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ABSTRACT 

Due to the possibility of rephrasing it in terms of Lie-admissible algebras, some 
work done in the past in collaboration with A. Agodi, M. Baldo and V. S. Olkhovsky is 
here reported. Such work led to the introduction of non-Hermitian operators in (classi 
cal and relativistic) quantum theory. We deal in particular with: (i) the assoc iation of 
unstable states (decaying "Resonances") with the eigenvectors of non - Hermitian Ha­
miltonians; (ii) the problem of the four-position operators for relativist i c spin-zero 
particles. 
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PART J - UNSTABLE STATES AND NON- HERMITIAN HAMILTONIANS 

1. 1. - INTRODUCTION 

This first Part is based on work done in collaboration with A. Agodi and M. Bal-

In quantum mechanics the IIresonance" peaks are generally described as cor­

responding to unstable states (remember e. g. Schwinger ' s(2) approach). The present 

att empt proceeds as follows: (i) singling out ~ state I fJ > in the state space; (ii) fiE 

ding out the effect of the (internal . vi rtual) state I P> on the transition-amplitude; 

(iii) finding, in particular> the necessary conditions for I fJ> to be connected with a 

Resonance in the cross -section . In th is way we s hall associate the "resonant states " 

with the eigenvectors of a non - Hermitian Hamiltonian (for simplicity. a "quasi self­

- adj oint11 Hamiltonian), such eigenvectors being shown to decay in time correctly,. We 

shall adopt the formalism introduced by Akhieser and Gladsman(3) . by Lifshitz. by 

Galinsky and Migdal(4) and by Agodi et al. (5). 

Chosen a state I fJ>. let us define the projectors 

p" Ip><pl ; Q " n - P . 

1. 2. - PRELIMINA RY CASE : TIME-DEPENDENT DESCRIPTION OF POTENTIAL 
SCA 1''1 ERING 

(I) 

Let us pr eliminar1y consider the time-dependent description of potential seatte!:,. 

ing. Quantity V be the potential operator . In the limiting case of plane-waves, the 

scattering amplitud e writes 

with 

Chosen the exploring vector l fJ> and using definitions (1), we have 

o 1 
11 = 11 + H ; 

o 
I-].QHQ; 

1 
H" PHP+PHQ+QHP. 

I 0 0 
By introducing the scatt ering states 1/1 > due to H 
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o (:!:) [ 1 0 ~ 1jJ k > = 1 + -"+~-C('--) (H - E) I k> , 
E- - E 

(4) 

we obtain 

(5 ) 

where the first addendum in the r. h. s. of eq. (5) (let us call it A) is the con1ribution 

coming from processes developing entirely in the subspace onto which Q projects, 

whilst the second addendum (B) is contributed by processes going through the explo-,­

ing state I fJ> onto which P projects. In other words, the processes with I (J> as in 

termediate state correspond to the term 

W¢(z) - PHQ z _ ~HQ QHP. (6b) 

Our problem is: under what conditions one (or more) Resonances are actually asso­

ciated with the chosen I fJ> ? 

Let us notice, in particular, that if EfJ" <fJ IHI ¢> - Re<fJlwfJ(E+HfJ> and 

TfJ = 1m <¢IWfJ(E+l/ fJ> are smooth functions of E, then B gets just the "Breit and 

Wigner 11 form: 

B -:::' - 2m 
<. ~~:)IHPI-lI-&~+» 

E-EfJ+iTfJ 

1. 3. - CASE OF CENT"('(AL POTENTIAL AND SPIN-FREE PARTICLES 

Let us choose the angular-momentum representation. If I f;> is assumed to be 

in particular invariant under 0(3), then both terms in which S was split are diagonal, 
o 

If bt are the phase-shifts due to QHQ and I' is the reduced mass, then 

o 
Se (k) " exp ~i OJ! (k)] = exp ~i Oe(kU' Fe (k) (7a) 

with 

Fe (k) - I - (7b) 
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Let us observe that the phase-shift of F~(k) crosses the value ~<1" (with positive 

slope) when: 

when 

(8) 

The conditions for a Resonance to appear are particularly transparent for t = 0 : 

F (k) 
o 

E - E¢(k) - iAo(k) 

E - E¢(k) + iAo(k) 
( 9a) 

(9b) 

is positive - definite . Nam ely, the condition F o(k) = - 1 yields 

(8 ' ) 

o 0 
with the supplementary conditions Ao(k) f 0; cos do f O. When cos do .", 1 the scattering 

due to QHQ is negligible, i. e. the scattering proceeds entirely via the intermediate foE:. 

mation of the (quasi - bound) state 1 {J> ; and the possible resonant effects are really re ­

late~ to 1/'1>. (If course cos go z 1 when, at the resonance I!: = E¢I; F(k) = - 1J, it is 

I'Pk(e-~> 0:: 1 kern >. 

Notice that with every fixed 1 fJ > a series of Resonances (also for different val­
o 

ues of e.) may be a priori associated, if they are not destroyed by the do behaviour. 

1. 4. - RESONANCE DEFINITION 

It is essential to recognize that the "resonance condition" F (k) ::r - 1 may be wr~ 

tent 1) 

( lOa) 

with 

Let us now stu dy the more general equation 

{ ( 11) 

with z,). complex numbers. 
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Of CQurse# a Resonance will appear at t"'V Re z if z is near the real axis and if 

;'''-a(k,e) 

both satisfying eq. (11). 

If we introduce now the non-Hermitian Hamiltonian-operator 

I£'. H+ ;'P I; ;. complex, 

whose IIresolvent operator" is 

~(z) ~ 
z - £' 1 

then eq. (11) becomes 

< Pe I G(z)1 P.e > 

< fJe I ~(z)1 fJe> 

(12) 

(12' ) 

(13) 

in other words, studying the (necessary) conditions for Resonance-appearing is just 

equivalent to find out the poles in the diagonal elements of the "resolvent rr t§-matrix, 

i. e. the eigenvalues of the quasi self-adjoint operator.ll': Notice that, since 

J.P 
~ = G + G -:1--:--'-0'-:,.,...,,..-,-- G , 

- ;. < Pt I G I p/ > 
(Im;' > 0) 

the difference between the spectra of Hand £' is just the presence of complex eigen­

values (corres pending to the solution of our II condition-equation II (13». 

Therefore, in our framework the "resonant (decaying) staten 11JJ> is expected 

to be an eigenvector of Jf' (notice that it does not coincide with the state Ill > which is 

not unstable!), corresponding to the complex energy S. 

1. 5. - APPLICATIONS 

Let us confine ourselves to the case t. = 0, and rewrite the non-Hermitian (quasi 

self-adjoint) Hamiltonian as 

a
k 

- - ia(k, 0) (14a) 

when 

(14b) 

is anti-Hermitian. We shall therefore write 

r . .,- n 
l~: ..... : : 
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which immediately yields for the eigenvalues the lIdispersion-type relation ll [c".=, C~J : 

and for the eigenvectors the explic it expression 

1'/1 > = - < p /1/1 > i ak -:-::-,1,-;;- / P > H - ,c 
( 17) 

where <pI1/l> is a normalization constant. Notice that to solve eq. (16) we do not need 

knowing a k, i. e. the scattering states due to QHQ. since fortunately at the resonances 

it is [E" ErJ : 

a
k 

cc 1 < Ii I H I ~ ~~~ > 12 = I < ~ 11/1 ~+) > _ < Ii 1 kOO > 1-2 . 

Notice moreover that the present approach , a priori, allows dis tinguishing between true 

resonances and other effects. 

In nef. (1) the application was considered to the case of scattering by a spherical ­

-well potential U(r) = Uo El (a - r), and as exploring states the class was adopted of the 

normalized Laurentian wave-packets (good for low energies): 

./b exp[-brJ 
<koolp>=v2b 1 -<,t~>=V-;;':;-

k 2 +b2 2", r 

By integration , for low entering energies (k2 « 2 mUo) one gets one equation. whose 

real and imaginary parts forward a system of two equations. The latters individuate 

I f;>, i. e . the parameter b , for which a series of (true) Resonnnces arises. These 

Resonances are expected to appear for [k2 = 2mE; K2 = 2m(E+VoU : 
I 

cos K a = 0 - K a = (n + 2) '" 

The system of equations is rather complicated (even when the resonance width is 

y < k ). But the first equation does not contain r and yields b. For instance, for n = 0 
o 

one gets a unique solution (ab " 0.69) . 

1,6. - DE CAY OF THE UNSTABLE STATE 

We are more interes ted in the decay in time of the unstable state 11.JJ> 
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If we assume, as usual, (9 = H. then 

co 

<'PI'Pt> '" j dEl <'P l1J!i+) > 12 exp [..iEt] 

o 

(! 8) 

(19 ) 

since the bound--states do not contribute for large t. Moreover I let us remember that 

Therefore 

I"'> = -iak<PI'P> 1 1,0>. H-S 

C; 
(ReS - E)2 _ (Im S)2 

The integral (19) can be evaluated following Ref. (4). The expression C contains deno­

minators that - analytically extended - produce one pole in E = S. If in the strip 

lmS < ImE < a no other singularities arise from the remaining factors. then we obtain 
I 

the exponential-type decay 

(20) 

with Eo" ReS; Yo" ImS; C and D constants . 

More interesting appears. however. the assumption 

I!J = Jl' , ( 21) 

since in this case our approach does surely possess a lILie-admissible '1 structure(6) 

(due to the fact that the time-evolution operator with Jl'is not unitary). In such a case 

one would sim ply get 

(22) 

with K _ < 'PI'P >. But in this case the whole approach ought to be carefully rephra~ 

ed in "Lie-admissible l1 terms (otherwise. e. g. ,all states would seem to be decaying), 
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PART 2 - ON FOUR-POSITION OPERATORS IN Q. F. T. 

2.1.- THE KLEIN-GORDON CASE: THREE-POSITION OPERATORS 

The usual position-operators, being Hermitian, are known to possess real eige!!, 

values: i . e •• they yield a pOint-like localization. J. M. Jauch showed, however, that a 

point-like localization would be in contrast with lTunimodularityll. In the relativistic 

case, moreover. phenom ena so as the pair production forbid a localization with prec..!. 

sian better than one Compton wave-length. The eigenvalues of a realistic position-op~ 

rator i are therefore expected to represent space regions, rather than points. This 

can be obtained only making recourse to non-Hermitian position-operators z. (a priori. 

one can make recourse either to non - normal operators with commuting components, 

or to normal operators with non -commuting components(7)). Following the spirit of 

Refs. (7). we a re going to show that the mean values of the Hermitian part of z will 

yield a mean (point-like) position(8), while the mean values of the anti - Hermitian 

part of z will yield th e sizes of the localization region(9). 

Let us consider e. g. the case of relativistic spin-zero particles, in natural units 

and with the metric (+---). The position 'operator, i Vp , is known to be actually non­

- Hermitian , and may be in itself a good candidate for an extended- tYpe position oper~ 

tor. To show this, we want to split(8) it int o its Hermitian and anti-Hermitian parts. 

Consider, then, a vector space V of complex differentiable functions on a 3-

-dimensional phase-space equipped with an inner product defined by [po ;; Vp2 + m~J : 

J 3 
d p " 

(1J.I, fJ) = - IjJ (p)<P(p). 
Po 

(23 ) 

Let the fu nctions in V further satisfy a condition 

lim " <jJ (p ) IjJ lp ) = 0, (24 1 
R. -to co 

where the integ ral is taken over the surface of a sphere of radius R. If qJ : V ~ V is a 

differential operator of degree one , condition (24) allows a definition of the transpos e 

~T by 

for all fl, 1J.I6V , (25 ) 

where ~ is changed into ~T , or vice-versa, by means of integration by parts. 

This allows further to introduce a dual representation (~l' ~2) of a single oper!.'c 

tor ~'[ + !JJ
2 

by 
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(26) 

With such a dual representation it is easy to split any operator into its Hermitian and 

anti-Hermitian (or skew':Herrnitian) parts 

Here the pair 

1:c .... 
"2 (~ , @) " >.i'h 

corresponding to t( >.i' + ~:cT), represents the Hermitian part, while 

.... 
~a 

represents the anti-Hermitian part. 

(2?) 

(28a) 

(28b) 

Let us apply what precedes to the case of the Klein-Gordon position-operator z = 

= i Vp. When 

~ = i (29) 

we have(9, 10) 

... 
i I) 

- 2 I)Pj 
(30a) 

~ 

-21 (_ ",:C, "') = 1 (. I) 
:u :u "2 1 I)p. ' 

J 

i.-lL) i 1)(+) 
I)Pj - 2 I)Pj 

(30b) 

And the corresponding single operators turn out to be 

.!c (~ + ~:<T) i 
a i Pj 

2 ijP
j 

2 2 2 
p +m 

0 

(31a) 

and 

l(~ _ ~:cT) i P j 
2 2 2 2 

(31b) 
p +m 

0 

It is noteworthy(10, 9) that operator (31a) is nothing but the usual Newton-Wigner oper~ 

tor, while (31b) has been interpreted(?' 9) as yielding the sizes of the localization-region 

(an ellipsoid) by means of its average values over the considered wave-packet. 
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Let us underline that the previous treatment justifies from the mathematical point 

of view the formalism used in Refs. (8-10): We want to report it briefly here, due to its 

immediate legibility (its significance being now mathematically clarified by the prece£ 

ing approach). In Ref. (8) we split the operator z as follows: 

(32) 

1)(:: ) (J " I) '" :t . 
where 'P 1; -,- fJ " ",:t ~ + fJ -Il-- , and where we always referred to a sUltable spa 

uP IJP . P -

ce of wave-packets(1 0, 9). Hs Her;"itian part(9, lO) 

(33) 

which was expect ed to yield an (ordinary) point-like localization, was derived also by 

writing explicitly 

and im pas ing H ern' icity , i. e. the reality of the diagonal elem ents . The calculation 

yielded 

Re(,tl, " II) q> (p) , 

just suggesting to adopt the Lorentz-invariant quantity (33) as Hermitian position oper~ 

tor . Then, integrating by parts (and due to the vanishing of the surface int egral) we ve­

rified that (23) is equivalent to the ordinary Newton-Wigner operator N-W: 

-iJ 
2 up 

i _ i V -
p 2 

'A' e wer e left with the anti-Hermitian part 

--, 1 iJ (+) 
y - 2 OP 

_ N -W (34) 

(3 5) 

whose average values over the considered state (wave-packet) were regarded as yiel£ 

ing(7. 9) lhe sizes of an ellipsoidal localization-region. 

After this digression (egs. (32)-(35)), let us go back to our present formalism 

(represented by egs. (23) - (31)) . 

In general . the extended-type position operator i will give 
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I I - ~ - ~ <'JI Z 'i'> = (a+ Lla) +i(~+Ll~), (36) 

+ 
where Litl' and tJP are the mean-errors encountered when measuring the point-like p£ 

sition and the sizes of the localization-region, respectively. It is interesting to evalua 

te the commutators [i, j = 1,2, 3J : 

.... ....... 
[

i iJ 1 () (+) ] i 
"2 upi' "2 ~ = ~ 

P Po 

2Pi Pj 
2 ) , 

Po 

(37) 

wherefrom the noticeable l1uncertainty correlations" follow: 

2p.p. I 
--.:..u..) > 

2 'i" 
Po 

(38) 

2.2. - FOUR-POSITION OPERATORS . -
It is tempting to propose as four-position operator the quantity ; I'- = ~I'- + i Y 1'-, 

whose Hermitian (Lorentz-covariant) part can be written: 

- I'- 1 
x • - "2 

-iJ 

ii PI'-

to be associated with its corresponding "operator" in four-momentum space: 

ApJ.L = + 1. 
- 2 

.... 
o 

dx ,u . . 

(39) 

( 40) 

Let us recall the proportionality between the 4-momentum operator and the 4-cu~ 

rent density operator in the chronotopical space, and underline then the canonical cor­

respondence (in the 4-position and 4-momentum spaces, respectively) between the 

"operators 11 (cf. Sect. 2. 1) 

... .... 
'" () ~ Ii 

(a) moQ - Po ot (c) t = 2 2 oPo - - (41 ) 
(b) '":' Jo i Ii 

(d) 
~ i () 

m 0' " p x = 
2 iJ r ' 2 OP 

where the four-position "operator" (41c, d) can be regarded as a 4-current density op!:, 

rator in the energy-impulse space(9) , Analogous considerations can be carried on for 

the anti-Hermitian parts (9). 
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2. 3. - ON THE TIME-OPERATOR 

Let us fix our attention only on the operator for time in the case of (non-relativ ­

istic) quantum mechanics . Time, as well as 3-position . sometimes is a parameter, 

but sometimes is an observable to be represented by an operator. We have shown els~ 

wher e that in Q. M. the "ope ratorll (41c) - cf. Sect. 2. 1 - can b e replaced with the 

lioperatorrt 
, . il 
t- - lDE (42) 

provided that a suitable , subsidiary boundary-condition is imposed on the considered 

wav e - packets(IO). 

In Q . M. , howeve r , the wave-packet space is a space of functions defined only 

over lhe interval 0 ~ E ~ 00, and not over the whole E - axis. As a consequnce, t is 

Hermitian (and symmetric) but not self- adjoint. and does not allow the identity res£ 

lulian. In Q. M. , therefore, one has to use non - selfadjoint operators(1l) even for the 

observable Time. However, even if t does not admit tr ue eigenfunctions, nevertheless 

one succeeds in calc ulating the average values of t over our wave - packets . And this is 

enough to evaluate the packet t ime - coordinate , the fl i ght - times, the interaction- dura ­

tions, the (mean ) life - tim es of metastable states, and so on(8-10,12). 
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