a

Jap, showing that, 1in the limit of >0, it is generally
possible to decompose the scattering amplitude into

contributions from trajectories. Such a decomposition, of

course, shortens numerical calculations, but it 1is also
interesting 1in 1tself, since it has an immediate physical
interpretation: 1in particular, as we shall see. one singles
out classical effects like rainbow and orbitingC4]1, and also

diffractive erfects like surface wavesC5]1,Cel1,CL71: these



last behave in a wholly similar way to those which are

(]

excited at the edge of a transparent sphere in opticsC8].

Our treatment, which is similar to those by Levy and
Keller[9] and by Nussenzveig[81 in optics, is developed in
two steps:

1)Firatly, 1n the case of a rather general analytical
potential, one analyses the branches of the solution of the
Hamilton-Jacobi equation: besides the analytical ones -
both real and complexCl] - one considers certain singular
branches(C3]. The wavefunction - and therefore the
gecattering amplitude - results in a sum over these branches.

At this stage the theory contains heuristic elements, in the

sense that some proportionality contants, like diffraction
coefficients and decay exponents, are left undetermined.

ii)Secondly, starting from the approximate expression of the
partial-wave amplitude deduced 1in ref.[2], one writes the
scattering amplitude relative to a central potential as a
3eries of 1integrals thanks to Poisson’'s sum formula;
moreover the Debye expansion of the scattering amplitude is
performed, similarly to ref.[81 (see alsoll0]1). Each term
of this expansion 1s evaluated asymptotically for +%—0 by
mean3 or the saddle-point technique: the main contributions
come rrom saddle points (which correspond to analytical
trajectories) and from poles (which represent the
contribution of the singular trajectories). The decay

cxponentz and diffraction coefficients, as well as the other

proportionality constants, are determined by comparing the
asvmptotlc expression of the pole contribution with the term

relative to the singular trajectories, found in step i).

In particular our treatment explains the difference
between orbiting and surface waves, two eifects which,

however, result to be very similar and are intimately



connected 1in the <case of an analytical potential; more
precizely both these two terms represent waves which decay
exponentially in the direction of propagation, with the same
decay constant (sect. 4). Furthermore the surface waves
are found to propagate not only from the lit region to the
shadow region, but also in the opposite sense: this effect,
which was 1llustrated mathematically by Nussenzveig[8] in
the case of scattering by a sharp-edged sphere, turns out to

be present also in the case of a smooth, transparent

potential.

The aurface-trajectory contributions play an important
role in explaining large-angle peaks 1in nuclear and

heavy-1on elastic

i e)

catteringl51,.06]: in this sense our
theory provides a link between the traditional optical
model, which 13 commonly used for analysing the scattering
data, and the geometrical theory of diffraction, which was
used phenomenologically <for interpreting ALASLC5]. Even
though 1n  the present paper we refer mainly to nuclear
potentials, our treatment has a much more general validity,
mainly 1in the rirst step, as we have already seen; 1n
particular the eftrects now described could be singled out
also with other potentials, 1like, e.g., the atomic ones,
even though in this case also other effects, like hard-core

repulsion, should be taken into account.

The paper 1is organized as follows. In sect.2 we

develop the first 3step of our theory, i.e., we write the

(]

acattering amplitude (relative to a real potential) as a sum

aver contributions from analytical and singular
trajectories. Sect.3 is devoted to the second step, 1i.e.
to the Debye expansion and to the asymptotic evaluation of
the scattering amplitude. In sect.4 we make some remarks on

particular effects, 1like resonances, orbiting and surtface
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AvVes; moreover we consider shortly the etfects of

absorption and we outline some possible developments of the
prresent theory. Lastly 1in the appendix we prove some

results which we use in sect. 3.

Z. Hamilton-Jacobi equation and transport equation

In thiz 3ection we are malnly concerned with a

Pech
Dt
i

sgcription of the (real and complex) trajectories involved
in an elaatic scattering process: the wavefunction - and
conzequently the scattering amplitude - is written as a sum
of contributions from each trajectory. Firstly (subsect.
2.1} we treat a generic potential,., then (subsect. 2.2) we
specialize our considerations to the case of a central

(nuclear) potential.

2.1, General theory

The stationary Schrddinger. equation for a spinless
particle of maSS/J scattered by a potential V(¥) reads as
(2.1) H(ﬁ,frﬁ/(?)=Eﬂj(?)r
where

‘—51.
(2.2) H(P,?)=Z?I+V(?)
and F is the momentum operator. We assume V(¥) to consist

in two terms, i.e.,

(2.3) V(F)=V, (F)+U(D),

~
ey

|

21
where, for large values of r=I|Fl, %,(?)=06%0 and U(?ZE T

q_ being the Sommerreld parameter and -ﬁk=V%uE: both
potentials in (2.3) are local, real-valued and ce

throughout all ?—space.

Since we are interested in a scattering problem, we
impose Hj(?) to satisfy, for large values of r, the

outgoing-wave boundary condition; in particular the



unscattered wave 1s characterized by an incident momentum

AR, such that [RKl=k.

W

1]

azgume the potential to vary slowly with respect to
a displacement of the order of the De Broglie wavelength,
except, at most, on a finite number of thin layvers located
in neighborhoods of certain smooth surfaces, which we call
= (i=1,2...n); the location of these surfaces will be
atated more precisely Dbelow. Then a convenient choice of
the trial solution of eq. (2.1) in the limit of 4% —0 has
been shown to bellll]

(2.4) Ny(?)=§;,a,qvexp(iwu/ﬁ),

where g, and W, are chosen so as to fulfill, respectively,
the Hamilton-Jacobli and the transport equation, i.e..

(2.5) HWW, ,?)=E,

(2.6) V(qtTW,)=0;

then the Schrddinger equation will be satisfied if

(2.7) %qﬁwv-ﬁa, =ihN(a,q, ) .

Let us examine the equations (2.5) to (2.7) in some detail.

2.1.1. Hamilton-Jacobi equation.
In order to fulfill the outgoing-wave boundary condition,
the function W, which appears in (2.5), must coincide, on a
plane 2, perpendicular to K and located at large distance
from the origin of the reference frame, with the phase of
the wunscattered Coulomb wavetunction; furthermore the
vector K must be directed towards the interaction region.
Let U3 conslider the Hamiltonian characteristic system
asggociated with the partial ditfferential equation (2.5),
(2.8) \—7.;.H=d?/'ds, VH=-dB/ds, dW/ds=B-dP/ds,
where we have set
(2.8°) B= VW

and 2 13 a parameter alonag the characteristics. WNe 1impose



that for s=0

(2.9) TeZ,, p=hk.

Let us introduce two real parameters, 6, and 6,, in order to
characterize the polnts of the plane 3%,. Then, if we
consider any compact set 1in the space ﬁE(G;,Gz,s), the
system (2.8) has one and only one C* real-valued solution
for each couple of values of G& and 6,, i.e.,

(2.10) F=¥(6,,6,,3), P=P(6,, 6 ,s), W=W(Kk, 6,6 ,5).

A well-known theorem[1l21 guarantees that (2.10) provides the
solution of the Hamilton-Jacobi equation if and only if the
Jdacobian determinant

(2.11) J=0(x.,y,2)/9(6,.,6,,s), F=(X,¥,2),

13 finlte and does not vanish. Generally this condition 1is
not rfulrfilled throughout the whole space. The set of points
where the Jacobian (2.11) vanishes constitutes the caustic;
the solution of the Hamilton-Jdacobi equation results to be
many-valued, the branch-points being the points of the
caustic, and the sum (2.4) 13 made to run over all the

branches of W at each point of the space.

Furthermore the caustic delimitates the so-called
clagsically forbidden regions (or shadow regions, as opposed
to the lit reglions, where the classical trajectories, i.e.,

the real-valued characteristics, can arrive): if the

potential i1s analytic, (2.10) can be continued analytically
for complex values of the coordinates and of the parameters
6,, by » 5. allowing us to extend to such regions the
semiclassical description of the wavefunction by means of
complex characteristics {see C13,093,C113; £33 and
references quoted therein). We note that, because of the
Schwartz reflection principle, if ?(GL.G;,S) is a solution
(2.8), obtalned as an analytical continuation of (2.10),

e ¥ ¥ - -
3120 ?(Gi,Gz.s*)=r*(Qi,d »2) 13 a solution; therefore one

wn

1z faced with the delicate problem ot the correct analytical



continuation into the shadow region: as we shall see 1n
detail 1in the next section., the correct trajectory is the
one which gives an exponentially small contribution to the
wavefunction. A3 we shall see in a moment, the extension to
complex trajectories 1implies the inclusion of further

branches of W in the sum (2.4).

The Jacoblan (2.11) relative to the mapping R-F may

diverge on certain surfaces in the r-space, in
correspondence of certain couples of the parameters g, GQ,
such that the characteristic ?(6},62,5) is grazing to those
surfaces in the limit of s-—o00; since this is due to the
rapid wvariaton of the potential, it seems natural to
identify 3uch surfaces with the above mentioned surfaces =;.
Such singularitiea 1in the mapping R—7 imply that we must

ake into account further branches of W: these can be

exhibited if we extend our investigation to complex
characteristics (different from those obtained by anlytical
continuation of real characteristics) and to singular
characteristics, 1.e., not belonginag to C* [3]; obviously
the 1ndex p 1n (2.4) must be made to run over all such

branches. Az regards the complex trajectories, these are

caused by claaslcal trajectories which incide on a surface
:Zaat 8 non-grazZing angle: direct reflection 1is described
(1f the potential does not vary too rapidly) by a complex
trajectory whose turning pointm 1s located near the surface

C33.0113,C131. Owing to the multivaluedness of the above
mentioned mappihng, 1t 1s convenient to subdivide the

analytical trajectories 1into classes, such that for each

H)HEEE by turning point we mean the point in the (complex)
—

r-space for which the component of Bl , 6, ,S) normal to I

vanishes.



clasa the mapping 1s single-valued; the inverse mapping may
be 3t1ll many-valued, giving rise, for each class of
trajectories, to a caustic aurfacelll]. Also for these
trajectories a problem of analytical continuation arises,

aince, if ¥, 1s a turning point, also B¥

1s a turning point;
the cholice of the right trajectory must be made according to
the rule stated above about the analytical continuation to

complex trajectories.

Lastly, when a trajectory grazes a surface EL' singular
trajectories must be consideredC31, as in the geometrical
theory of diffractionf9]; such trajectories consist in two

branches of classical trajectory tangent to I: at two points
Q, and Q. joined smoothly by an arc of geodesic on 'Z: which
has at o and @ the same tangent of the grazing
trajectories. The surface trajectory undergoes, at each
point on Z;. a splitting into two or more branches, one
continuing along the surface, while the remaining ones leave
=.. tangentially. Rigorously speaking, in this case, when we
gay clasaical trajectories, we mean trajectories not in the
crudest gemiclassical sense., but  smoothed off by barrier

penetration effects; this question will be explained more

extensively 1n the next section.

Let us conclude this paragraph with an observation.

The singular trajectories could be taken into account at

ach point in space, but, as we shall see at 2.1.3., they do

T

o

not give a significant contribution outside =;; 1in any
case, 1nclusion of singular trajectories also at points
where the potential varies smoothly would permit us to
congider a more general approximation than the one made in

this sectionC3],C1113.

2.1.2. Transport equation

Equation (2.6) is solved by
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(2.12) gq=J"%,

where J i3 given by (2.11). The branch of the square root
to be chosen depends on the right analytical continuation
across the points of the caustic[l],[53(3d'paper); such a
continuation has to be made in such a way that, in passing
through classically forbidden regions, the function W

acguire a positive imaginary part, in accord with the

connection rule stated in the preceding paragraph. As a
reault, every time a characteristic crosses a tocal point,
the phase of the wavefunction undergoes a Jjump of -mfi/2,
where m 13 the order oIf the zero of the Jacobian (2.11) at

that point.

Z2.1.3. Behavior of the coefficients a,.

As can be zeen from (2.7), the functions a, can be
approximated by constants if the g, are slowly varying.
Thia conaition 13 not fulfilled if we are near a caustic (as
can be checked from eq.(2.12)) or 1if the potential is
rapidly varying (as one can easily argque from equations
(2.5) and (2.61),. Therefore the space results to be

supdivided into regions, separated trom one another by

t(}

i

heeta of the caustic or by the small layers near =, where

i

the potential varies rapidly; within each region the a, can
be approximated by constants, but in the transition from a
region to another they have sudden variations, like Stokes’
multiplierslC111. In particular 1let wus analyse in some
detail the behavior of the a, on Eh. On these surfaces the
rapid variation of a, 1is due to the splitting of the
trajectories into two or more branches: for trajectories
which do not graze El the splitting is described by complex
turning points, as we have seen. On the other hand, as
regards the grazing traiectories, we assume, at each point

of the surface (=;, the amplitude along the outgoing

trajectory to be proportional to the amplitude along the



= =

incomina trajectory, through a coefficient which depends,
approximately in the limit of H—0, on the local properties
of the surface; consequently the amplitude along the
aurface trajectory undergoes at each point an attenuation
proportional to the amplitude itself and to the length ot
Ehe infinitesimal arc of geodesic described:; therefore on
< we assume that
a, oC exp[—f L (%)d37,

where d(}? is a complex coefficient, called decay exponent,
which depends, agaln, approximately on the local properties
of the surrface. All these proportionality coefficients,
which have been introduced heuristically, will be determined
in the next section in the case of a central potential.

La

i

tly let us observe that, since in the regions where the
potential varies smoothly the coefficients a, can be
regarded as constants, the probability current density
associated to each addend of (2.4) is conserved along the
“classical" trajectories, so that the current density along

the singular paths is negligible.

2.2. Case of a central nuclear potential.

Now let us specilalize ourselves to the case of an
analytical, central, local potential, consisting 1in two
terms of the type (2.3), one repulsive and slowly varying
(electrostatic, U(r)) and the other attractive (nuclear,
Vo (r)): the latter term is rapidly varying at the edge of
the nuclear-interaction region, furthermore it is assumed to
be purely real, even though our considerations could be

extended to the case of a complex potential (see sect. ¢).

In this caze, due to the symmetry of the problem, we take

h

(e §
9]

acattering centre as the origin of the reference frame,
the z-axls in the direction of kK and the parameters 6, and

G, 90 a3 to coincide. respectively, with the angular
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mamentum,k and with the azimuthal angle; moreover the polar

angle % 13 the scattering angle. Let wus consider a

iy}

urficiently low incidenft energy, So as to have orbiting in
correspondence of a glven (energy dependent) angqular
momentum, to be called Ab(a more precise condition will be
stated in the next section). Moreover, in order to simplify
our theory, we assume the radial momentum, i.e.,

242

=1/2 - ) = hN
g%—VQp[E Vﬂ(r)], %ﬁ(r) V(r)+%mk?

to have three and only three turning points for each value

of A; auch turning points will be called r,, r,, &,

according to the convention of ref.L(2].

Az we have already seen in the general theory (subsect.
2.1.1.), in the study of the solution of the Hamilton-Jacobi
equation it is necessary to single out the surfaces oy (if
any) where the potential varies rapidly and to subdivide the
characteristics into classes. In our case the Jacobian
(2.11) becomes infinite on the orbiting sphere, i.e. on the
sphere centred at the origin and with a radius equal to the
orbiting radius 1r,: therefore we 1identify the orbiting
sphere with the surface =,. The first class of analytical
trajectories., which we call K?, is constituted by the real
analytical trajectories with angular momentum greater than
Mz; these trajectories may be either of "Coulomb" type
(C.T.) or of "nuclear" type (N.T.)C1ld, according as the
repulsive action (at higher angular momenta) or the nuclear
attraction (at lower angular momenta) prevails ; the
"nuclear" trajectories undergo a negative deflection which
increases in modulus for X approaching X&. The trajectories
of this class form a caustic surface, which we call C;:
this includes the rainbow trajectory (see fig.l of [111),
i.e., a trajectory of angular momentum An, which, for r-oo,
Joes 1nto the direction corresponding to an angle =%,

called rainbow angle.
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A gecond class of analytical trajectories, which we
call K&% includes complex trajectories such that ReX(%m;
some of these, with Re) slightly less than Mz, undergo a

negative deflection which, again, increases for A

approaching Xm; the remaining ones are directly reflected
at =, and undergo a positive deflection. It is worth making
an observation as regards the trajectories with AZ),: in
the crudest semiclassical approximation the aeflection
function would diverge logarithmically at X=Xd, however, as
we shall see 1in the next section, it is smoothed off by
barrier penetration effectsC41, so that it has a minimum,
say —% (%)0), near Xu: in this sense orbiting behaves

gimilarly to rainbowlC4].

Let us consider other classes of trajectories. Kr) is
defined as the class of real-valued trajectories with an
angular momentum less than \,: these penetrate inside &,
and oo directly out of it, without undergoing any internal
reflections inside the orbiting sphere. Similarly we define
Kgﬁ as the classes of trajectories with a complex angular
momentum, such that Re)(ku, which undergo p-1 internal
reflections 1nside =, . Bach class of trajectories K:i for
p2l, forms a caustic surface, Cf' which is axially symmetric
around the z-axis. Another class, defined as Kf% includes
the trajectories which propagate into the dark side of the
ralnbow: these trajectories have a complex angular momentum
whose real part 1is nearly equal to Am and a negative
imaginary part. Then we define as K#ﬁ p2l, the classes of
trajectories which penetrate into the shadow region of the

caustic aurface C, and re-emerge into the 1lit region of C,,

undergoing p-1 internal reflections inside ..

Now let us consider the singular trajectories; we may

distngulish asome categories. We call Z, the category of
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those trajectories which consist solely in an arc of
geodesic on &, which joins smoothly two branches of
“classical” trajectory (of angular momentum Ag,). Moreover
we define Z, the set of the trajectories which, besides
describing one or two arcs of geodesics on &, , take one
ghortcut, 1.,e. a branch of "classical" trajectory which
penetrates inside =, and re-emerges tangentially to this
sphere, Similarly we define ZID as the set of singular
trajectories which take p shortcuts inside E;; for p22 the
shortcuts may have 0,1,...p-1 internal reflections. Also

other categories of singular trajectories are worth being

mentioned, 1i.e., those which are generated by the complex

trajectory of (real) angular momentum Xu such that the
turning points g and r; coincide (we call E& the complex
extension of the surface of the sphere of radius f,=r, =r, ):
each category of these singular trajectories propagates
along E;, moving from the lit region to the shadow region of
each caustic surface CP' p2l. Even though these
trajectories do not give a significant contribution to the
scattering amplitude, they are of some conceptual
importance, 3ince they behave similarly to those singled out

by Nussenzveilg in the case of a sharp-edged spherel81.

Now we are able to write the wavefunction (2.4) at any
point, by determining the functions W, and g, for any class

K, of analytical trajectories and for any set of singular

P
trajectories: moreover on =, wWe take 1into account the
assumption made in 2.1.3 about the coefficients a,. In

particular we are interested in the behavior of the

waveruncri

i

n for very large distances from the origin,
whence we deduce the scattering amplitude. This last can be
divided into two terms:

(2.13) £(K,D)=f, (K, H)+£ (K, ),

where the former addend 1s the contribution of the
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analytical trajectories, whereas the latter one comes from

the singular trajectories. As regards fy(K,9), one has (see

alsoll11)
2 \
. ., E—
S (2.14) f,(K,$) =3 (-i % ex {1[28 o) - A @]}
h < %:( ) ;\/e)%m@v? P AU ACh S

where p 13 the number of 1Internal reflections that a
trajectory undergoes inside the orbiting sphere, while )4
runs over the classes of trajectories corresponding to a

fixed p., and

(2.15) 26, () = bm j %[E—v(@]-g dr —sz-zYQO%(zkz)J

T,

(2.16) Q=2(d b/ah, , @ =2(d¥da V) ;
P )\,}P Vp M}

4
the angular momenta X% are roots of the equation
(2.17) QA =¢¥-2mm =¥,
where m is any nonnegative integer; furthermore T% denotes
the %—th trajectory: one must take into account the change

ol th

g

Riemann sheet for the integrand of (2.15), whenever a
turning point 1s crossed. Moreover the function (sinC&f%,
which appears in formula (2.14), has branchpoints at C%=mrr,
m' being any 1nteger, and must be continued starting from
the interval [O,ﬁ],taking branch cuts from 0 to -ic0: the
analytical continuation across the branchpoints takes into
account the number of axial focal points crossed by the
trajectory ([l];[SJ,B“A paper); similarly the factor (-1)°
describes the crossing of focal points belonging to the
caustics C,. Moreover it is straightforward to see that the
series (2.14) converges, since, due to the complex turning
points in the multireflection pattern, the p-th term
decreases exponentially at increasing p. Lastly 1let us
spend a few words about the roots of eq. (2.17): first of

all we must consider all the real roots, which correspond to

classes K and K;® of the trajectories; as regards the

£ T
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complex trajectories, we have to keep in mind the connection

rule seen in 2.1.1.

Near 9,,_ and ¥ (where $%=+% (mod 2m, 0<§o<ﬂ’) one has to

recur to the uniform approximationCl151,C161.

As for the latter addend of (2.14), if we take into

account only the surface trajectories on the surface EL, we

havel5]
vl o0 oo 2 v [z 84()‘42) * )‘42‘9‘;1
(2.18) f; (K, 9= e 5 S . €
K m=o m=o CoA %
2 . i M S -
e gy (@M L () e L (5
P | e S Vin 9
where

(2.19)  S) = 3 +im W
(2.19") I =+}-3-pd (mod 2M), (0< 32,
(2.19") Ag= AFid,

" Polp-1\ ) i ]
(2.19") X;(}‘r)“:}:(__‘) Ry (D) (5od L 3)=1;

=1\ J

9; have been defined by (2.17), furthermore 9r is the angle
corresponding to the shortcut, ¢ the classical action along
the shortcut; QL=QZD“(g}/g;)% 1s the product of two
limiting refractive coetficients by the ratio of two factors
of flux(LC51, 3d'paper), D, the diffraction coefficients, Ry,
the internal vreflection coefficient and of, the decay
exponents; we assume Red,>0. The values of these
proportionality coefficients will be determined in the next
section. Lastly &(X) iz given by (2.15), considering the

trajectory which has only one turning point, at r=r, .

[t is easy to see that the series in p, which appears

in (2.18), converges, since in the limit of i—90 both D, and
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R,, are 1in modulus less than 1, as can be checked from
formulae ¢3.18) and (3.23). Moreover we observe that there
are some particular angles, corresponding to the deflection
angles 9=-9;—p9;, in neighbourhoods of which the
approzimations (2.18) and (2.19) tail: these are the
so-called Fock trancsition regionsC81 and correspond to
“limiting" trajectories which <constitute a part of the

caustic surfaces C p2l; near these angles the uniform

Pl
approximation must be used.

Lastly let us observe that the semiclassical
approximation fails 1in the neighborhood of the axial

caustic, i.e., for $=0 and $=T.

3. The Debye expansion of the scattering amplitude.

It has been shown[l1l51, by using the Poisson sum formula
and the usual asymptotic expansion of the Legendre

functions, that the scattering amplitude can be written as

hd

(3.1) f(k, 9=y Cfe(k,$)+fn(k, 91T,

m=-00
with
o0

—“L[XV‘ S(X,mexp{iczﬁmx:(x 9—“/4)]}&.
K21 am &

m4+9
(3.2) t2k, %=
The approximation written above fails in a neighborhood of

J=0 and of I=T.

Now we use the S-function approximation deduced by

Brink and TakigawalLZ21, i.e.

205,
¢ ISP il
N(i€) N(t&) + ob5 "

(3.3) S(A\,k)=

where 51 is given by (2.15) and
o a _ =i _
(3.3") &=57A(n ,ry ), S5,=A(r, .15, ),
v Y,
(3.3") A(r,r')ij.{%?EE—V(r)]—(%/rﬁ} dr,

T
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Y, .5 .5, being the turning points; lastly

{(3.3M) N(i£)=——@exp{if[log(i£)—ll}.

(544
This approximation holds true if at A=), the internal
turning point 1 is sufficiently far from the other two

(coincident) turning points.

We show in appendix that (3.3) can be written as a
geometric series for any real positive value of A:

oQ
(3.4) S(A,k)=2_S, (A.k),

pP=0
with
' 2.5, 28 e2i532 P
(3.4°) 8, (A k)= , S, (A ky=(-f" g2t (p2l);
o N(i£) P N(E) | N(ug) i
furthermore we show that the series (3.4) can be
Interchanged with the integral (3.1). As a result we get
oQ
(3.5) f(k,H=> £, (k..
pro T
with
. .99— P+ P-
(3.5) fF(Jr:,f%)=>_~ CLEy (k,9)+fr (k,9) 1
mz~-pd
and
m -9
il Pt _ ) K . _;
(3.5") fm(k,f})————“—-*(KmJ}\ bp(k,k)exp{llZZﬂm)\;t(X? T(/4)]}d)\.
o

The integrand of (3.5") presents poles of p-th order in
the complex )-plane; the locations of these poles are given

by the roots of the equations

(3.6) £(X)=i(n+%), n)o.

Now £ is an analytical function for any finite
complex value of A, except at Msr where it presents a
branchpoint; moreover €(\) is real for )\ real and less than
XH, while for A >X% it presents a nonvanishing imaginary
part, corresponding to a branchcut from Ay to +00; lastly,

near %u one hasC21,(41]

‘lﬁ\u(}\ ">‘125

(3.7) e\ =
) e Va1
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where Vg is the curvature of the effective potential at

r=r,. Therefore, using the Cauchy-Riemann relations and the
properties of the "isothermal" curves {Im£=0§ and {§e£=0} in
the complex A-plane, we can show that the poles (3.6) are
located, in the first quadrant, on a curve which crosses the
real axis at X=Xﬂ, whereas there are no poles in the fourth

quadrant.

3.1 The first term of the Debye expansion.

Let us consider the first term of the series (3.5). To

useful to rewrite the terms of (3.5"),

it
[
-
=
[My]
T
=
1o
=
it
=t
LG
i

corresponding to p=0, as

; ot _ (_)m oo‘/z . o
(3.8) fm(k,9)-LKVmJ>\ exF[L (V%)) dN\,

with

(3.9) .\, =208 +mM £\ F -T/4) +110gIN(1E) 1.

The saddle polints of integral (3.8) are given by the
equation

(3.10) @ (M) =%-2mT = %,

with

: ’ o _ A‘Sv
(3.10") @(A)-znuﬁ(z\),

o d .
(3.10") Pl M=i H{log[N(IE)]} ,

Sibeing given by (2.15). Let us study in some detail the
deflection function (3.10°). As shown in appendix, N(if) is
nearly 1 for any value of A in the complex M-half-plane

Rel\>0, except 1in a neighborhood of the line {ﬁe)=0} in the

first quadrant (such a region of the complex M-plane will be
called, from now on, Hg): in particular N(if) has a
branchpoint at A,. Therefore, since., as we have seen, £(\)
has a branchpoint at Ag.(ﬁ(X). as defined by (3.10"), has

branchpoints at &Z and Xn : the former one compensates
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ex¥actly the orbiting branchpoint at )u of the WKB deflection
function 2%%?, so that Cf(k) is analytical at &2; as for
the latter branchpoint, its effects can be neglected in the
saddle-point evaluation, since, according to Brink's
approximation, Ag is sufficiently far from &2' therefore
N¢(i¢)=1 1in a neighborhood of Ms . Moreover, from the
conslderations made above i1t follows that the equation
(3.10) corresponds approximately to (2.17), except 1in a
neighborhood of Xn : turthermore, as shown in appendix,
@A) has a negative imaginary part for A<M,r while it has a
negligibly small imaginary part for A\ >M1. In fig.1l we
represent the typical behavior of the real part of @(\),
which has a relative maximum, $§ ,
minimum, —% . close to Mz. Obviously the saddle points to

at &, and a relative

be considered are those 1in the complex half-plane ReM>O,
moreover, as we shall see in a moment, these vary both in
number and in location according to the wvalue of 9;.
Furthermore, in order to apply the steepest discent method,
one has to deform the path of integration so as to coincide,
at least in a neighborhood of the saddle points, with the
steepest discent path; in any case, far trom the saddle
points the integrand of (3.8) must be exponentially émall.

According to the value of 3; ,one has to consider five

different situations, which we are going to examine in some
detail.

i) O<3;<%, In this case we have three saddle points, of
which two have a verv small imaginary part and a real part
greater than Xu; the third one (which corresponds to direct
reflection) has a real part less than hz and a negative
imaginary part: this last fact can be shown by observing,
from fig. 1, that Re{ Cf(kﬁ-has a negative derivative with
respect to Re\ on the real axis for X(Xu, and by recalling

the Cauchyv-Riemann relations and the fact that ImO° (M) <0 on



1 .

-%

Fig. 1 - The real part of the deflection function BA°(A) as
defined by formula (3.8'). The angles 17; and -195 have been
defined in subsect. 2.2.

rhe real axils for Atku. The proper steepest discent path of
integration can be determined by observing the behavior of
Redix‘ =Re(l(k)-9i and recalling still the Cauchy-Riemann
relaticns: the situation is represented in fig. Z2a.

11) &_ﬂ%\Tﬁ In this case one has still the complex saddle
point which corresponds to direct reflection, moreover one
has two compiex conijugate saddlepoints, such that ReAEX,:
by wusing argumenta very similar to those presented in the
case 1), one can show that the right saddle point is the one
with a negative 1maginary part and that the path to be
considered is the one represented 1in rig. 2b; such a
saddle point corresponds to a complex trajectory which
penetrates into the dark side of the rainbow.

111) %:fﬁ. In this case only the latter saddle point of ii)
needs be considered (see fig. 2c).

iv) -&ﬁ Q;O. In this case we have two saddle points, one
with a real part slightly less than A, and with a negative

imaginary part, the other with a real part slightly greater
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the value of (see formula (3.8)): a) 0 < 9y <%

b) #.< L <7

c) Fi>ms d) -Foe P <05 e) 19,'C<—19°.
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than &2. The paths of integration are represented in fig.
2d.

V) 9;(—{%. In thiz situation the equation (3.10) has no
toots near the real axis; the roots - which correspond to
the values of  such that fo'(k) vanishes - lie in the
reqion of the complex A-plane which we have called Hp;
moreover the integrand of (3.8) is exponentially small in
the tirst quadrant, except inside H,. To see that, let us
suppose, tor a moment,that qg, as defined by (3.10"), would
vanish: then we have only two roots of (3.10), which lie
very close to A, (one root is real, such that A>AN,, the

other one is complex, with ReA<XQ); moreover, recalling the

d é,
d A
Cauchy-Riemann relations, we conclude that the imaginary

shape of the WKB deflection function 2 and the
part of dit(k) is positive 1in the first quadrant and
increases at increasing ImA, except in H,; the presence of
the addend Cﬁ - which is nearly vanishing in the half-plane
ReA>0 except in H, - does not modify substantially the
situation, except for pushing such roots 1into the first
quadrant, inside H;p. Therefore in this case it is more
convenient to detorm the path of integration as in fig. Z2e,
i.e., choosing a succession of curves E;, which include a
part of the positive imaginary axis and an arc in the first
quadrant, such that the closed curve constituted by [~ and
by a seagment on the positive real axis encloses the first n
poles. From the considerations made above it follows that
the integrand of (3.8) 1is exponentially small along |

except, at most, 1in the intersection with H,; such a

difficulty can be overcome if we consider a sufficiently
large value of n and let [, pass through the point such that
E{(N)=i(n+l); it can be seen that in these conditions the
integrand of (3.8) is exponentially small along f;. Letting

n tend to infinity, the integral (3.8) 1is approximately
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equivalent to the series of the residues at the poles in the
first quadrant, provided this series converges; the

convergence shall be proved in a moment.

Now we are ready to determine the asymptotic behavior

of the firat term of the Debye expansion. Firstly from the
above discussion it follows that for those values of m sqch

that 9&(-&; only the residues at the poles must be taken
into account, while for the other values of m only the
saddle point contributions must be evaluated. Then we have
(3.117 £, (k,9)=2F (k, D +£5" (k, %),

where the former term comes from the saddle points, while
the latter one comes from the residues. The former term
corresponds to the addends with p=0 in the sum (2.15); as
for the latter one we have, approximately,

(3.12) £k, 3 =22 (k, ) +£2 (x,9),

with

.
0 ' Res — 'Q:‘T ‘EAOO‘Az)*S;)\Jz} s _m 2 (-} An
(3.12) £,2(x, §) =% ¢ w%a( ) Z_'o " e
and

i

“4

(3.121) £ (k, 9)=§-%/——;——;

been defined in subsect. 2.2, before eq. (2.18). Moreover
we have set
(3.12") Ao()\)=2$4()\)—6()\){loq[if_()\)]—l}
and
] d€
(3.12Y) m=i(——
s vl

Now comparing (3.12°) or (3.12") with the addends of
the sum (2.18) corresponding to p=0, we get the expressions
of the decay exponents and of the diffraction coefficients,

which result to be related, respectively, to the locations

and to the residues of the poles in the
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complex-angular-momentum plane. In particular we have

)" m
DR

which, as can be 3een from (3.12"), results to tend to 0 1in

. 2
(3.13) Ck =

the 1limit of H — 0. Both decay exponents and diffraction

-

coefficienta can be computed numerically once the potential
13 known. However, 1n order to give a rough idea of the
dependence of such quantities on the parameters of the
potential, it may be useful to use the approximation (3.7)
for £(N): substituting (3.7) into (3.6), we get
s YMET

h Ny

it can be shown that this approximation holds true as long

as n 1is sufficiently small and gi]{}tlvgl(th4>>l, a

condition which is frequently met in cases of 1interest.

(3.14) o E(n+3)

Similarly we get

4 4G
(3.14') D Ei“(/“ )A i ‘/C”T
e

Gl) eV, val

3.2. The second term of the Debyve expansion.

Let us consider the second term of the series (3.5). Each

term (3.5") corresponding to p=1 can be written as

an and

(-— y L

(3.15) fﬁ%k.9)=3;7§%af? Xlexpthh(X.S)JdX,
D]

where

(3.15") i) ( X,3)=it<1>:i<x,9)+2s“3—2ﬂ£-1och(i£)J

and ¢f1k,91 is given by (3.9). The saddle points of this
rhase are given by

(3.16) O'(A)=F3-2nT,

with

(3.16") (M= O+, +f+

and
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(3.16") =2MidE/d), G,=2ds; /d)\,

Whil&tﬁ is given by (3.10"). Now it 1s straightforward to

see that \%d0)=—ﬂ, moreover %ﬁ\) has a logarithmic cut at

b
same point; therefore the real part of Cl(k)=[€§(X)+(ﬁ(X)]

, Wwhich 13 exactly compensated by the cut of %3 at the

has the shape represented in figqg. 3, with a relative
maximum at a X=X<Xm and a relative minimum close to Xn; the
imaginary part of this function 1is negligibly small for
Lzakﬁku. from these considerations it follows that the real
part of ©'(\) (see formula (3.16')) vanishes at A=0 and has

a minimum, to be called —3;, for \ near Xu.

A
Re 8;

>4
~
>V

-

Fig. 3 - Shape of the
real part of ©;(N).

As regards the asymptotic evaluation of the second term
of the Debye expansion, we observe that, for‘k>kn, the
imaginary part of 1?&%,9) increases towards increasing A,
due to decreaslng penetration erfrects; therefore we do not
worry about the behavior of the deflection function Cy(k)
for anv real value of A surficiently greater than Mz; in
particular we neglect the effects of the singularity of
Cka) for A=Aﬁ, which corresponds to the surface waves that

travel from the shadow region to the 1it region (see
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subsect. 2.2). With this approximation in mind, and
proceeding as in subsect. 3.1, we can distinguish between
two situations, 1i.e. 9;: <—94 and %)—94'. In the former case
only the residues of the (second order) poles must be
considered. On the contrary in the latter case one has to
take 1into account the contribution of one or, at most, two
saddle points: one has a very small imaginary part and a
real part less than A,, the other one gives a negligible
contribution for A sufficiently above An' whereas for A
slightly above &2 it has a negative 1imaginary part; the
former saddle point corresponds to a real trajectory of
class KP, the latter one (when it 1is taken 1into account)

. b
corresponds to a trajectory of class Ki)

Let us examine in particular the contribution of the
poles, which correspond to .the surface trajectories that
take one shortcut; this contribution is given approximately
by
(3.17) £k, 9 =£ (k. Pr+£%* k%),

where

oM D (e ST st
. , Rer _ " n~ gm
(3.17") t‘1+ (k,\g') LK/ 1 Ao & ;ﬂ 2_ ('nl ~§M)2- {m }

(
A,- I - -
(.3.1711) ﬁ[(es(KIS) = e/( A) {i(_) ;— ;/X.,., Si’m 6 )‘,.:Snn}

KV A & 55 m E)z

and

(3.17") A, = Do(h) +255 (M)A

m, is equal to l for 3<—9_; and 0 for 9>§; , where 9;=i91 (mod
21, 0<§Wﬁh lastly’jiihave been defined by (2.19). (3.17)
correaponda to the second term (p=l) of the sum (2.18)

lativ

|"[|

to the 3urface-trajectory contribution; the

n"[n

comparison ot the two tormulae gives as a result the formula

of the refraction coefficients for the trajctories which

take a shortcut, i.e.

_ L G)
(3.18) QlDu(g;/g )2 mJ/ﬁ ?
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This product results to be much less than 1 in the limit of

A -0, a3 well as the diffraction coefficients.

3.3 The p-th term of the Debye expansion.

As regards the generic p-th term of the series (3.5'),
from (3.4°) and (3.5") one gets

s m+P1’4
P
3.19 K = T
( ) £ (%9) LK;/ZT(AimS’
with

. 4Pk 1ot
(3.20) 1(1)“ (=i ()\,9)—2'ﬂ€+ip{28“+ilog[N(ié)J}.
The locatlon of the saddle points is given by the equation
(3.21) O"(\)=79-2nT,

where

(3.22) @' M= +grp o+

an 2;%7 and %& are given., respectively., by 3.16") and
(3.10"). REeazoning 1n a way analogous to the case of p=1,
1t 13 stralghtforward to show that (A is analytical for

any real positive value of ), except at Xu; the real part
of Of()) has a minimum near M;» whose value we call -9;.
Moreover Cy\0)=(l—p)ﬂ and, for sufficiently large values of
p, the deflection function presents a rainbow in
correspondence of a A less than Mz' as can be shown
observing the shape of the real part of the function le(k)

{see fig. 3).

!
As in the case of p=1, for 9t<—%; the asymptotic

behavior of 1integrals (3.19) is determined by the residues
at the ((p+l)-th order) poles, whereas for 9}) —%, one has
to evaluate the saddle-point contributions. For p»>l the

gaddle polnts correapond to complex trajectories of classes

(o)
P

the residues at the poles represent the contribution from

K or KP, according as Re)\<)\‘42 or Re))hz. On the other hand

those surface trajectories which take p shortcuts; among
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these we must take into account those which have 1,2,...,p-1
limiting internal reflections (see [5]1 andC81); in
particular the comparison with the p-th terms of eq.(2.18)
gives us the reflection coefficient relative to the

shortcuts; this coefticient results to be

7 S

(3.23) Ry~
where
(3.230 ¢(Mh) = & [z ]eom
. g ~ olZ Z=- .

This coefficient results to be less than 1, moreover it
decreases very rapidly at increasing n; this observation,
together with the considerations made about formula (3.18),
allows wus to conclude that the series (2.18) converges, as

we had already said in the preceding section.

4. Remarks.

In thils section we make some remarks about some

particular effects, like resonances and orbiting,

1

furthermore we outline the case of a complex potential,

lastly we draw a brief conclusion.

A} Resonances.

According to our approximation the resonanqes can be
conveniently described by the poles of the S-function,
which, owing to (3.3), are determined by the following
equation:

{4.1) exp(Zng)=—N(i£);

condition (4.1) 1s very 3imllar to the one obtained by Knoll
and SchaefferL1]. We have a resonance every time a root of
(d4.1) approaches a half-integer value; this condition 1is
equivalent o 1mposing that a point-like particle, which

penetrates 1inside the orbiting sphere, have a large

probability amplitude of being reflected many times inside
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the sphere (see subsect. 2.2). Such resonances correspond
to multiply reflected trajectories inside the sphere =, and
result to be rather broad for Re)()u, and narrower for
Rek)xm, similarly to the case of a sharp-edged spheref81; a
narrow resonance occurs at X=Xu, if n§%=2ﬂ; n, being a
positive integer (nz3.4,5...). tberall et al.C71 give a
slightly different interpretation of the poles of the
S-function, 1in the sense that they refer to an acoustical

model, rather than to trajectories or rays[81.

B) Orbiting and surface waves.

In sect. 3 we have determined the contribution of the
surface trajectories and, 1in particular, the diffraction
coefficients and decay exponents relative to them. Now,
comparing our expressions with formula (42) of ref.[4]1, we
realize that the orbiting amplitude decreases exponentially
towards increasing scattering angles, therefore it
represents a wave which 1is exponentially damped 1in the
direction of propagation, as well as the surface waves;
moreover the decay exponent relative to the trajectories
with angular momentum \»>),, 18 approximately equal to the
decay exponent of the surface wave with the "mode"
correaponding to n=0, as can be seen comparing formula (43)
of ref.[4] with the expression (3.14). Therefore we can
conclude that orbiting behaves in a very similar way to
surface waves. The scattering by a nuclear potential is
very 2imllar to the a3cattering by a sharp-edged, charged
spherical wellfL5], since also in the latter case we have
“Coulomb" trajectories for X)XY {where is the "grazing"
angular momentumC5]) and surface trajectories for A=) All
that seems to legitimate the phenomenological model usedf5]
in order to fit the anomalous backward peaks. Moreover it

is worth stressing the importance of the orbiting and
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surface wave contribution to the backward scattering
amplitude 1in the case of a weakly absorbing potential: as
can be checked from the analysis made in ref.[171, the *0-“0
backward peak 1s dominated by orbiting; this is in accord
with the conclusions of Bosanac[18] about atomic potentials,
in contraat with the usual statement that orbiting gives a

negligible contribution to the differential Cross

section[ll].

C) Complex nuclear potentials.

Let u3 consider a complex potential, such that the
quantity E-VYg(r) (where %%,is the effective potential) have
three and only three turning points for any value of the
angular momentum. Then all the saddle points are complex,
with an imaginary part more or less large, according to the
value of )\ and to the intensity of the imaginary part of the
nuclear potential. The orbiting angular momentum, Xn,, is
pushed 1Into the fourth gquadrant of the <c.a.m. plane,
therefore the aurface wave contribution is reduced.
Moreover, 1f the absorption is rather weak (as, e.g., in the
examples considered In refs.C2] and[71), one has to take
into account gseveral terms of the Debye expansion: those
saddle points which should have a very small imaginary part
in the limit of vanishing absorption (see sect. 3) acquire
a small imaginary part, but one must keep the same
subdivision into angular regions as in the real case. RWhen
the absorption increases, the mumber of Debye terms to be
considered decreases, whereas the imaginary part of the
saddle points increases: moreover the transition from an
angular region to another is more and more smoothed off. In
the case of very strong absorption only the first Debye term

needs be considered; moreover the trajectories which give a

contribution to the scattering amplitude are the “Coulomb"
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trajectories (at large impact parameters), the "nuclear"
trajectories and the surface waves (which, as we have seen,
behave 1in a very similar way) and the directly reflected
trajectories; an alternative description of this situation

is given in ref.[1l4].

D) Further developments.

A

"

conclude with two remarks on possible developments

af  th

[ (]

present theory. At first we observe that the
formulae deduced in the present paper are not valid in the
limit of very small diffusenesses; 1in this connection we
recall that in some realistic cases the approximation of
refs.C1]1] and [21 fails: if one could write a suitably
approximate S-function tor the case of a very small
diffusenesa, of courze a more general expression of the
decay exponent3 and of diffraction coefficients would be
obtained. Secondly we note that the treatment now followed
could be applicable, in analogy to what has been done in the
case of opticé[9], also to the case of non-central
potentials, which vary rapidly in some regions of the space:
in fact, due to the localization principle, the diffraction
coefificients, as well as the decay exponents and the
reflection and refraction coefficients, depend only on the

local properties of the interaction region.

ACKNOWLEDGEMENTS
The author 1is thankful to his friends profs. M.
Glannini and G. Fagsatore for wuseful and stimulating

suggestions and discussions.



- 33 -

Appendix

We prove that the scattering amplitude, as written in
the approximation by Brink and Takigawal2]1, can be expanded
according to (3.5). To this end we must establish some
preliminary results about the action integrals introduced in
(3.3). Moreover we study the deflection function Cf(k) and

the function N(if).

In particular we are interested in the integrals
(A.1) 5 =Atg, R), 5, =Aly .15 ), 5, =Aly 1, ), 5 =A(r R),
where A(r,r ) 13 defined by (3.3") and R>>r . One has
(A.2) %f%2+§‘+si.
The situation is different according to the value of A
considered; in particular let wus distinguish among the
cases 1) A<h,. ii) ACACh,, 1ii) A>k,.
1) A<y,
15 real and the integrand of (3.3") is real
on the real axis, by Schwartz’‘s reflection principle one has
* - .
(A.3) A (r3 ' Ky, )—A(r& vty )i
moreover
(A.4) A(r3 Py )=A(r3 P, VHA(E, LX),
whence, by (A.3), one gets
A""(r3 By )-ALE L r, ) =AE LBy ),
i.e.
(A.5S) A(Q_,q')=—ZiIm[A(% AR
therefore A(r, ,r, ) 1is purely imaginary. Furthermore, one
has, from (3.3"),

(A.6) %1=iﬁ£(k);

now 1t 13 stralghtforward to see that ¢ is real and negative
for A<\, (gee formula (3.7)). Then from (A.5) and (A.6) we
get

(A.7) —ZIm%z=WE(XJ<0.

Furthermore, since r; 1is real, also 53 is real. Then by
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(A.2) we get
Im532'+ImSu+ImSi =0,

whence, by (A.6) and (A.7), one obtains

1 = =-41

(A.8) Im%z—lm%1— LIm%1>0.
Using a quite analogous argument, we can conclude that
ImCO° (M) I<0 for A<\, .

i) A<ACON,
In this case 5 and Sulare real, so (A.2) implies that

(A.9) ImS, =ImS, =M€>0;
the last relation follows from (A.6) and from the reality of
&\ for A less than Xn.
iii) A )\23.
In this case, owing to the fact that the integrand of (3.3 )
is purely imaginary on the real axis. Schwartz’'s rerflection

principle implies

o .
(—1%1) = 1%4.
where %1=A(Q PE ) then
¥__
%4 %1'
Moreover

.5'31=S$L+Sz1 ;
from the above formulae it follows that
. _ I
(A.10) %1’%1_%4' %1 %1- ZReQM.

This proves that %L is purely real on the real axis:; then

(A.11) ImS, =ImS .

Moreover, using arguments very similar to those which led to
the determination of the sign of £ in a neighborhood of Aﬂ
(see ref.C2]), we conclude that Sﬂlis negative for A)Xq, so
that Re%‘>0 and, by definition (see formula (3.3')),

(A.12) Imé&<O.

Now we are ready to prove that the scattering amplitude
(3.3) can be written as a geometric series, say (3.4), for
any real positive value of A. The proof will be complete if

we show that

e ———— [ — = e e ————
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(A.13) lexp(ZiSZ)l<lN(i£)l

3
for any real positive A. Let wus consider two different
cases: i) XS)%' ii) X)Xn. In the former case £ 1is real:

then, by Schwartz’'s reflection principle,

(A.14) F*(‘zue):f'(%—ia).

Furthermore

(A.15) 1og<1£>=1og|el+i‘—i—|"-§-.

Then, taking into account (A.15) and the properties of the
gamma function, we get

{A.16) IN(i£)1* =l+exp(-2MWiEL)>1.

Since, as we have seen, ImS 20 for X()U. from (A.l6) it

follows (A.13). Vice versa, for k))u, we assume - in accord

with Brink‘s approximation - that ¢

y is sufficiently far

from r,, so that f&1»>1l. Then, using Stirling’s formula,

one has

4
2

furthermore, developing the logarithm in (A.17) up to second

(A.17) N(ié)gexp{ iEEloq(l+2f£)J}:

order in & , we have

(A.18) IN(1§&)IZexpL-Im&/(B1E1%) .

On the other hand we have shown that tor A»>j, Imé<0 and S,
is purely real; then (A.13) 1s proved also tor X)Xg.
Incidentally (A.18) (which holds true as long as A does not
belong to the region H of the complex \-plane) implies that

N(i€) is nearly 1 for A outside H,.

However, since for A =00 |&l—o0c , from (A.18) it
follows that IQ,LS”'/MLLS)‘-M as \— oo . Therefore we have
still to prove that each integral (3.2) can be interchanged
with the series (3.4). To this end we proceed in a similar
way to ref.[8], i.e. we split integrals (3.2) into two

terms,
fe =]

(A.19) SMUL\ . SA dh + g )\ .

A

o
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Now In the former addend of (A.l19) the series can be
interchanged with the integral, since it converges uniformly
for any A between 0 and \. As for the latter addend. after

the substitution of (3.4) into the integral (3.2)., we have

* i LG <><‘> = Ll2rmA & 9"-”—
(A.20) S)\%'S()\IK> e/[Zﬂtm)\_(\\g A)]ix :Jx/z FZ_, SF(X,K\Q,LN A U A\)] ¢{X /

A A

but the terms of the series which appears in the integrand
of r.h.s of (A.20) are exponentially small for p>0 and A
sufficiently large. Therefore the series can be

interchanged with the integral.
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