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ABSTRACT

Due to the possibility of rephrasing it in terms of Lie-admissible algebras, some
work done in the past in collaboration with A, Agodi, M, Baldo and V. S. Olkhovsky is
here reported. Such work led to the introduction of non-Hermitian operators in (classi
cal and relativistic) quantum theory. We deal in particular with: (i) the association of
unstable states (decaying "Resonances") with the eigenvectors of non-Hermitian Ha-
miltonians ; (ii) the problem of the four-position operators for relativistic spin-zero
particles.
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PART 1 - UNSTABLE STATES AND NON-HERMITIAN HAMIL TONIANS.

1,1, - INTRODUCTION

This first Part is based on work done in collaboration with A, Agodi and M, Bal-
do(l).

In quantum mechanics the "resonance" peaks are generally described as cor-
responding to unstable states (remember e, g. Schwinger's(z) approach). The present
attempt proceeds as follows: (i) singling out one state |ﬂ> in the state space; (ii) fin
ding out the effect of the (internal, virtual) state |ﬂ> on the transition-amplitude;
(iii) finding, in particular, the necessary conditions for Iﬁ):» to be connected with a
Resonance in the cross-section, In this way we shall associate the "resonant states"
with the eigenvectors of a non-Hermitian Hamiltonian (for simplicity, a "quasi self-
-adjoint" Hamiltonian), such eigenvectors being shown to decay in time correctly, We
shall adopt the formalism introduced by Akhieser and Gladsrnan(?’), by Lifshitz, by
Galinsky and Migdal'4) and by Agodi et aL (%),

Chosen a state I P>, let us define the projectors

P = [p><p|; Q=1-P, (1)

1. 2. - PRELIMINARY CASE: TIME-DEPENDENT DESCRIPTION OF POTENTIAL
SCATTERING

Liet us preliminariy consider the time-dependent description of potential scatter
ing, Quantity V be the potential operator. In the limiting case of plane-waves, the

scattering amplitude writes

T(k, k') = <k'| V|k> + <k'|VG(E")V[k> (2a)
with

+
G(EY) = (EY-H)"1; E = E?Zie, (2b)

Chosen the exploring vector|f> and using definitions (1), we have

o 1
H+H; (3a)

1}

H

0 i |
o QHQ ; H=PHEP+PHQ+QHP, (3h)

W

0 0
By introducing the scattering states |Y> dueto H
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. [1 o e Eﬂlk} (4)
Kk + 0 = ’
E- -
we obtain
N (=), () 0(-)] o(+)
S(k.k)=<wk1 |w‘ >*<1Pk, |’Wk > - 2mi é(Ek"Ek)'

(5)

0
<o\ PG(E, ) PH] P
k I 1

where the first addendum in the r. h., s. of eq. (5) (let us call it A) is the conftribution
coming from processes developing entirely in the subspace onto which Q projects,

whilst the second addendum (B) is contributed by processes going through the explor
ing state | f> onto which P projects. In other words, the processes with | p> as in

termediate state correspond to the term

<pIulp><pla|p>

l:é(Ek, . Ek]'l- B = -2m — (6a)

Ek+)_ <£}|H[D> s <Q|Wﬂ(E]:)|£‘?> ,

1
z-QHQQ

W‘ﬂ(z) PHQ HP. (6b)
Our problem is: under what conditions one (or more) Resonances are actually asso-

ciated with the chosen | > ?

<plH|p> - Re<f)(Wﬂ{E+)|}D> and
I' =1m <£‘J|W¢(E+)[ﬂ)> are smooth functions of E, then B gets just the "Breit and

p

Wigner" form :

Let us notice, in particular, that if Eﬂ

0(-) AGE
<%, |HPH|Y >
E - Eﬂ+ iPp

B & - 2mi

1. 3. - CASE OF CENTRAL POTENTIAL AND SPIN-FREE PARTICLES

Let us choose the angular-momentum representation, If ]ﬂ)> is assumed to be
in particular invariant under 0(3), then both terms in which S was split are diagonal,

0
If oy are the phase-shifts due to QHQ and u is the reduced mass, then

Se (k) exp[ZidE(k)] = exp EZigg(kﬂ° Fy (k) (7a)

1]

with (001t ) B
27U I <ﬂ|H‘wk€m>l
2k E+-<£)[H[ﬁ)>-<ﬂ|w (E+)|ﬂ>

(7b)
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Let us observe that the phase-shift of F@(k) crosses the value %v‘r (with positive

slope) when:
Fplk) = - 1. (8)
The conditions for a Resonance to appear are particularly transparent for ¢ = 0:

E - B, lk) =~ &4 (k)
p 0"

F (k) = - 3 (9a)
o E - Ep(k) + 1Ao(k)
when
. Pt 4 LD 12
A ) = -tm<p|whE)p> = | <plElv, o) > | (9b)
is positive-definite. Namely, the condition Fo(k) = -1 yields
|1-5 (0|2 = 4cos®s (8")

0 0
with the supplementary conditions A (k) # 0; cos 9o # 0. When cos do ¥ 1 the scattering
due to QHQ is negligible, i.e. the scatiering proceeds entirely via the intermediate for

mation of the (quasi-bound) state |f>; and the possible resonant effects are really re-

E )
lated to \jh> Of course cos §; 1 when, at the resonance LE = Eﬂ); F(k) = - 1], it is

]w(f)

= £
et | kém >,

Notice that with every fixed |f> a series of Resonances (also for different vai-

0
ues of ¥) may be a priori associated, if they are not destroyed by the éo behaviour.

1. 4. - RESONANCE DEFINITION

It is essential to recognize that the "resonance condition" F (k) = -1 may be writ

(1)

ten
1-a(k,?) <fp| GE|g> =0 (10a)

with
i u

hk

ﬂ(l{,!:) =

| <tol8 ¥ >|*

Let us now study the more general equation

1-A<p,|G)p> =0,

(11)

with z, A complex numbers.
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Of course, a Resonance will appear at ~Rez if z is near the real axis and if
A¥a(kt),

both satisfying eq, (11),

If we introduce now the non-Hermitian Hamiltonian-operator

~# = H,  AP|; A complex, (12)

whose "resolvent operator" is

1

%(z) = P

(12')

then eq. (11) becomes

< ﬂg ]G(Z)I ﬂ,g>
< f, |%(z)| Pe>

(13)

in other words, studying the (necessary) conditions for Resonance-appearing is just
equivalent to find out the poles in the diagonal elements of the "resolvent" %-matrix,

i, e, the eigenvalues of the quasi self-adjoint operator s, Notice that, since

AP
1-A<f|Glpe>

¥=G+G G, (Im4 > 0)
the difference between the spectra of H and J# is just the presence of complex eigen-
values (corresponding to the solution of our "condition-equation" (13)).

Therefore, in our framework the "resonant (decaying) state" |¥> is expected
to be an eigenvector of # (notice that it does not coincide with the state |p> which is

not unstable!), corresponding to the complex energy &.

1. 5, - APPLICATIONS

Let us confine ourselves to the case {= 0, and rewrite the non-Hermitian (quasi

self-adjoint) Hamiltonian as

# = Heia [p><pl ; a, = - ia(k, 0) (14a)

when

Vy = iak|ﬁ)?<ﬁ| (14b)

is anti-Hermitian. We shall therefore write



(H-€)|w>=-vp|w> = -|p>ia <plv> (15)
which immediately yields for the eigenvalues the "dispersion-type relation" [c%""s. é’ﬂ] :
]+i<y§|——1—-—|ﬁ>a =0 (16)
lH-¢ T
and for the eigenvectors the explicit expression

!1P>=-<ﬂlw>iak-H+érljﬁ>, (17)

where <fi{%¥> is a normalization constant, Notice that to solve eq. (16) we do not need

knowing @y i, e, the scattering states due to QHQ, since fortunately at the resonances
itis [E = Eg] :

o, « |<ﬂ|H|1?Jgé>|2 - |<p|w§”> - <plxoo>|"%,

Notice moreover that the present approach, a priori, allows distinguishing between true
resonances and other effects.

In Ref, (1) the application was congidered to the case of scattering by a spherical-
-well potential U(r) = U, O (a-r), and as exploring states the class was adopted of the

normalized Laurentian wave-packets (good for low energies):

exp-br
<k0o|p> = @_zl_2¢=)<,”5>=|/_éb? p[-br] _

k°+b E

By integration, for low entering energies (k2 << ZmUO} one gets one equation, whose
real and imaginary parts forward a system of two equations., The latters individuate
]ﬁ):», i. e. the parameter b, for which a series of (true) Resonances arises, These

Resonances are expected to appear for [kz = 2mE; K2 = Zm(E-i-VO)] 2

cos Ka=0=>Ka=(n+?]3~)-T5.

The system of equations is rather complicated (even when the resonance width is
¥ <k0}. But the first equation does not contain 7 and yields b. For instance, for n=0

one gets a unique solution (ab = 0.69).

1.6, - DECAY OF THE UNSTABLE STATE

We are more interested in the decay in time of the unstable state |y > :
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<y wt> = <1pIUt|'lp> s<1p|exp[—i@t]lw>. (18)

If we assume, as usual, @ = H, then

oo
<w|wt>“—‘ f dEI<‘P]1P}(E+)>|2 exp ‘:—iEt] (19)
0

since the bound-states do not contribute for large t. Moreover, let us remember that

. 1
|v> = -ig <pl¥> == | p>.

Therefore ] 9

|ak
2

() 2
C; C=z|<Y .
(Re - E)° - (Im &)° | E IP[w}l

(+) %,

l<wE |1.U>[ -

The integral (19) can be evaluated following Ref, (4). The expression C contains deno-
minators that - analytically extended - produce one pole in E = &, If in the strip

Imé& < ImE <0 no other singularities arise from the remaining factors, then we obtain

/
the exponential-type decay

<Y |w> = (C+Dt) exp[— 1Bt + rot)] (20)

with EO = Red; Yo = Imé&; C and D constants,

More interesting appears, however, the assumption

0=, (21)
since in this case our approach does surely possess a "Lie-admissible" structurel6)
{due to the fact that the time-evolution operator with # is not unitary). In such a case

one would simply get
<'tp[1pt> = K exp 1B b+ }’Ot:] ] (22)

with K = <w]'w >. But in this case the whole approach ought to be carefully rephras

ed in "Lie-admissible" terms (otherwise, e, g. ,all states would seem to be decaying).



PART 2 - ON FOUR-POSITION OPERATORS IN Q. F. T.

2. 1. - THE KLEIN-GORDON CASE: THREE-POSITION OPERATORS

The usual position-operators, being Hermitian, are known to possess real eigen
values: i, e, , they yield a point-like localization, J.M., Jauch showed, however, that a
point-like localization would be in contrast with "unimodularity". In the relativistic
case, moreover, phenomena so as the pair production forbid a localization with preci
sion better than one Compton wave-length., The eigenvalues of a realistic position-ope
rator z are therefore expected to represent space regions, rather than points. This
can be obtained only making recourse to non-Hermitian position-operators z (a priori,
one can make recourse either to non-normal operators with commuting components,
or to normal operators with non-commuting components(7)). Following the spirit of

Refs. (7), we are going to show that the mean values of the Hermitian part of 2 will

yield a mean (point-like) position(a), while the mean values of the anti-Hermitian

(9)

part of  will yield the sizes of the localization region'®/,

Let us consider e, g. the case of relativistic spin-zero particles, in natural units
and with the metric (+---). The position operator, in, is known to be actually non-

-Hermitian, and may be in itself a good candidate for an extended-type position opera

tor, To show this, we want to split(a) it into its Hermitian and anti-Hermitian parts,
Consider, then, a vector space V of complex differentiable functions on a 3-

-dimensional phase-space equipped with an inner product defined by l_po S \/p2+m02:]:

3
dp

(, p) = _/—-— P (p) B(p) . (23)
Po

Let the functions in V further satisfy a condition

lim / . SPx(p)fPu:) = 0 ; (24)

p
R—= 6]
SR

where the integral is taken over the surface of a sphere of radius R, If 2: V =-» V is a
differential operator of degree one, condition (24) allows a definition of the transpose
7 by

(2T, p) = (w, 2p) for all fi, YEV , (25)

where £ is changed into QT, or vice-versa, by means of integration by parts.

This allows further to introduce a dual representation (@1, @2) of a single opera

[ T G
tor 2" + 9, by

(]
)
()



(D%, B)+ (¥, D,0) = (¥, (2] + D) P). (26)

With such a dual representation it is easy to split any operator into its Hermitian and

anti-Hermitian (or skew-Hermitian) parts

(v, 99 = LW, 2p+@% 0]+ 1[v.20-@%w ). (27)
Here the pair

1, % _ &

5(.@ , D) = @h (28a)

corresponding to %( 9+ @*T), represents the Hermitian part, while

1 % arr ;
9% 9= 9 (28b)

represents the anti-Hermitian part,

Let us apply what precedes to the case of the Klein-Gordon position-operator zZ=

=in. When
R
.@—1ap. (29)
J
we have(g' 10)
— -t
1L p% Lo, 0 6, _1ax) i 8
2 (2 ’9}'2(“lap.’lap.)‘z op. ~ 2 ap. ' (3 0=)
J J J j
e
1ia® gye a0 By g L)
2(»@,_@)—2(16133_,16%).2 6pj " (30b)

And the corresponding single operators turn out to be

l(@+@XT)=iL__i__j____ (313.)
2 op. 2 2 2
] P +1m
0
and
1 wre, 5 By
2(93—9 } =5 —g 5 - (31b)
P +m

It is noteworthy(lo= 9) that operator (31a) is nothing but the usual Newton-Wigner opera

(7,9)

tor, while (31b) has been interpreted as yielding the sizes of the localization-region

(an ellipsoid) by means of its average values over the considered wave-packet.

S0 7
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Let us underline that the previous treatment justifies from the mathematical point
of view the formalism used in Refs. (8-10): We want to report it briefly here, due to its
immediate legihility (its significance being now mathematically clarified by the preced

ing approach), In Ref, (8) we gplit the operator Z as follows:

- —
Qsivp=51ai+%6;:), (32)
X
where p* —— 6f+) P = _jﬂ_ , and where we always referred to a suitable spa
ce of wav'e-Eackets(lo' QJ. Its Hermitian part(g’lo)
gl
X = :21‘ TR (33)

which was expected to yield an (ordinary) point-like localization, was derived also by

writing explicitly

| % .
(w,xp) =i (@ V. P(p)
P 3

(]

and imposing Hermicity, i, e. the reality of the diagonal elements. The calculation

yielded

d3 ey
Re(f, x ) jp o (p) == B(P) ,

just suggesting to adopt the Lorentz-invariant quantity (33) as Hermitian position opera
tor, Then, integrating by parts (and due to the varishing of the surface integral) we ve-

rified that (23) is equivalent to the ordinary Newton-Wigner operator N-W:

-~ p
£ 0 - i P N
'2— ap = IVP = 2 2 2 = N-W . (34)
P +m
o
We were left with the anti-Hermitian part
—
A _ 1 a(+) .
Y235 %0 (35)

whose average values over the considered state (wave-packet) were regarded as yield

ing”' 7 the sizes of an ellipsoidal localization-region,
After this digression (eqs. (32)-(35)), let us go back to our present formalism
(represented by eqs. (23)-(31)),

In general, the extended-type position operator z will give

Qo
o



- T -

<y|g|w> = @+ 43) +i (B + 4P, (36)

- -
where da and 48 are the mean-errors encountered when measuring the point-like po
sition and the sizes of the localization-region, respectively. It is interesting to evalua

te the commutators [1 j=1,2, 3] :

R — ) 2p.p.
[.1,_9_. LAY o L il i
2 o0l * 2 ad ij 2z
op ap 2p, Py

wherefrom the noticeable "uncertainty correlations" follow :

2p.P.
da, A8 >~ <o, - —L)> | . (38)
i7F 74 2 " ij 2 v
Pg P,

2.2, - FOUR-POSITION OPERATORS

.

It is tempting to propose as four-position operator the quantity 2= ;P"+ i§'u“,

whose Hermitian (Lorentz-covariant) part can be written:

Kl
= - % : , (39)
Pu

to be associated with its corresponding "operator" in four-momentum space:

A L i
2+ =
P 2

0x " (40)
Let us recall the proportionality between the 4-momentum operator and the 4-cur

rent density operator in the chronotopical space, and underline then the canonical cor-

respondence (in the 4-position and 4-momentum spaces, respectively) between the

"operators" (cf, Sect. 2,1)

TR N e b2
(a) mg,@ = Py 3 ot ° (c) T T 9 6po »
. - R (41)
Sodo I8, -
(b) mjEP=-75 = (d) el -8~

where the four-position "operator" (4lc,d) can be regarded as a 4-current density ope

rator in the energy-impulse space(g). Analogous considerations can be carried on for

the anti-Hermitian partstg).

(o
(.
(W)
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2.3,- ON THE TIME-OPERATOR

Let us fix our attention only on the operator for time in the case of (non-relativ-
istic) quantum mechanics, Time, as well as 3-position, sometimes is a parameter,
hut sometimes is an observable to be represented by an operator. We have shown else
where that in Q. M, the "operator" (41c) - cf. Sect, 2.1 - can be replaced with the
"operator"

tE i (42)

provided that a suitable, subsidiary boundary-condition is imposed on the considered
wave-packets(]m.

In Q.M. , however, the wave-packet space is a space of functions defined only
over the interval 0 £E € o, and not over the whole E-axis. As a consequnce, t is
Hermitian (and symmetric) but not self-adjoint, and does not allow the identity reso
lution, In Q, M, , therefore, one has to use non-selfadjoint operators(ll} even for the

observable Time, However, even if { does not admit true eigenfunctions, nevertheless

one succeeds incalculating the average values of t over our wave-packets. And this is

enough to evaluate the packet time-coordinate, the flight-times, the interaction-dura-

tions, the (mean) life-times of metastable states, and so onl8-10, 12’.
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