INFN/BE-81/4
15 Gennaio 1981

V. R. Manfredi:

THE SPECTRAL DISTRIBUTION METHOD IN BOSON SPACE.

THE SPECTRAL DISTRIBUTION METHOD IN BOSON SPACE

V.R. Manfredi
Istituto di Fisica dell'Università di Padova, and INFN - Sezione di Padova

SUMMARY.

The spectral distribution method is extended to a system of monopole ($L=0$) and quadrupole $(L=2)$ bosons. For non-interacting $L=0$ bosons, analytical expressions for the first four moments are given.

The main conclusion of this paper is that, in the case of bosons, the presence of many sin-gle-particle levels seems to be essential in generating a normal level density, the number of particles playing a minor role.

1. - INTRODUCTION.

The spectral distribution method (SDM), introduced by Moszkowski ${ }^{(1)}$ in problems of atomic spectroscopy, and developed by French and co-workers ${ }^{(2)}$, allows one to obtain information on the energies and wave functions of systems requiring extremely large spectroscopic spaces.

The basic assumption in this method is, roughly speaking, that the level density tends to a Gaussian form, when the number of particles increases ${ }^{(3)}$; therefore, the low-order moments of the Hamiltonian operator carry the most important spectroscopic information. This assumption was checked and found satisfactory for fermion systems ${ }^{(4)}$.

The aim of this paper is to discuss the validity of this hypothesis in the bosons space. It should be noted that, in this case, one may consider the number of bosons going to infinity, without increasing the number of single-particle levels (dense limit) ${ }^{(5)}$.

2. - MONOPOLE BOSONS $(6,7,8)$

Let $S(N, M)$ be the spectroscopic space of M bosons distributed over N single-particle le vels. The dimensionality of $S(N, M)$ will be denoted by $d(N, M)$ and amounts to

$$
\begin{equation*}
d(N, M)=\binom{N+M-1}{M} . \tag{1}
\end{equation*}
$$

Let $0(t)$ be a t-body operator ($t \leqslant N$) acting on $S(N, M)$. Since only the diagonal part of $0(t)$ subsists in the trace calculation, we shall write $0(t)$ as follows :

$$
\begin{align*}
0(\mathrm{t})= & \sum_{a_{1}} \ldots \sum_{\left\langle\alpha_{t}\right.} \sum_{(\mathrm{p})}\left\langle a_{1}^{p_{1}} \ldots a_{\mathrm{t}}^{p_{t}}\right| 0(\mathrm{t})\left|\alpha_{1}^{p_{1}} \ldots \alpha_{\mathrm{t}}^{p_{t}}\right\rangle . \tag{2}\\
& \cdot a_{a_{1}}^{+p_{1}} \ldots \mathrm{a}_{\alpha_{\mathrm{t}}}^{+p_{t}} a_{a_{1}}^{p_{1}} \ldots \mathrm{a}_{a_{t}}^{p_{t}}+\text { traceless operators },
\end{align*}
$$

where $a^{+}(a)$ is a creation (destruction) operator and $(p)=\left(p_{1} \ldots p_{t}\right)$ any partition of integer t. Thus the trace of $0(t)$ over $S(N, M)$, denoted by $\ll 0(t) \ggg^{M}$, is given by

$$
\begin{align*}
& \langle\langle 0(t)\rangle\rangle^{\mathrm{M}}=\sum_{1} \sum_{1} \ldots \sum_{\langle\alpha} \sum_{\mathrm{t}}\left\langle\left\langle\alpha_{1}^{p_{1}} \ldots \alpha_{\mathrm{t}}^{\mathrm{p}_{\mathrm{t}}}\right| 0(\mathrm{t}) \mid \alpha_{1}^{p_{1}} \ldots \alpha_{\mathrm{t}}^{\mathrm{p}_{\mathrm{t}}}\right\rangle . \\
& \sum_{m_{1}} \ldots \sum_{m_{N}}\left\langle m_{1} \ldots m_{N}\right| a_{\alpha_{1}}^{+p_{1}} \ldots a_{a_{t}}^{+p_{t}} a_{a_{1}}^{p_{1}} \ldots a_{\alpha_{t}}^{p_{t}}\left|m_{1} \ldots m_{N}\right\rangle, \tag{3}\\
& \left(m_{1}+\ldots m_{N}=M\right) .
\end{align*}
$$

Furthermore, for a fixed succession of levels and for a given partition (p), one has

$$
\begin{align*}
\sum_{m_{1}} \ldots & \sum_{m_{N}}\left\langle m_{1} \ldots m_{N}\right|{ }_{a_{\alpha_{1}}}^{+p_{1}} \ldots a_{\alpha_{t}}^{+p_{t}} a_{\alpha_{1}}^{p_{1}} \ldots a_{a_{t}}^{p_{t}}\left|m_{1} \ldots m_{N}\right\rangle= \\
= & \sum_{k_{1}=0}^{M} \ldots \sum_{k_{j}=0}^{M} p_{1}!\left({ }_{p_{1}}^{k_{1}}\right) \ldots p_{j}!\left({ }_{p_{j}}^{k_{j}}\right) d\left(N-t+j, M-k_{1}-\ldots-k_{j}\right), \tag{4}\\
& \left(m_{1}+\ldots m_{N}=M\right),
\end{align*}
$$

where j is the total number of levels among t occupied for the partition (p), i.e. the number of $p_{i}{ }^{\prime} s(i=1, \ldots, t)$ which are different from zero. Taking (1) into account and using some ele mentary combinatorial identities ${ }^{(9)}$ there is no difficulty in showing that

$$
\begin{align*}
& \underset{m_{1}}{\Sigma} \ldots{\underset{m_{N}}{ }\left\langle m_{1} \ldots m_{N}\right| a_{a_{1}}^{+p_{1}} \ldots a_{a_{t}}^{+p_{t}} a_{a_{1}}^{p_{1}} \ldots a_{a_{t}}^{p_{t}}\left|m_{1} \ldots m_{N}\right\rangle=}^{=p_{1}!\ldots p_{t}!\binom{M+N-1}{M-t},} \quad\left(m_{1}+\ldots m_{N}=M\right) .
\end{align*}
$$

It follows therefore that the needed trace is given by

$$
\begin{equation*}
\langle\langle 0(t)\rangle\rangle^{M}=\binom{\mathrm{M}+\mathrm{N}-1}{\mathrm{M}-\mathrm{t}} \sum_{\alpha_{1}<} \ldots \sum_{\left\langle\alpha_{t}\right.} \sum_{(\mathrm{p})} \mathrm{p}_{1} \ldots \mathrm{p}_{\mathrm{t}}:\left\langle\alpha_{1}^{p_{1}} \ldots a_{\mathrm{t}}^{\mathrm{p}_{\mathrm{t}}}\right| 0(\mathrm{t})\left|a_{1}^{p_{1}} \ldots a_{\mathrm{t}}^{p_{t}}\right\rangle \tag{6}
\end{equation*}
$$

Expression (6) exhibits the characteristic features of a trace propagation, similar in some respects to the one derived for fermions ${ }^{(2)}$. The trace of $0(t)$ over $S(N, t)$ propagates forward to $S(N, M)$ by a binomial coefficient. However, as one cannot define a boson plenum state, the sym metry particle-hole does not hold and the "backward" propagation, typical for the fermion averages, does not occurs (see also Ref. (10)).

As an example, we analyse the case of M noninteracting bosons. The Hamiltonian operator is written as follows:

$$
\begin{equation*}
H=\sum_{i=1}^{N} \varepsilon_{i} a_{i}^{+} a_{i} \tag{7}
\end{equation*}
$$

We calculate the first four cumulants of the level density, defined in the usual way as polynomials of the distribution moments $\mu_{\mathrm{n}}(\mathrm{N}, \mathrm{M})$

$$
\begin{equation*}
\mu_{\mathrm{n}}(\mathrm{~N}, \mathrm{M})=\left\langle\left\langle(\mathrm{H}-\varepsilon(\mathrm{N}, \mathrm{M}))^{\mathrm{n}}\right\rangle\right\rangle^{\mathrm{M}} / \mathrm{d}(\mathrm{~N}, \mathrm{M}) . \tag{6a}
\end{equation*}
$$

where $\varepsilon(\mathrm{N}, \mathrm{M})$ is the centroid of the eigenvalue distribution

$$
\varepsilon(\mathrm{N}, \mathrm{M})=\langle\langle\mathrm{H}\rangle\rangle^{\mathrm{M}} / \mathrm{d}(\mathrm{~N}, \mathrm{M}) .
$$

The analytical expressions of these cumulates are

$$
\begin{align*}
& \mathrm{k}_{1}(\mathrm{~N}, \mathrm{M})=\varepsilon(\mathrm{N}, \mathrm{M})=\frac{\mathrm{M}}{\mathrm{~N}} \underset{\mathrm{i}}{\sum} \varepsilon_{\mathrm{i}}, \tag{9a}
\end{align*}
$$

$$
\begin{align*}
& k_{3}(N, M)=\mu_{3}(N, M)=\frac{M(M+N)(2 M+N)}{N^{3}(N+1)(N+2)}\left[(N-1)(N-2) \sum_{i} \varepsilon_{i}^{3}-3(N-2) \sum_{i<j}\left(\varepsilon_{i}^{2} \varepsilon_{j}+\varepsilon_{i} \varepsilon_{j}^{2}\right)+\right. \\
& \left.+12 \sum_{i<j<k} \varepsilon_{i} \varepsilon_{j} \varepsilon_{k}\right] \text {, } \tag{9c}\\
& \mathrm{k}_{4}(\mathrm{~N}, \mathrm{M})=\mu_{4}(\mathrm{~N}, \mathrm{M})-3\left(\mu_{2}(\mathrm{~N}, \mathrm{M})\right)^{2}=\frac{\mathrm{M}(\mathrm{M}+\mathrm{N})}{\mathrm{N}^{4}(\mathrm{~N}+1)^{2}(\mathrm{~N}+2)(\mathrm{N}+3)}\left\{\left[\mathrm{N}^{2}(\mathrm{~N}+1)(\mathrm{N}-1)(\mathrm{N}-6)+\right.\right. \\
& \left.+6 M(M+N)\left(N^{3}-4 N^{2}-N+6\right)\right]\left[(N-1) \sum_{i} \varepsilon_{i}^{4}-4 \sum_{i<j}\left(\varepsilon_{i}^{3} \varepsilon_{j}+\varepsilon_{i} \varepsilon_{j}^{3}\right)\right]-\left[N^{2}(N+1)\left(N^{2}-3 N+6\right)+\right. \\
& \left.+2 M(M+N)\left(2 N^{3}-7 N^{2}+3 N+18\right)\right] 6 \sum_{i \leqslant j} \varepsilon_{i}^{2} \varepsilon_{j}^{2}\left[2 N^{2}(N+1)+24 M(M+N)(5 N+6)\right] . \tag{9d}\\
& {\left[(N-3) \sum_{i<j<k}\left(\varepsilon_{i}^{2} \varepsilon_{j} \varepsilon_{k}+\varepsilon_{i} \varepsilon_{j}^{2} \varepsilon_{k}+\varepsilon_{i} \varepsilon_{j} \varepsilon_{k}^{2}\right)-6 \sum_{i<j<k<1}^{\sum} \varepsilon_{i} \varepsilon_{j} \varepsilon_{k} \varepsilon_{1}\right] \text {. }}
\end{align*}
$$

Though we restricted ourselves to the first four cumulants, it is generally believed that the knowledge of the reduced cumulants $\gamma_{1}=\mathrm{k}_{3} / \mathrm{k}_{2}^{3 / 2}, \quad \gamma_{2}=\mathrm{k}_{4} / \mathrm{k}_{2}^{2}$ is sufficient for deciding whether the level density is approximately Gaussian or not.

Expressions (9) show that at a fixed number of levels and for a large number of particles the form parameters γ_{1} and γ_{2} vary slowly with M; this result had already been noted by the authors of Ref. (6), who made a numerical analysis of the non interacting boson spectra. If M goes to infinity γ_{1} and γ_{2} are not necessarily zero, their numerical values depending on the number of levels and on the form of the single-particle spectrum assumed. The level density may therefore show a noticeable departure from the Gaussian shape. For $\mathrm{M} \rightarrow \infty$, one obtains for instance $\gamma_{1}=0, \gamma_{2}=-1.2$ if $\mathrm{N}=2$.

Except for pathological cases, the asymptotic behaviour of the level density is almost Gaus sian if the number of levels increases. For instance, if the single-particle levels are equidist ant (or nearly equidistant), $\gamma_{1} \simeq 0$ and γ_{2} approaches zero very quickly for large N (we obtain $\gamma_{2}=-0.14$ for 10 equidistant levels and $M \rightarrow \infty$). This trend, as noted above, is mostly indipendent of the number of particles M, if M is large enough ($M \geqslant 20$) (see Figs. 1 and 2).

FIG. 1 - The excess γ_{2} vs M.

FIG. 2 - Exact state densities for M noninteracting bosons distributed among N equidistant levels:
a) $\mathrm{N}=2, \mathrm{M}=20, \mathrm{~d}=21$;
b) $\mathrm{N}=2, \mathrm{M}=25, \mathrm{~d}=26$;
c) $\mathrm{N}=3, \mathrm{M}=20, \mathrm{~d}=231$;
d) $N=3, M=25, d=351$;
e) $\mathrm{N}=4, \mathrm{M}=20, \mathrm{~d}=1771$;
f) $\mathrm{N}=4, \mathrm{M}=25, \mathrm{~d}=3276$.

Expressions (9) are drastically simplified if traceless single-particle energies $\tilde{\varepsilon}_{i}=\varepsilon_{i}-\left(\sum_{i=1}^{N} \varepsilon_{i}\right) / N$ are used ${ }^{(5)}$. In the dense limit the second central moments and the shape pa rameters are given by ${ }^{(5)}$

$$
\begin{align*}
\sigma^{2}(M) & =\frac{M^{2}}{N+1} \sigma^{2}(1) \tag{10}\\
\gamma_{1}(M) & =2 \gamma_{1}(1) \frac{(N+1)^{1 / 2}}{N+2} \tag{11}\\
\gamma_{2}(M) & =\frac{6\left\{\left[\gamma_{2}(1)+3\right](\mathrm{N}+1)-(2 \mathrm{~N}+3)\right\}}{(\mathrm{N}+2)(\mathrm{N}+3)} \tag{12}
\end{align*}
$$

In order to test numerically the effect of a two-body residual interaction on the level-density shape of non interacting bosons, we chose a number-conserving Hamiltonian ${ }^{(8)}$

$$
\begin{equation*}
H=\sum_{i} \varepsilon_{i} a_{i}^{+} a_{i}+\frac{1}{2} \sum_{i, j, k, 1}\langle i j| V|k l\rangle a_{i}^{+} a_{j}^{+} a_{k} a_{1}, \tag{13}
\end{equation*}
$$

where the two-body matrix elements $V_{i j k l}$ are taken as random numbers uniformly distributed over the $(-0.1,0.1)$ interval We used different sets of single-particle values, with constant spacing $\Delta \varepsilon$ and centroid $\varepsilon(M=1)=0$ and twenty different sets of $V_{i j k l}$, for each value of $\Delta \varepsilon$.

Starting from the "exact" eigenvalues $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots$, obtained by a diagonalization procedu re of the Hamiltonian (13), the centroid ε, the width σ, the skewness γ_{1} and the excess γ_{2}, have been calculated

$$
\begin{equation*}
\varepsilon=\frac{\sum_{j} \mathrm{E}_{\mathrm{j}}}{\mathrm{~d}(\mathrm{~N}, \mathrm{M})}, \quad \mu_{\mathrm{n}} \frac{\sum_{\mathrm{J}\left(\mathrm{E}_{\mathrm{j}}-\varepsilon\right)^{\mathrm{n}}}^{\mathrm{d}(\mathrm{~N}, \mathrm{M})}}{\quad \sigma \quad \sqrt{\mu_{2}}} \tag{14}
\end{equation*}
$$

In tables I and II, $\varepsilon, \sigma, \gamma_{1}$ and γ_{2} are shown, for two values of $\Delta \varepsilon$, as a function of the different sets of $V_{i j k l}$. The values corresponding to noninteracting bosons ($\mathrm{V}_{\mathrm{ijkl}}=0$) are also indicated.

The knowledge of the first moments μ_{n} makes it possible to construct approximate frequency functions, having the first moments in common with the "exact" one. A four-moment approximate frequency function is given by ${ }^{(11)}$

$$
\begin{equation*}
\mathrm{f}(\chi)=\frac{1}{\sqrt{2 \pi}} \exp \left[-\frac{1}{2} \chi^{2}\right]\left\{1+\frac{\gamma_{1}}{6}\left(\chi^{3}-3 \chi\right)+\frac{\gamma_{2}}{24}\left(\chi^{4}-6 \chi^{2}+3\right)\right\}, \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
\chi=\frac{E-\varepsilon}{\sigma} . \tag{16}
\end{equation*}
$$

As is well known, there is no unique way of reproducing a discrete spectrum from a con tinuous distribution. In this paper we adopt the Ratcliff prescription ${ }^{(12)}$, solving the following equation :

TABLE I

TABLE II

$$
\begin{equation*}
j=0,1, \ldots \ldots, d(N, M)-1 \tag{17}
\end{equation*}
$$

In a typical case, as represented by Fig. 3 a comparison is made between an "exact" spectrum and a two-moment and four-moment approximated one. The agreement between the "exact" spectrum and its four-moment approxi mation is quite striking.

Keeping in mind the results of Tables I and II, we may conclude that, in our simple model, with the exception of case $\Delta \varepsilon=0$, the gross structure of the level density is unmodified by the introduction of a two-body residual interaction.

FIG. 3 - A typical comparison between an "exact" spectrum and its two-moment (2M) and four-moment (4M) approximation. The total number of states is 364 . In the figure only the first 45 states, starting from the ground state, are shown.

3. - QUADRUPOLE BOSONS ${ }^{(6,13)}$

In order to study the state density of interacting quadrupole bosons, we chose the Arima and Iachello model in its simplest formulation ${ }^{(14)}$ (d^{M} configurations only are introduced).

The Hamiltonian is

$$
\begin{equation*}
\mathrm{H}=\varepsilon \sum_{\mathrm{m}} \mathrm{a}_{\mathrm{m}}^{+} \mathrm{a}_{\mathrm{m}}+\sum_{\mathrm{L}=0,2,4} \mathrm{C}_{\mathrm{L}}\left\{\left(\mathrm{a}^{+} \mathrm{a}^{+}\right)_{\mathrm{L}}(\mathrm{aa}){ }_{\mathrm{L}}\right\}_{0}, \tag{18}
\end{equation*}
$$

where

$$
\mathrm{C}_{\mathrm{L}} \equiv\left\langle\mathrm{~d}^{2} \mathrm{~L} \mu\right| \mathrm{V}\left|\mathrm{~d}^{2} \mathrm{~L} \mu\right\rangle
$$

The expectation value of H on the basis $|M L v\rangle$ is given by ${ }^{(14)}$

$$
\begin{equation*}
E(M, L, v)=\varepsilon M+\alpha \frac{M(M-1)}{2}+\beta(M-v)(M+v+3)+\gamma[L(L+1)-6 M] . \tag{19}
\end{equation*}
$$

The quantities α, β, γ are related to the C_{L} parameters by

$$
\begin{equation*}
a=\frac{1}{14}\left(5 \mathrm{C}_{4}+8 \mathrm{C}_{2}\right), \quad \beta=\frac{1}{10}\left(\mathrm{C}_{0}-\alpha+12 \gamma\right), \quad \gamma=\frac{1}{14}\left(\mathrm{C}_{4}-\mathrm{C}_{2}\right) \tag{20}
\end{equation*}
$$

Two sets of values (taken from Ref. (14)) were used for the parameters ε and C_{L} (see Table III) and the energies were calculated up to $M=18$. Figs. 4 and 5 show the skew ness $\gamma_{1}=\mu_{3} / \mu_{2}^{3 / 2}$ and the excess $\gamma_{2}=\mu_{4} / \mu_{2}^{2}-3$ as a func tion of M. The moments μ_{n} are connected with the ener-

TABLE III

ε	C_{0}	C_{2}	C_{4}
0.60	-0.25	-0.10	0.09
0.35	-0.09	-0.10	0.05

$$
\frac{\sum_{L, v}(2 \mathrm{~L}+1)[E(\mathrm{M}, \mathrm{~L}, \mathrm{v})-\varepsilon(\mathrm{M})]^{\mathrm{n}}}{\sum_{\mathrm{L}, \mathrm{v}}(2 \mathrm{~L}+1)}, \quad \varepsilon(\mathrm{M})=\frac{\sum_{\mathrm{L}, \mathrm{v}}(2 \mathrm{~L}+1) \mathrm{E}(\mathrm{M}, \mathrm{~L}, \mathrm{v})}{\sum_{\mathrm{L}, \mathrm{v}}(2 \mathrm{~L}+1)}
$$

FIC. $4-\gamma_{1}$ and γ_{2} vs M .

FIG. $5-\gamma_{1}$ and γ_{2} vs M.

The quantities γ_{1} and γ_{2} do not decrease as the boson number M increases but tend to a definite large value (see also Ref. (5)).

In Figs. 6, 7 and 8 the "exact" state densities are shown for different numbers of bosons. Clearly the normality assumption for state density is not satisfied.

FIG. 6 - "Exact" state density $\overline{\text { for } M}=6$.

FIG. 7 - "Exact" state density for $\mathrm{M}=12$.

FIG. 8 - "Exact" state density for $\mathrm{M}=18$.

Keeping in mind Figs. 1 and 2 we may conclude that, in the boson case, the presence of many single-particle levels seems to be essential in generating a normal level density, the number of particles playing a minor role.

ACKNOWLEDGEMENTS.

The author is greatly indebted to P. Giacobbe, F. Iachello and M. Stefanon for very fruitful discussions, to O. Bohigas for a careful reading of the manuscript and to G. Salmasso for his valuable computational help.

REFERENCES.

(1) - S. A. Moszkowski, Prog. Theor. Phys. 28, 1 (1962).
(2) - J. B. French, in "Nuclear Structure", ed. by A. Hossain, Harum-Ar-Rashild and M. Islam (Amsterdam, 1967) ; F. S. Chang, J. B. French and T. H. Thio, Ann. of Phys. 66, 137 (1971) ; K. K. Mon and J. B. French, Ann. of Phys. 95, 90 (1975).
(3) - J. B. French, in "Proceedings of XV Solvay Conference on Symmetry Properties of Nuclei" (London, 1974), pag. 63.
(4) - O. Bohigas and J. Flores, Phys. Letters 34B, 261 (1971); A. Gervois, Nuclear Phys. 184A, 507 (1972).
(5) - V. K. B. Kota and V. Potbhare, Phys. Rev. C21, 2637 (1980).
(6) - P. F. Bortignon, M. Dalla Francesca and V. R. Manfredi, Lett. Nuovo Cimento 19, 15 (1977).
(7) - P. F. Bortignon, V. R. Manfredi and S. Spitz, Lett. Nuovo Cimento 23, 219 (1978).
(8) - V. R. Manfredi and G. Salmaso, Lett. Nuovo Cimento 28, 569 (1980).
(9) - J. Riordan, Combinatorial Identities (New York, 1968).
(10) - M. Nomura, Ann. of Phys. 91, 83 (1975) ; V. K. B. Kota, J. Phys. Lett. (Paris) 40L, 579 (1979).
(11) - M. G. Kendall and A. Stuart, The Advanced Theory of Statistics (London, 1969), vol. 1.
(12) - K. F. Ratcliff, Phys. Rev. C3, 117 (1971).
(13) - V. R. Manfredi and P. F. Bortignon, Boll. SIF 112, 110 (1977).
(14) - F. Iachello and A.Arima, Phys. Letters 53B, 309 (1974) ; F. Iachello, in "Proceedings of the Intern. Conference on Nuclear Structure and Spectroscopy", ed. by H. P. Blok and A. E. L. Dieperink (Amsterdam, 1974), pag. 163.

