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ABSTRACT 

A surface wave model is proposed for interpreting the elastic scattering of 2851 on 160 • The surface waves 

are excited at the surface of the nuclear-interaction region and propagate along it, they are focused at forward 

and at backward. At large angles the surface rays interfere with the reflected rays; on the contrary, at small 

angles they interfere with the Coulomb refracted rays, producing the typical Fresnel diffraction pattern. We make 

fits to the experimental data both at fixed energies and at a fixed angle (9 =180°); we also discuss the consistency 

among the various parameters found; moreover we extract a value of the nuclear-interaction radius. 

RIASSUNTO 

5i propone un modello ad onde superficali per interpretare la diffusione elastica di 285i su 160 • Queste onde 

sono eccitate alIa superficie della regione d'interazione nucleare e si propagano attorno ad essa, infine sono 

focalizzate nella direzione in avanti ed all'indietro. A grandi angoli i raggi superficali interferiscono con i raggi 

riflessi, a piccoli angoli, invece, interferiscono can i raggi che risentono della sola azione Coulombiana: in tal 

modo si ha la tipica diffrazione alia Fresnel. 51 approssimano i dati sperimentali ad energie fissate ed anche ad 

angolo fissato (9 =180°); si discute la compat1bilita tra i vari parametri trovati nei fit; inoltre si estrae un val ore 

del raggio d'interazione nucleare. 
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I. - INTRODUCTION 

A surface wave model has been propose dO }, in order to explain the anomalous large angle scattering (ALAS) 

of alpha particles on nuclei like 160, 285i and 40Ca. Now the elastic scattering of 160 + 285i exhibits, near the 

backward direction, some features which are very similar to those observed in ALAS of a-Nuclei elastic collisions, 

i.e.: 

a) the angular distribution presents a strong oscillatory large angle peak, which is "anomalous" with respect to 

the usual behaviour of the backward differential cross sections; 

b) the backward excitation function has an oscillatory trend, with an envelope which decreases with energy; 

c) an isotope effect is observed, in the sense that the large angle elastic scattering cross section between 

Oxygen and Silicon isotopes, like 180 + 28Si or 160 + 29Si, is considerably smaller than the corresponding 160 

+ 28Si cross section. 

Therefore it seems quite natural to try to extend the surface wave model to 160 + 28Si elastic scattering. 

This model presents some analogies with the one elaborated by Fuller and Moffa(2): however the formali sm used 

and the mathematical process adopted are quite different. 

Previously, some authors tried to explain ALAS in 160 + 28Si by various mechanisms, like shape 

resonance sO), a parity-dependent potential(4,5) or by an optical potential whose imaginary part has a radius 

smaller than the real one (6,7). 

In this work we shall use concepts like reflection, refraction or diffraction, referring to particle trajectories 

rather than to light rays. This approach allows us to introduce a parametrization which does not depend on the 

specific form of the nuclear potential. We use the same formalism that has been developed in the paper(!), which, 

hereafter, will be referred to as I. However, due to the stronger Coulomb interaction, the differential cross 

section in the forward half-space presents a fundamental difference with respect t o the angular distribution of a­

nuclei elastic scattering. As pointed out by Frahn(8), the Coulomb interaction deflectes the particles in such a way 

that those which are grazing to the nuclear interaction region appear to be esmitted from a point-like source set 

at a finite distance from the centre of mass. A "Coulomb region" of finite angular size is produced behind the 

nuclear interaction sphere: the diffracted rays, which propagate into this region, are focalized at forwards and 

interfere with the Coulomb refracted rays. If the Sommerfeld parameter is small (e.g. in the case of a -40Ca we 

have "1::. 2), the angular size of the I1Coulomb" region is small and the interference among the rays is strong, it 

produces the typical Fraunhofer-like diffraction pattern. But for values of the Sommerfeld parameter of the order 

of 10 (as is the case of 160 + 2851) or larger, the interference of the diffracted and Coulomb refracted rays is 

weaker and produces a Fresnel-like diffraction pattern, which is typical of the light fro m a source posed at a 

finite distance from the obsta de. Now, unlike the Fraunhofer pattern, the Fresnel diffraction can be described 

simply in terms of the amplitudes of the diffracted rays and the Coulomb refracted rays. Therefore we shall 

interpret the differential cross section by means of the surface rays which interfere, at small angles, with the 

Coulomb refracted rays and, at large angles, with the reflected rays. As far as these last are concerned, from our 

phenomenological analysis it results that the nuclear potential is more reflecting, and therefore sharper than the 

usual Woods-Saxon potential e mployed in the literature. 

Let us recall the assumptions of our model. 

a) The scattering process between the two ions is approximated by the diffusion of a point-like particle by a 

sphere having the dimensions of the nuclear interaction region. 

b) The sphere is assumed to have an opaque core surrounded by a nearly transparent shell. 

c) The conditions for a quasi-classical approximation are supposed to be realized, i.e. one assumes(9) that 

k R» 1 and 2 . -1'1 k« I"R V 
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where k is the wavenumber in the c.m.s., R the radius of the nuclear interaction sphere, f.L the reduced mass and 

V the mean value of the potential inside the sphere. 

d) The potential between 160 and 285i is assumed to vary rapidly near the boundary of the nuclear interaction 

region. Moreover the absorptive region is supposed not to cause any appreaciabJe reflection nor surface waves at 

the interior of the transparent shell. 

The paper is organized as follows. In Sect. 2. we give an outline of the theory developed in I. In Sect. 3. we 

present the results of our phenomenological analysis. In Sect. 4. we draw some conclusions. 

2. - OUTLINE OF THE THEORY 

We assume a potential of the form (see I, formulas (3a) and (3b» 

r :S. R, Oa) 

r ) R, Ob) 

where 

is the Sommerfeld parameter and V n is the complex-valued nuclear potential, whereas V c(r) is the electrostatic 

potential inside the nuclea r interaction sphere. In the short wavelength approximation we assume that the 

wavefunction can be written as a sum od terms like A eicJ). Substituting in the SchrOdinger equation, we get, in the 

limit of large values of k, the eikonal and the transport equation, i.e. 

(2) 

where 

This approximation fails at the boundary of the nuclear sphere, where we assumed the potential to vary rapidly 

with respect to the Broglie wavelength. Now we can reasonably conjecture that, on the boundary, phonomena like 

reflection, refraction and diffraction occur, similarly to the case of a discontinuous potential. 

In the following we review br iefly the theory which we have developed in I: firstly we determine the 

behaviour of the trajectories at large distance from the scattering centre; then we give the results that we found 

in the preceding paper, as regards the scattering amplitude and the differential cross section. 

2.1. - Ray tracing 

As we saw in I, the trajectory is tangent to the nuclear interaction sphere when the angular momentum ). 

assume s the value 
. ! 2'1 ' 

}, =},g = k R VI - kR (4) 

· ~ 1 
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Therefore, for)' > ). , the trajectory does not meet the sphere and undergoes a pure Coulomb deflection. On the 
g 

contrary, when). <). , the trajectory hits the boundary of the sphere, where it split into a reflected and a 
g 

refracted trajectory. Now we make the simplifying assumption that the opaque core absorbs all the refracted rays 

- except the limiting refracted ones - so that we do not worry about them. 

Lastly, when ).= ).gl the grazing trajectory splits at the point of tangency into there branches: one leaves the 

sphere tangentially, another a limiting re fraction and the third describes an arc geodesic on the surface of the 

sphere; this last is named surface ray and unde rgoes at each point the same splitting that it had at the point of 

tangency. The limiting refracted ray describes a shortcut a cross the trasparent shel1 and splits again when it 

reaches the surface . 

Now, in orde r to determine the differential c ross section, we have to examine the behavior of the trajectories 

at very large distances from the nuclear interaction sphere. The grazing trajectory - more precisely the branch 

which leaves the surface of the sphere tangentially - points, at large distance, in the direction 

Q ~ Q ~ 2 arctg ,"I 
g hg 

(5) 

A particle with angular momentum greater than Ag undergoes only the Coulomb action and therefore is scattered in 

a direction 

"I 
Q ~ 2 aretg T <: Q

g
; (6) 

(c.l. r. I, formula (27». 

On the other hand a trajectory with a ngular momentum less than Ag undergoes reflection at t he surface of 

the sphere and is scattered in a direction Q such that 

(7) 

where 

Q i :: arc sin (8) 

and 

Q c :: arc sin 

<C.f.r. 1, formula (37». In this case one can see that Q) Qg' The diffracted rays - either those which describe a 

simple arc of geodesic or those which take also one or more shortcuts - are scattered at every angle. 

Moreover, we have t o take into account those rays which are critically refracted at the point of tangency 

with the nuclear interaction sphere a nd take one or more shortcuts and lastly, without describing any arc of 

geodesic, emerge in a direction 

(10) 

2.2. - Scattering Amplitude and differential Cross Section 

The wavefunction - an,d therefore the scattering amplitude - consists in a sum of terms, each of which 
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represents the contribution of a single trajectory, Therefore from the ray tracing it follows that 

(11,) 

(11 b) 

where fc(Q) is the contribution from pure Coulomb trajectories, fr(Q) the contribution from direct reflection and 

fd(Q) the contribution from the diffraction. Now we recall the expressions of fc(Q, fr{Q) and fd(Q) that we deduced 

in I, referring to that paper as regards the notations used. We have 

~ 
fC<k, g) • 2 9 

2 i k R sin :2 

and 

00 

I 
n:::l 

D D' n n 

(12) 

(13) 

(14) 

lastly ~s and :.epa;~ are defined in I, formulas (54) and (59) respectively. n~ depend on the number of focal pOints 

crossed by the counterclockwise and clockwise travelling rays. 

As regards the reflection amplitude, we have 

[ ]
_l 2iLl 

F(9) 2 e r !!l(g), (17) 

where F(Q) is given by formula (65) of I, while 

(8) 

and ).r is the angular momentum of the reflected trajectory: it can be expressed as a function of g by inverting 

formulas (7), (8) and (9). We have introduced a new quantity, R
v

' which is the average radius of the nuclear 

interaction region, to be distinguished from R, which is the maximum distance from the scattering centre at which 

the nutlear interaction has some influence. In this connection let us specify that the factor F(g), whose expression 

is given by formula (65) of I, is to be calculated using Rv in place of R. Lastly the formula of the reflection 

coefficient9t'(g) will be discussed in detail in the following section. 
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In the expression (14) of the diffracted ray contribution we have summed over all the possible "modes'~ each 

"mode" is characterized by diffraction coefficients D and 0' (n=l, 2, ... ) and by a decay exponent a ,such that 
n n n 

([ 9) 

The energy dependence of D , 0' and a will be discussed in the next section. When~! is sufficiently large , we n n n '3 p 
may take into account only the "mode" for which the (complex) angular momentum ).n has the smallest imaginary 

part: if we denote with ).=).1 this value of the angular momentum, fd(k, g) reduces to the expression given in I, 

formula (60). 

The scattering amplitude (11a) or (lIb) fails in certain angular regions centred on the angles Qp given by 

furmu la (10): in these angular intervals, which we call transition regions (see (10», the cont ribution of the limiting 

reflected rays (Q::: Qg) or limiting refracted rays is to be taken account; moreover in these regions all the 

excitation modes must be considered. Here the ray approximation does not apply, since the interference effects 

a re too st rong. As we shall see in the phenomenological ana lysis, we assume that the surface rays taking more 

than one shortcut give a negligible contribution. Then, we have two transition regions in correspondence to Qg and 

to Qt - Qg. Therefore, if we restrict ourselves at angles sufficiently at forward or at back ward, the transition 

regions do not conce rn us. 

With the above approximations in mind, we study the formula of the scattering amplitude at small angles (Q 

< Qg> and near the backward direction. 

j) Let us consider the scattering amplitude for Q near to n. Since the surface rays take at most one shortcut ~ 

~J and ~r are sufficiently large, and we can replace the sum over the modes by the term corresponding to n::: 1; 

moreover we may neglect the angular dependence in the polynomial .;:!.... l (~i:\Since in this case n~:::n~-l, we have 

i(2,1 -~) 
g . /~ 

DI Dl e /v 2n}, 
f (k, Gl OO - ---------&.. 
d - J 1/2 l cos(~ Qg) 

J 
ip~ n+ iAt'll 

e siP e p ~ .. (v ) 
~ p p • 

i[;·I(,,-Q)-jfJ -i[;·I("-Q)-~J 
e + e ----

where 

(mod 2" ), 0 ( 11 $ 2n p 

(20) 

and Dl and Dl are the diffraction coefficients corresponding to the "mode" n::: 1. For Q ___ n the focusing effect, 

due to the presence of an axial caustic, is to be taken into account. As we have shown in I, the correct behaviour 

near and at the caustic can be obtained replacing the last fac tor in (20) with the Legendre function P), (-cos Q). 

Now, in order to write the differential cross sect ion, we recall that we have defined a di~Jnslonless 
scattering amplitude, such that (see I) 

(21) 
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For 9 near to 1t, substituting (17) and (20) into (lib) and taking into account the focusing effect, we get 

do _ 21 i'i' I ( ,I Rv - .... RAe P, - - -cos 9, + - -
dQ 'I 2 2 R 

where A and 1JJ are real functions such that 

I iP'i's 
1: e 

p=O 

2 

R(Q) [F(Q8 -
1/2

1 (22) 

(23) 

ii) Now let us turn our attention to the scattering amplitude for Q near to O. In this case we neglect 

the contribution corresponding to one shortcut, since the corresponding surface ray has to describe an 

arc~l!" =2mQ-Qt+ Q and therefore is largely damped. Moreover in this angular region n+=-I, n-=O. Then, from (14) goo 
we ~et 

CD 

1: 
n=i 

UQ 
eng D 0 ' n n 

(24) 

At 0=0 there is the axial caustic and we could take into account the focalizing effect by suitably transforming 

formula (24), as we did at backward. However, for the moment we are not interested in such a modification. 

Rather, if we restrict ourselves to angles such that 9 > Om ),lr1, we can approximate (24) by 

ii. (Q - Q) CD 
egg 1: 

n=1 

-a (Q - Q) 
D D' eng 

n n 
(25) 

The approximation fails in a neighborhood of 9 = G
g

, where we have a transition region. The series in (25) converges 

for Q ~ Q
g 

- E for every E> 0, the rapidity of convergence depending on Q
g 

- Q. 

Formula (25) is not suitable for a phenomenological analysis, since it contains a too large number of 

parameters. In the following section we shall show the amplitude (25) may be approximated, uniformly in a 

neighborhood of Q = 0, by the formula 

(26) 

where), =), + ia and C and a are complex constants to be defined in the following section. Then the cross a g a a 
section at ~ngles Q < Q

g 
is given by 

do 

dQ 

where f (k, Q) is given by (J 2) and 
c 
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(28) 

Formula (27) has been used also by Fuller and Moffa(2), in order to describe the differential cross section at small 

angles, in some cases of heavy ion elastic scattering. 

3. - PHONOMENOlOGICAl ANALYSIS 

In this section we use the preceding formulas to fit the experimental data of 160+ 285i e last ic scattering: we 

consider the large angle and small angle differential cross section in an energgy interval between 21 and 35 MeV in 

the C.m. s. (see experimental data of Braun-Munzinger et al.
(

1), At large angles we fit both the angular 

distributions at six different energies and the excitation function at backward; to this end, we have to specify the 

a ngular and energy dependence of the reflection coefficient and the energy dependence of the decay exponents an 

and of the diffraction coefficients On' O~. On the other hand, at small angles we have to justify the approximation 

(26), which allows us to use formula (27) in the fixed energy fits. 

3.1. - Large Angle Differential Cross Section 

Let us consider firstly the fixed energy fits. We try to interpret the angular distributions taking into account 

the sole surface wave effect, so that forml!la (22) reduces to 

(29) 

where 

We fit the data using N, Re AI' 1m Al as free parameters. Only the fit at ECM =34.8 MeV is satisfactory (see Fig. 

1)j at lower energies, one can see a discrepancy between the experimental data and the theoretical curves: the 

1. 

c 
0 

.8 
u • Vl 

• 
.6 • e 

" '0 • A N 

;; 
E 
0 

Ec,"".34.8 MeV .2 Z 

FIG. 1 

130 140 150 160 170 180 

6 CM (degrees) 
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discrepancy tends to decrease towards increasing energies. This fact suggests that a reflection contribution should 

be taken into account. We assume a phonomenological reflection coefficient from a Woods-Saxon barrier, i.e. (see 

I and ref. (12)): 

T<2iLl k ) r [-I LI (K +k )l r [I-iLl (K +k ~ 
!ll(Q) = r r r'J r r'1 , 

n-2iLlk )rCiLl(K -k )lr 'l-iLl(K -k)J rL' rr-~ rr 

(30) 

(31 ) 

(32) 

V is the depth of the barrier, /.L the reduced mass, Rand). have been defined in formulas (l?) and (18). Note 
o v r 

that we do not necessary assume a Woods-Saxon potential, but we merely take into account a contribution of 

reflection from a nuclear potential with a given diffuseness .d. 
We fit the sets at E

CM
=21.1, 22.7, 24.3, 26.2 and 31.6 MeV by formula (22), using for!ll(Q) the expression(30). 

For each set we use A, 1jJ, Re ).1' 1m Al as free parameters. We give Rv and Vo the values of the parameters 

correspondin~ to the potential D23 reported in Ref. (3): this potential seems to be the most suitable for 

1 be ° f hid' °b ° f 160 285, ° ,0 ° t h dO describing the large ang e havlOur 0 t e angu ar Istn utlOn 0 + 1, smce Its Imagmary par as a ra IUS 

smaller than the real part. So R =7.946 fermi, V =5 MeV are the values reported. The ditfuseness is left as a free v 0 
parameter, but independent of energy. The results of the fits are shown in Fig. 2b. The fit parameters A, 1p, Re )..1 

and 1m '\ are reported in Table I. The diffuseness is found to be 0.30 fermi: it seems to be somewhat low with 

respect to the commonly reported values of .1 , but it is in agreement with the value obtained by Dehnhard et 

al.(4) for the imaginary part of the nuclear potential. 

TABLE. I - Values o! the fit p~rameters, as obtained from the large angle fits to the 160 +28Si e lastic 
~catter.mg data at fIxed energIes: colur:rln a refers to the fits where only the surface ray contribution 
IS consIdered; column b refers to the flts where the interference with the reflected rays is taken into 
account. 

Ecm 
R· A[ (mb/sr) tJ Re A I 1m A I X2 

(MeV) b b 
1jJ Qmin(de", a • a b a b 

21.1 1.594 1.255 8.05 11.78 1.794 1.262 1.075 138.1 588 25 

22.7 ' 1.139 1.767 11. 77 14.23 1.388 .667 .210 137. 827 22 

24.3 1.837 1.915 16.14 16.83 .729 .996 -1.080 145.5 181 67 

26.2 1.287 1.282 17 .41 17 .92 .583 .930 -4.785 153.8 57 20 

31.6 .638 .662 22.00 22.11 1.516 1.223 -6.900 155.8 60 52 

34.8 .401 26.30 .748 130. 133 
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Let us note that formula (22) has been deduced for values of g near :It and the angular dependence of <?t\ (~1) 
has been neglected, as well as all the modes corresponding to n > 1. Forcing a little bit the mathematics, we have 

used that formula for a larger angular range, extending out fits as long as the agreement with the data is 

satisfactory. In this connection we observe that the angular region to which the fits can be extended varies from 

set .toset and is greatest at the highest energy; a similar trend has been noted also in a_40Ca (see r). Below, 

when we discuss the excitation function, we shall give a tentative explanation of this fact. 

Now let us turn attention to the energy dependence of the decay exponent and of the diffraction coefficients. 

To the first order in k -1 these quantities depend only on the local properties of the diffraction surface and on the 

incident field(l4). Of course, also the curvature of the incident trajectory should be taken into account; however, 

this effect could give rise to a complicated k-dependence, and, on the other hand, it could be too weak to be 

accounted for phenomenologically. In our phenomenological aoproach, we assume that the dependence of a ,0 , 
1 n n 

D~ on the local wavenumber kc= 2' JOg is the same as for a neutral sphere, Le.: 

(33) 

D D'=d ).-1/6 
n n n g 

(34) 

Now we are able to study the energy dependence of the fit parameters and to fit the backward excitation 

function. As far as Re )" I is concerned, we fit the values reported in Table I approximating Re )" 1 by A. g' The fit is 

shown in Fig. 3. We get the value R=9.07 fermi. As regards the excitation function, we use still formula (22), for g 

=n, together with (23). We assume that only the terms corresponding to p=O (no shortcuts) and to p=l (one 

25 

20 

o 

15 

o 

10 

ECM (MeV) 

shortcut) contribute to the scattering amplitude. We get 

20 25 

where 

...5!£) 
d.Q 9:" 

A = 
IDID;I ~ 
(cos 1 9 )1/2 

2 g 

2iLl (k,") 
e r R(,,) 

£ + 
o 

30 35 

(35) 

(36) 
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and 

i(~s- AIQ -!!2) 
z = e r (37) 

We deduce the k-dependence of 1m ).1 and of 1Jl from the fixed energy fit parameters. As regards the phase 1Jl , we 

fit the five values reported in Table I by a linear function of k, getting 

1JI = 39.25 - 11.85 k. (38) 

As far as 1m ).1 is concerned, we fit the six values in Table I by formula (33); the result is 

1m ).1 = 0.364 ).~/3 (39) 

Then we assume <.Ps to be proportional to k, so that formula (37) reads as follows: 

(40) 

where rp is a real function linearly dependent on k. In order to determine!p, we have fixed its values to n, 3n and 

5n re spectively in correspondence to three consecutive dipd of the excitation function. We have chosen the dips 

at sufficiently high energies, such that the reflection contribution is negligible, and we have determined rp by 

linear least squares. The result is 

rp = 43.32 k + 0.67 (mod 2,,). (41 ) 

Taking into account formula (59) of I, we get 

£,,= I ; (42) 

Inserting (39) and (42) into (36), we get 

(43) 

where 

b l = 0.364, 
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Now, if we insert (43) into (35) and take into account (38), (39), (40) and (41), we can fit the excitation function, 

using Lo' Ll and Qt as free parameters. 

The fit is successful only for ECM .( 26. MeV, whereas at higher energies the theoretical curve decreases 

more slowly than the experimental excitation function. Now it is reasonable to assume that the amplitude of the 

shortcut, which gives the main contribution to the differential cross section at backwards, is a decreasing function 

of the energy because of the increasing absorption by inelastic channels. Therefore we assume Ll to be energy 

dependent and, in order to choose a suitable parametrization, we take a logarithmic plot of the excitation function 

versus the wave number kCM' for kCM > ko=3.57 fm-1, which is the wave number corresponding to ECM =26. MeV. 

The logathmic plot suggests for LI a dependence of the type 

-w 
log Ll = C + I" k (44) 

where c, /1-, v, are positive constants. Then we do the fit to the excitation function up to E
CM

=31.5 MeV, 

assuming 

with the constraint that Ll (k) be continuous at k=ko; so we take L10=C exp(~ k~v) and we use C, 11-, v, Lo and Qt as 

free parameters. The fit is shown in Fig. 4. The values of the parameters resulting from the fit are 

Qt = 2.58 rad 

R'L = 0.84 (mb/sr)1/2 
a 

J
O.41 

R ' L = 2) 
1 L4.43 exp (133.58 k-2.66 

3 

21 22 23 2' 

•• 

25 

(mb/sr)li2 

(mb/sr)1/2 

•• • • • • • 

26 
Eo.! (MeV) 

FIG. 4 

• • • • • • .. 
27 2. 2. 30 31 32 



- 14 -

However, the fit is hardly sensitive to the values of these parameters; in particular, a variation of 9
t 

by;z 0.35 rad 

does not appreciably change the fit. At energies higher than 31.5 MeV the fit fails. The experimental data 

oscillate more rapidly than the theoretical curve; moreover this latter decreases continuously at increasing 

energies, while the excitation function, after a rapid decrease between...., 32 and 40 MeV, raises again from IV 40 to 

47 MeV. However, also at these energies some features of the excitation function can be understood, at least 

qualitatively, in the light of our model. 

Firstly, if we observe the oscillations of the computer averaged excitation function (see Fig. 6 of Ref. (11» , 

we can verify that their frequency is still reproduced, with sufficient precision, by formula (41). 

Secondly, we can do a number of considerations comparing the excitation functions of the elastic and 

inelastic scattering (see Fig. 4 of Ref. (11». We distinguish among three different intervals: 

a) from - 32 to 40 MeV the elastic excitation function decreases rapidly, while the inelastic one raises; 

b) from "" 40 to '" 47 MeV the elastic excitation function increases again, while the inelastic one is depressed; 

c) from ...., 47 to 52 MeV both the excitation functions go down rapidly and, after 50 MeV, the elastic one seems 

not to exhibit any structures at all. 

Now we can try an explanation of these facts. It is reasonable to assume that the amplitUde of the shortcut is 

attenuated by the inelastic channel; therefore, in the interval where the inelastic cross section increses, the 

shortcut contribution is strongly inhibites a nd the excitation function decreases exponentiallYi on the c ontrary, 

where the inelastic cross section is depressed, the amplitude of the shortcut is restored, and curves the raising and 

large oscillations of the excita tion function. All that has some consequences also on the behaviour of the angular 

distribution. When the shortcut is inhibited, only the term p::O is taken into account; therefore, since ~ (~~ )::1, it o 0 
is easy to see that formula (22), which we use to fit the backward angular distribution, holds true, not merely in a 

neighborhood of 9::n, but in a larger angular interval. This is confirmed by our fit at energy E
CM

::34.8 Me V (see 

Fig. 1): our theoretical function agree with the data in an angular region larger than the other fits. We expect also 

that at energies between 40 and 47 MeV we can extend our fits of the angular distributions only to a limite d range , 

similarly to the sets at the lower energies. Lastly, the rapid decrease of both excitation functions after 47 MeV, 

without any more structures for ECM > 50 MeV, could give an indication that new reaction channels open. 

3.2. - Small Angle Differential Cross Section 

As we have seen in the outline of the theory, the formula that we obtain for the diffracted ray contribution at 

small angles - i.e. formula (25) - is not useful in a fit. Therefore we try to approximate this formula by a more 

suitable one. To this end we show that it is reasonable to approximate - for not too small values of (g - g) - the 
00 g 

, "D D' -a (g - g) b f ' I'k C -a (g - g) series ~ nne a g y a unctIOn 1 e e a g , where C and aa will be suitably defined in a moment. 
n::i 

Since we do not know the exact values of the diffraction coefficients 0 0' and of the decay exponents a , we 
n n n 

verify the approximation mentioned above in the case of a neutral re flecting sphere. tn this case the series 

~ D D' -a (g - g) 'h ' ~ eng appears 10 t e expresslOn of the amplitude of the diffracted rays in the shadow region 
n=1 n n 
(formula (5.6) of Ref. (15), if we set(14) 

and 

DO' :: 
n n 

,n 
112 

e (45) 



where - x is the n-th zero of the Airy function and 
n 

a' = A.I ( - X ). n 1 n' 

- 15 -

). g is the grazing angular momentum,). g=kR; Qg=arc sin &. OJ 

To verify the approximation mentioned above, we insert (45) and (46) into the series ~ 

consider the following succession of complex numbers: n=1 

2; D D' eng ) 
[ 

00 -a (g -g.)] 
n=1 n n 

with 

for j = I, 2, "0' 20. 

Now we try a linear fit to this succession with the function 

,f (g) = - a a 9 + c, 

(46) 

-a (9 -9) 
o 0' eng and 

n n 

where we use a and c as free (complex) parameters; moreover we give ). and 9 the six different values that 
a g g 

we have found in our fits at fixed energies and at large angles. In this case we obtain fits whose variances are of 

the order of 10-2 as for the rea l part and of 10-4 for the imaginary part; only in the case corresponding to 

E
CM

=21.1 MeV we have a slight discrepancy as regards the imaginary part, due to the large angular interval 

(nearly ~ radians) that we consider. Moreover the values obtained for Re aa and 1m ua a re considerably larger than 

the corresponding values of Re a
l 

and 1m ai' roughly they assume values which are intermediate with respect to 

Re a l , Re a 2 .,. Re aN and to 1m at' 1m a 2 •.. 1m aN' where N is the index at which we can truncate the series. 

Now we conjecture that our case is not very different from the one that we have just considered and therefore we 

assume that the above approximation can be extended to our case. In other words, we say that, in a 

phenomenological fit at fixed energy, formula (25) is practically indistinguishable from the following expression: 

2 i L1 g iA (g - g) -a (g - g) 
egg Ce ag , e --------

[COS( ~ 9g) sin gJ 1/2 

where C=ec . Lastly we use the well-known expansion of p;.._l (cos Q), i.e. (see, e.g. Ref. (2» 
2 

(2 n A sin g)I/2 

(48) 

(49) 

Substituting (49 into (48), we get formula (26), which is uniformly valid also in a neighborhood of 9::0. Therefore we 

can employ formula (27) to fit the data: we use B, r and 1m). a as free parameters, while we assign Re A. a the 

same values found in the corresponding large angle fits. The fits are presented in Fig. 5 and the parameters are 

listed in Table U. The values of Im1a are considerably larger than the corre sponding ones of 1m A.
t 

deduced at large 

anglesj a similar effect we had noted in n+ p e lastic scattering(10); also the values of 1m ). a found by Fuller and 

Moffa (2) in the small angle elastic cross section are very large That is not surprising, in the light of the 
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TABLE II - Values of tr~ fiiiP.arameters, as obtained from the 
small angle fits to the 0+ S1 elastic scattering data at fixed 
energies. 

Eem RoB 
gmaJdeSl (MeV) l<mb/sr)11 

Im).a r gg(deg) 

21.1 .264 2.65 2.400 93.47 86.3 

22.7 .612 2.56 2.937 80.16 81.6 

24.3 1.97 2.33 3.731 70.48 68 .8 

26.2 2.56 2.28 2.735 61.81 63. 

31.6 3.44 3.61 .577 46.10 40.5 

34.8 8.39 3.06 .338 40.14 39. 

verification that we have done in the case of a neutral reflecting sphere: the values assumed by 1m Aa=Rea a are 

intermediate with respect to Re a
l 

t Re a 2 ••• Re a N; where N is the number at which the series can be truncated. 

Furthermore, as one can see from Table II, there is a strict correlation between the values assumed by 0g (as 

calculated from formula (5» and Qrnax' which is the greatest angle at which we can extend the forward fit. Lastly 

the rapid increase of the coefficient Btowards increasing energies can be understood qualitatively, if we observe 
i;' g iA g -a g 

formula (28): the exponential e a g= egg e a g increases with energy, since Q
g 

is a decreasing function of the 

wave number. However a quantitative comparison between the formula and the values of the parameters is not 

possible, since we do not know the law of dependence of aa and C on the energy. 

We conclude this paragraph with an observation about the transition regions. As we have seen, these occur in 

neighborhoods of Q
g 

and of Qt- Qg. According to the value of Qt and of Q
g 

that we have found, we can see that, at 

21.1 MeV and at 22.7 MeV, Qt- Q
g 

is less than Q
g

; so at angles between Qt- Q
g 

and Q
g 

we should take into account the 

contribution of the critically refracted rays and of those which take one shortcut. However the energies to which 

we refer do not support a fully asymptotic theory, moreover the edge of the interaction region is not neat; 

therefore it is not unreasonable to expect a smooth angular distribution, without any particular structures at 9= Qt­

Qg. Furthermore, since the term (26) (that describes the surface wave contribution for Q < Qg) increases greatly as 

we move towards Q , and the two critical angles are sufficiently near to each other, we assume that this term is 
g 

dominant over the shortcut contribution. 

4. - CONCLUDING REMARKS 

We can draw some conclusions from the above analysis. 

1) The role of the surface waves in the elastic differential cross section is evident. This mechanism is to be 

preferred to the resonance model because of two facts. 

a) The decay factor 1m ).1' which corresponds to the imaginary part of the location of a pole in the c.a.m. 

plane, is large (I.m "'1 ~ 0.6), corresponding to a strong violation of the rotational symmetry; on the contrary 

a resonance is -expected to be described by a pole whose imaginary part is very small (1m "'1 .'$ 0.01), so that 

the rotational symmetry is hardly broken. Furthermore 1m 1..1 varies slowly with energy, exhibiting a trend 

I 
j 
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similar to that of the poles - to be interpreted as surface waves - of the Debye expansion of the S-function 

for the scattering of a plane wave by a trasparent sphere(6). 

b) The angular distribution at backwards behaves in the same way at all the energies, whereas a resonance 

model provide s that the large angle differential cross section Is different according as we are near to a 

resonant energy or far from it. 

In this connection it is worth mentioning some authors who, starting from optical potentials which fit the 

elastic-scattering data of 160 +2851 , analize the scattering amplitude in terms of semiclassical 5-matrix 

elements(20). Anni et al.(!7) and Lee(20 conclude that ALAS in 160 /8Si is dominated by a surface wave effect. 

2) Also the reflected ray contribution at large angles has been made evident. In this connection we wish to stress 

that, as regards the reflection amplitude, we have not introduced any new parameters in the fit to the excitation 

function at Q =n, but we have just used the parameters extracted from the fits at fixed energies. It is properly the 

reflection amplitude which, interfering with the surface rays, produces the first two oscillations in the excitation 

function, in agreement with the experimental data (see Fig. 4). 

3) The trend of the excitation function is consistent with a shortcut mechanism, which can occur only if a nearly 

transparent shell surrounds the opaq~ core. In this connection we conjecture that, as in the case of a _ 40ea 

elastic scattering, the observed isotope effect could be due to a different behaviour of the inelastic and reaction 

channels at large angular momenta, according as the colliding nuclei have closed shells or not. We think that a 

possible correlation between the magnitude of the large angle peak and the density of states of the reaction ' 

channels open should be cheked, similarly to what was done in the case of a-Nuclei collisions(2l). 

4) Lastly, we prefer to explain the forward angular distribution as a diffractive effect, rather than as a 

refractive one ("rainbow" (22~, since the edge of the nuclear potential is rapidly varying, as our analysis at large 

angles seems to confirm. 
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