$$
\frac{\text { INFN/BE-80/5 }}{16 \text { Maggio } 1980}
$$

P. Cuzzocrea, A.DeRosa, G.Inglima, E.Perillo, E.Rosato, M. Sandoli and G. Spadaccini : THE ${ }^{19} \mathrm{~F}(\mathrm{p}, \alpha)^{16} \mathrm{O}$ REACTION AND THE QUARTET MODEL.
P. Cuzzocrea, A. De Rosa, (. Inglima, E. Perillo, E. Rosato, M. Sandoli and G. Spadaccini : THE ${ }^{19} \mathrm{~F}(\mathrm{p}, \alpha)^{16} \mathrm{O}$ REACTION AND THE QUARTET MODEL.

1. - INTRODUCTION.

The quartet model, proposed some years ago by Danos and Gillet ${ }^{(1)}$, has received some ex perimental support, essentially from the transfer reactions of $\alpha,{ }^{8} \mathrm{Be}$ and ${ }^{12} \mathrm{C}$ clusters on $\mathrm{N}=\overline{\mathrm{Z}}$ even-evan targets ${ }^{(2)}$.

This work investigates the possibility to produce, through the ${ }^{19} \mathrm{~F}(\mathrm{p}, \alpha)^{16} \mathrm{O}$ reaction, $|211|$ quartet states in ${ }^{20} \mathrm{Ne}$, involving excitations of quartets from the (Op) to the ($\mathrm{Of}, 1 \mathrm{p}$) shell.
${ }^{20} \mathrm{Ne}$ states with large components of quartet structure should decay preferentially by $\alpha-$ emission and therefore produce resonances in the ${ }^{19} \mathrm{~F}(\mathrm{p}, \alpha)$ excitation functions. In particular $1211 \mid$ states should exhibit for the α_{π}-line reduced widths larger than for the α_{0} one (see Fig. 1). as this last process involves more complicated decays with quartet scattering, i.e.

$$
\left.\left\langle{ }^{20} \mathrm{Ne} 211 \|{ }^{16} \mathrm{O} 210+\alpha_{\pi}\right\rangle\right\rangle\left\langle{ }^{20^{\mathrm{Ne}} 211}\right|\left|{ }^{16} \mathrm{O} 300+\alpha_{0}\right\rangle .
$$

The energy range of the incident protons was initially taken as $0.70 \leqslant \mathrm{E}_{\mathrm{p}} \leqslant 1.55 \mathrm{MeV}$, as the model ${ }^{(3)}$ locates the O^{+}band-head of the $|211|$ configuration at an excitation energy $\mathrm{E}_{\mathrm{X}}=(13.3+$ - $\left.V_{p, p f}\right) \mathrm{MeV}$, with $V_{p, p f}<1 \mathrm{MeV}$ (see Fig. 1).

In this range only a O^{+}resonance was found (at $\mathrm{E}_{\mathrm{p}}=0.845 \mathrm{MeV}$), but it is not due to quartet excitations ${ }^{(4)}$. On the other hand Middleton et al. (5) Iocated the $|220| \mathrm{O}^{+}$band-head at $\mathrm{E}_{\mathrm{x}}=$ 7.195 MeV in ${ }^{20} \mathrm{Ne}$, instead of the predicted ${ }^{(3)}$ value of 5.1 MeV (this difference of $\sim 40 \%$ gives the degree of reliability of one of the fundamental hypotheses of the model, i. e. the independence of the quartet-quartet hole interaction potentials from the mass number). The measurements were therefore extended to higher energies. Partial results previously published ${ }^{(6)}$ have shown that the O^{+}state at $\mathrm{E}_{\mathrm{X}} \quad 14.467 \mathrm{MeV}$ has some quartet component. This state was tentatively dentified with the $|211|$ band-head essentially because other O^{+}states in literature seemed to be very far in energy and identifying one of them with the claimed band-head would require a big change in the interaction potentials. On the other hand, the investigation of the high excitation re gion of ${ }^{16} \mathrm{O}\left(\mathrm{E}_{\mathrm{X}}=21-25 \mathrm{MeV}\right)$ through the ${ }^{14} \mathrm{~N}(\mathrm{~d}, a)^{12} \mathrm{C}$ reaction (7), provided no evidence of quartet states.

In this paper the results of the analysis of other resonances are presented, also including some 2^{+}levels, in order to investigate the possible production of other members of quasi-rotational quartet bands and to collect some other information on this complex situation.

FIG. 1 - a) Schematic illustration of the reaction ${ }^{19} \mathrm{~F}(\mathrm{p}, \alpha)^{16} \mathrm{O}$. b) The previsions of the quar tet model (3) for the ${ }^{20} \mathrm{Ne}$ and ${ }^{16} \mathrm{O}$ nuclei.

Moreover, this paper presents the results obtained on three other α-lines, studied in order to obtain information about the ways of decay of the ${ }^{20} \mathrm{Ne}$ intermediate states.

2. - EXPERIMENTAL METHODS.

The measuremerts were carried out at the Laboratori Nazionali di Legnaro (Padova). Some tests were also performed at the TTT-3 Tandem accelerator in Napoli.

Targets of CaF_{2} or BaF_{2} evaporated onto carbon backings were used. The thicknesses ran ged from 10 to $50 \mu \mathrm{~g} / \mathrm{cm}^{2}$; appropriate corrections for the absorption of incident protons were made.

Excitation functions for the transitions leading to the ground state and to the lowest four ex cited states, namely $a_{0}, a_{\pi}, \alpha_{1}, \alpha_{2}, \alpha_{3}$ (see Fig. 1) were measured in the range $0.70 \leqslant \mathrm{E}_{\mathrm{p}} \leqslant$ $\leqslant 2.68 \mathrm{MeV}$ in steps ranging from 5 to 50 keV .

A typical spectrum obtained with the thinnest target has been previously reported ${ }^{(4)}$. Codes TALPA ${ }^{(8)}$ and SIRIO ${ }^{(9)}$ were used to extract physical parameters of the peaks in the spectra; the reduction to absolute cross-sections was achieved by normalizing to the elastic data on Ca or Ba . The errors shown in all the figures are the results of least-square fits.

The measured angular distributions were fitted by Legendre Polynomial expansions. In or der to obtain the maximum degree $\left(\nu_{\max }\right)$ to be used, a variance-ratio F-test (10) was used every where; results are reported only near the analysed resonances in Table I, where the confidence

TABLE I - Confidence levels $\mathrm{Q}\left(\mathrm{F} / \boldsymbol{\nu}_{1}, \boldsymbol{\nu}_{2}\right)$ of the variance ratio F-test.

$E_{p}(\mathrm{MeV})$	α_{0}			Deduced value of$v_{\max }$	α_{π}			Deduced value of $\nu_{\text {max }}$
	$\nu_{\text {max }}$				$\nu_{\text {max }}$			
	2	4	6		2	4	6	
1. 12	0.002	0.01	0.5	4	0.002	0.002	0.5	4
1. 34	0. 002	0.002	0.5	4	0. 002	<0.02	0.2-0.5	4
1. 35	0.002	0.002	0.5	4	0.002	0.05	0. 5	4
2. 09	0.002	0.002	0.5	4	0.002	0.002	0.5	4
2. 13	0.002	0.5	-	2	0.002	<0.05	0.5	4
2. 18	0. 002 ;	>0.1	-	2	0.002	$\simeq 0.5$	-	2
2. 35	0. 002	0.002	$\simeq 0.5$	4	0.002	0.002	0. 1	4

levels $Q\left(F / \nu_{1}, \nu_{2}\right)$ of performing a 1st type error (i. e. rejection of the true null-hypothesis that the introduction of the assumed maximum order in the expansion is not justified) are shown. The se values of $\nu_{\max }$ were also used to draw the curves in all the cases they are shown. The obtained values do not exceed 4 in any case. An accurate inspection of the higher coefficients ($\nu=5,6$) has ensured us that no casual cancellation occurs for the $\ell=3$ terms; this is consistent with the hypothesis ${ }^{(11)}$ that at these low incident proton energies only s, p and d partial waves take part to the reactions and permits an analysis of the angular distributions in terms of the first five coef ficients of the expansion:

$$
\begin{equation*}
\sigma\left(\Theta_{\mathrm{C} . \mathrm{M} .}\right)-\sum_{\nu=0}^{4} \mathrm{~B}_{v} \cos ^{\nu}\left(\Theta_{\mathrm{C} . \mathrm{M} .}\right) \tag{1}
\end{equation*}
$$

where the B_{y} are directly connected to the contributions of the single partial waves ${ }^{(11)}$. For the α_{0} and α_{π} groups the final channel spin is 0 and the knowledge of the transferred orbital angular momentum uniquely defines the J^{π} of the intermediate levels; these values are reported in the analysis of the single resonances.

3. - RESULTS.

The results are reported separately for the lower and the higher energy region.

3. 1. - Energy region $0.70 \leqslant \mathrm{E}_{\mathrm{p}} \leq 1.55 \mathrm{MeV}$.

The partial yields, measured at eight different angles, are shown in Figs. 2-6. In this ener gy range complete angular distributions were measured only near even-parity observed resonances for a_{o} and $a{ }_{0}\left(\mathrm{E}_{\mathrm{p}} \simeq 0.845,1.115,1.355 \mathrm{MeV}\right)$. The resonance at $\mathrm{E}_{\mathrm{p}} \simeq 0.845 \mathrm{MeV}$ has alrea dy been analysed ${ }^{(4)}$. The angular distributions relative to the other two resonances are shown in Figs. 7, 8. Odd-parity resonances were not analysed, as they cannot be due to quartet excita tions ${ }^{(1)}$.

The results on $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are in very good agreement with those reported in refs. $(12,15)$. Also for α_{0} and α_{π} a good agreement is obtained with the data of refs. (11, 12, 13, 14, 16) for what concerns the yields, the cross-sections at the resonances and the angular distributions too, when reported.

FIG. 2 - Excitation functions of α_{0}-group at eight lab. angles. The broken curves are inten ded as a guide for the eye.

FIG. 3 - Same as Fig. 2 for the α_{π}-group.

FIG. 4 - Same as Fig. 2 for the α_{1}-group.

FIG. 5 - Same as Fig. 2 for the α_{2}-group.

FIG. 6 - Same as Fig. 2 for the a_{3}-group.

FIG. 7 - Angular distributions for the a_{0} (left) and a_{π} (right)-groups near the $\mathrm{E}_{\mathrm{p}} \simeq 1.115 \mathrm{MeV}$ resonance. The curves are Legendre Polynomial fits with $v_{\text {max }}^{p}=4$ (see text)

FIG. 8 - Same as Fig. 7 near the $\mathrm{E}_{\mathrm{p}} \simeq 1.355 \mathrm{MeV}$ resonance.

3. 2. - Energy region $1.55 \leqslant \mathrm{E}_{\mathrm{p}} \leq 2.68 \mathrm{MeV}$.

The results obtained in this region are displayed in Figs. 9-14. Only the Legendre Polynomial fits were reported for the α_{1}, α_{2} and α_{3} angular distributions.

Integrated cross-sections relative to α_{0} and α_{π}-groups, previously published ${ }^{(6)}$, are shown for completeness in Fig. 14. For energies above $\mathrm{E}_{\mathrm{p}}=2.38 \mathrm{MeV}$ it was not possible to separate unambiguously the $a_{\pi}-\alpha_{1}$ doublet. The corresponding contributions were so completely disregar ded.

For the γ-emitting levels, when all the total yields are available, the cross-sections have been also summed (see Fig. 14) in order to better compare them with the existing data, usually reported in the form of γ-yields ${ }^{(14,15)}$. A rough agreement has been obtained with the results of Ranken et al. (14). One must note that these authors have calculated the total cross-sections on the basis of the assumption of an isotropic distribution of the γ-rays and this assumption is not well verified at all the energies, as one can see from Figs. 11, 12, 13. Moreover, their yield was obtained with a great uncertainty due to the target thickness, as noted by Ask ${ }^{(15)}$. A better agree ment has been obtained with the data of Hellborg and Ask ${ }^{(15)}$ himself, who measured yields and angular distributions at the resonances, also for what concerns the relative intensities of the three γ-lines.

Data on α_{0} in this region are available in refs. ($14,16,17,18$). Our results are in very good agreement with the total yields and angular distributions of Breuer and Jahnke ${ }^{(17)}$ and also with the yields at fixed angles of the other authors.

Only Ranken et al. ${ }^{(14)}$ have published results on α_{π}, In this case serious discrepancies exist with our data. In particular the resonance we found at $E_{p} \simeq 2.08 \mathrm{MeV}$ (see Fig. 14) is not reported at all. These discrepancies will be discussed in subsection 4.2.2.

4. - DISCUSSION.

One of the important known features of the studied excitation functions, also noted in the review papers quoted as ref. (19), is that the resonances of α_{o} are generally identical to those of α_{π} and different from those of $\alpha_{1}, \alpha_{2}, \alpha_{3}$. Our results confirm this general trend; however, some differences exist.

4.1. - $\quad \gamma$-emitting levels.

For what concerns $\alpha_{1}, \alpha_{2}, \alpha_{3}$, from the excitation functions, shown in Figs. 4, 5, 6, 14, one can see that actually most of the resonances are common, also with different strengths, but some other, viz. at $\mathrm{E}_{\mathrm{p}}=2.03,1.18,1.28$ and 2.22 MeV (the last three not reported in ref. (19)) seem to be present only for the negative-parity final states (α_{1} and α_{3}) and not for $\alpha_{2}\left(2^{+}\right)$. This is an interesting feature, as an hypothesis exists, based on experiments on ${ }^{12} \mathrm{C}(\alpha, \alpha)$ reac tion ${ }^{(20)}$, that this last state at $\mathrm{E}_{\mathrm{x}}=6.92 \mathrm{MeV}$ in ${ }^{16} \mathrm{O}$ belongs to the same rotational band as the $0^{+}, 6.06 \mathrm{MeV}$ state; the widths of the band suggested to the authors an α-particle cluster configuration for these excited states. In ref. (21) the same band is interpreted as a mixture of deformed two particles-two holes and four particles-four holes states with the usual spherical shell-model ground state, and therefore of great interest from the quartet point of view. (One must remember that in ref. (3) the potential interaction $V_{p, s d}$ is fixed just by setting the one quartet-one quartet hole excitation energy equal to the excitation energy of this band-head, i. e. 6. 06 MeV).

On the other hand, the refined measurements of Hellborg and Ask ${ }^{(15)}$ show that in some cases the $6.92 \mathrm{MeV} \quad \gamma$-ray $\left(\gamma_{2}\right)$ resonates at slightly different energies than the $6.13 \mathrm{MeV}\left(\gamma_{1}\right)$ and $7.12 \mathrm{MeV}\left(\gamma_{3}\right)$ ones, but not at the same energies at which α_{π} does. In our measurements no common decay via α_{π} and α_{2} has been observed at all, so the claimed hypothesis cannot be confirmed at an high degree of reliability.

FIG. 9 - Angular distributions for the α_{o}-group in the energy range $2.06 \leq \mathrm{E}_{\mathrm{p}} \leq 2.68$ $\overline{\mathrm{MeV}}$. The curves are Legendre Polynomial fits with different values of $v_{\max }$ (seetext).

FIG. 10 - Angular distributions of the α_{π}-group in the energy range $2.06 \leqslant \mathrm{E}_{\mathrm{p}} \leqslant 2.38 \mathrm{MeV}$. The curves are Legendre Polynomial fits with different values of $v_{\max }$ (see text).
α_{1}

FIG. 11 - Legendre Polynomial fits with different values of $\nu_{\max }$ (see text) of the angular distributions of the a_{1}-group, in the energy range $1.55 \leqslant \mathrm{E}_{\mathrm{p}} \leqslant 2.38 \mathrm{MeV}$.

FIG. 12 - Same as Fig. 11 for the α_{2}-group in the energy range $1.55 \leq \mathrm{E}_{\mathrm{p}} \leq 2.68 \mathrm{MeV}$.
-

FIG. 13 - Same as Fig. 12 for the α_{3}-group.

FIG. 14 - Integrated cross-sections versus the incident proton energy for the $\overline{a_{\mathrm{O}}, a_{\pi},} a_{1}, a_{2}, a_{3}$ and $a_{1}+a_{2}+a_{3}(\gamma$-emitting levels) -groups in the energy range $1.55 \leqslant \mathrm{E}_{\mathrm{p}} \leqslant 2.68 \mathrm{MeV}$.
4. 2. $-\underline{0}^{+}$states.
4.2.1. - Resonances at $\mathrm{E}_{\mathrm{p}} \simeq 1.115$ and $\simeq 1.355 \mathrm{MeV}$.

Our data in these regions are not enough to carry a complete independent analysis, but, as we pointed out in subsection 3.1, they agree well with the ones reported by Isoya et al. (11, 13). Al so the coefficients of $\cos \theta_{\text {C. M. }}$, shown in Fig. 15 together with the integrated cross-sections,

FIG. 15- Integrated cross-sections and coefficients of the expansion in powers of $\overline{\cos \theta_{C}}$. M. (B_{ν}) of the angular distributions versus the incident proton energy around the $E_{p} \cong 1.115 \mathrm{MeV}$ resonance (upper part) and $\mathrm{E}_{\mathrm{p}} \simeq 1.355 \mathrm{MeV}$ resonance (lower part) for the α_{0} (left) and a_{π} (right)-groups. $-\bullet \mathrm{B}_{0} ; \mathbf{\Delta}--\boldsymbol{A} \mathrm{B}_{1}$; o -- o $\mathrm{B}_{2} ; \Delta \cdots \Delta \mathrm{B}_{3} ; \square \cdots-\mathrm{B}_{4}$. The broken lines are guide for the eye.
have a behaviour very similar to that reported by these authors. The assignments of 2^{+}for the J^{π} of both these interinediate states are therefore confirmed. The values of the partial (Γ_{i}) and reduced $\left(\gamma_{i}^{2}\right)$ widths can be read in ref. (11). They show that, expecially in the second case, the γ_{p}^{2} are larger than the $\gamma_{\alpha_{0}}^{2}$ and $\gamma_{\alpha_{\pi}}^{2}$.

On the other hand, no large anomalies appear in the elastic scattering data $(4,22,23)$, as the ones observed in the region around $E_{p}=1.35 \mathrm{MeV}$ are clearly ascribed ${ }^{(23,24)}$ to the neighbouring 2^{-}states, which produce resonances in the ($\mathrm{p}, \alpha \gamma$) excitation function at $\mathrm{E}_{\mathrm{p}}=1.346$ and $\mathrm{E}_{\mathrm{p}}=$
1.372 MeV . Therefore the wave functions of these states must contain large mixtures of different components.

4.2.2. - Resonances in the region $2.00 \leqslant E_{p} \leqslant 2.68 \mathrm{MeV}$.

This is surely the most interesting region, as a resonance for α_{π} at $\mathrm{E}_{\mathrm{p}} \simeq 2.08 \mathrm{MeV}$ is re ported for the first time.

In the work of Ranken et al. (14) the resonance at $E_{p} \simeq 2.18 \mathrm{MeV}$ for $a^{2} \pi$ is identified with the one at $E \simeq 2.13 \mathrm{MeV}$ in a_{0}, but this identification is based only on partial yield at $\Theta_{L A B}=$ 90° for a_{0}, not completely in agreement with the data of other authors $(16,17)$. One can note from Figs. 9, 10 that the maxima of the resonances have different positions at different angles; the same remarks has been made by Ranken et al. (14) themselves. Moreover they noted that this resonance shows a large discrepancy in the ratio of the strengths $\gamma_{a_{0}}^{2} / \gamma_{a_{\pi}}^{2}$ with respect to the other resonances in the same region, this ascribed to a superposition of several resonances. This argument led the authors to an assignment of 0^{+}(or perhaps 1^{-}) for the J^{π} of the corresponding intermediate state in ${ }^{20} \mathrm{Ne}$, not in agreement with the results of refs. $(16,17)$.

It is our opinion that the new resonance at $\mathrm{E}_{\mathrm{p}} \simeq 2.08 \mathrm{MeV}$ in a_{π} corresponds to that at $\mathrm{E}_{\mathrm{p}} \simeq 2.13 \mathrm{MeV}$ in α_{o}, and in the same way the resonances at $\mathrm{E}_{\mathrm{p}} \simeq 2.30 \mathrm{MeV}$ in α_{π} and at $\mathrm{E}_{\mathrm{p}} \simeq$ $\simeq 2.35 \mathrm{MeV}$ in a_{o} are the same, while the resonance at $\mathrm{E}_{\mathrm{p}} \simeq 2.18 \mathrm{MeV}$ in a_{π} has no partners (in the limits of detection of the present experiment) in the excitation function of a_{o}. This interpretation is also confirmed by the behaviour of the coefficients of $\cos \Theta_{C}$. M. shown in Fig. 16. One can clearly infer that the resonances at $E_{p_{+}} \simeq 2.08$ and $E_{p} \simeq 2.30 \mathrm{MeV}$ for α_{π} and at $E_{p} \simeq 2.13$ and $E_{p} \simeq 2.35 \mathrm{MeV}$ for α_{o} are due to 2^{+}states, as the B_{2} and B_{4} coefficients and also the interference terms resonate (these assignments are in agreement with those of ref. (17)). In the case of the $\mathrm{E}_{\mathrm{p}} \simeq 2.18 \mathrm{MeV}$ resonance in α_{π} only the B_{O} coefficient resonates; all the other ones cross zero close to the resonance energy. This excludes casual cancellations of the terms relative to $\ell=1,2$, so this resonance can be attributed to a 0^{+}level, with all the charac teristics of the band-head of the $|211|$ quartet configuration, as will be clear in the following. The broad resonance at $E_{p} \simeq 2.62 \mathrm{MeV}$ in α_{o} seems clearly due to a 1^{-}level; no interference with a 0^{+}state, as supposed in ref. (16), can be argued by an insight of Fig. 16.

The parameters of the resonances, i.e. the centroids E_{R}, the total widths Γ and the resonant cross-sections $\sigma \dot{k}$ were obtained by an analysis of the $\sigma^{i}\left(E_{p}\right)$ in Lorentz functions; the results are summarized in Table II. Tvpical errors in Γ and σ_{R} are of the order of 15%.

TABLE II - Parameters of the resonances in the range $2.0 \leqslant \mathrm{E}_{\mathrm{p}} \leqslant 2.45 \mathrm{MeV}$.

$a_{\pi} \pi$			a_{0}		
$\mathrm{E}_{\mathrm{R}}(\mathrm{MeV})$	$\Gamma_{\mathrm{LAB}}(\mathrm{keV})$	$\sigma_{\mathrm{R}}(\mathrm{mb})$	$\mathrm{E}_{\mathrm{R}}(\mathrm{MeV})$	$\Gamma_{\mathrm{LAB}}(\mathrm{keV})$	$\sigma_{\mathrm{R}}(\mathrm{mb})$
2.080	60	12.1	2.133	80	9.5
2.180	41	12.2	170	2.347	95
2.303	70	\cdots		17.9	

FIG. 16 - Coefficients of the expansion in powers of $\cos \Theta_{C,} M_{1}\left(B_{\nu}\right)$ of the angular distributions for the α_{0} (lo wer part) and α_{π} (upper part)-groups in the energy range $2.0 \leq \mathrm{E}_{\mathrm{p}} \leq 2.68 \mathrm{MeV}$. - - B_{o}; $\Delta--\boldsymbol{\Delta} \mathrm{B}_{1}$; $\ldots \ldots-$ o $B_{2} ; \Delta \ldots \Delta \quad B_{3} ; \quad \square \ldots-\cdots-\square \quad B_{4}$. The broken lines are intended as a guide for the eye.

In order to obtain the reduced widths. γ_{i}^{2}, the partial widths Γ_{i} and therefore the cross sections σ_{R} must be known for all the possible decays of the intermediatelevels. In this energy region, besides the elastic scattering and the α-emission, the inelastic scattering to the first five low excited levels in ${ }^{19} \mathrm{~F}$ is present. It has been studied again by Ranken et al. (14), who gave the ex citation functions of low energy γ-rays from the ${ }^{19} \mathrm{~F}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)^{19} \mathrm{~F}^{*}$ reaction. At $\mathrm{E}_{\mathrm{p}} \simeq 2.11$ and $\mathrm{E}_{\mathrm{p}} \simeq$ $\simeq 2.18 \mathrm{MeV}$ they show minima, so the corresponding states in 20 Ne do not decay via inelastic scat tering; only at $\mathrm{E}_{\mathrm{p}} \simeq 2.33 \mathrm{MeV}$ a clear resonance exists, for which one can calculate roughly the inelastic cross-sections:

$$
\begin{array}{ll}
\sigma\left(\mathrm{p}, \mathrm{p}_{1}\right) \sim 145 \mathrm{mb} ; & \sigma\left(\mathrm{p}, \mathrm{p}_{2}\right) \sim 100 \mathrm{mb} ; \\
\sigma\left(\mathrm{p}, \mathrm{p}_{3}\right) \sim 7 \mathrm{mb} ; & \sigma\left(\mathrm{p}, \mathrm{p}_{4}\right) \sim 7 \mathrm{mb} ;
\end{array} \quad \sigma\left(\mathrm{p}, \mathrm{p}_{5}\right) \sim 30 \mathrm{mb} .
$$

On the other hand, our data on elastic scattering, reported in Fig. 17, show only two large anomalies, at $\mathrm{E}_{\mathrm{p}} \simeq 1.97$ and $\mathrm{E}_{\mathrm{p}} \simeq 2.33 \mathrm{MeV}$. Therefore in the analysis of the resonances at $\mathrm{E}_{\mathrm{p}} \simeq$ $\simeq 2.11$ and $E_{p} \simeq 2.18 \mathrm{MeV}$ the smaller value of Γ_{p} has been assumed between the two coming out from the calculations; only for the resonance at $\mathrm{E}_{\mathrm{p}} \simeq 2.33 \mathrm{MeV}$ the larger one should be taken.

The results of the analysis are:
a) Resonance at $E_{p} \simeq 2.11 \mathrm{MeV}, 2^{+}$(only in a_{0} and a_{π})

$$
\begin{array}{lll}
\Gamma_{\mathrm{p}}=3.0 \mathrm{keV} ; & \Gamma_{a_{0}}=33.0 \mathrm{keV} ; & \Gamma_{a_{\pi}}=42.0 \mathrm{keV} ; \\
\gamma_{\mathrm{p}}^{2}=25.0 \mathrm{keV} ; & \gamma_{a_{0}}^{2}=3.3 \mathrm{keV} ; & \gamma_{a_{\pi}}^{2}=23.5 \mathrm{keV} .
\end{array}
$$

b) Resonance at $\mathrm{E}_{\mathrm{p}}=2.18 \mathrm{MeV}, 0^{+}$(only in α_{π})

$$
\begin{array}{ll}
\Gamma_{\mathrm{p}}=5.0 \mathrm{keV} ; & \Gamma_{a}=35.0 \mathrm{keV} ; \\
\gamma_{\mathrm{p}}^{2}-3.9 \mathrm{keV} ; & \gamma_{a}^{2}=9.7 \mathrm{keV} .
\end{array}
$$

c) Resonance at $\mathrm{E}_{\mathrm{p}}=2.33 \mathrm{MeV}, 2^{+}$(in $\left.a_{\mathrm{o}}, a_{\pi}, a_{\gamma}, \mathrm{p}^{\prime}\right)$

In this case the attempt to obtain the partial widths using for the total width the largest value among those arising from the yields of the different α-lines (95 keV) gave complex values for Γ_{p}, this indicating that these decays are not due all to the same intermediate level. Since it is impossible from our data to distinguish what decays are due to one or another intermediate state, this resonance has not been more investigated.

The state at $\mathrm{E}_{\mathrm{x}}={ }^{\wedge} 14.85 \mathrm{MeV}, 2^{+}$, corresponding to the resonance at $\mathrm{E}_{\mathrm{p}}=2.11 \mathrm{MeV}$, shows the same characteristics as the previously studied ${ }^{(6)}$ level at $\mathrm{E}_{\mathrm{x}}=14.467 \mathrm{MeV}, 0^{+}$.

In both cases only elastic scattering and decays via α_{0} and a_{π} are observed, this excluding the formation of compound nucleus intermediate states. The relevant values of γ_{α}^{2} and γ_{α}^{2} with respect to γ_{p}^{2} seem to indicate relevant collective components for these states. Moreover, the absolute values of $\gamma_{a_{0}}^{2}$, lower than 1% of the corresponding Wigner limit $(0.59 \mathrm{MeV})$, are si milar to the ones indicated by Vogt ${ }^{(25)}$ for the low-lying eight particles -four holes ($8 \mathrm{p}-4 \mathrm{~h}$) rotational "super band" in ${ }^{20} \mathrm{Ne}$, about one order of magnitude lower than the adjacent cluster (four particles) band. This and the fact that $\gamma_{a_{\pi}}^{2}>\gamma_{a_{0}}^{2}$ lead to assigne to these states a configuration of the type ($8 \mathrm{p}-4 \mathrm{~h}$), probably mixed to oth r shell model states. In this case they could belong to the $|220|$ quartet configuration with a large breaking of aligned neutron-proton pairs in the Stretch scheme ${ }^{(1)}$, and consequently with a large loss of radial overlap and symmetry energy. An alternate way to obtain so excited $|220|$ quartet states is to look at the intrashell quartet excitations, as described by Satpathy et al. ${ }^{(26)}$. If so, these states can also be arranged in the same rotational band, given the similarity of the values of the reduced widths ${ }^{(25)}$. The enormous moment of iner tia corresponding to the energy splitting of $\simeq 380 \mathrm{keV}$ has to be expected for so excited ($8 \mathrm{p}-4 \mathrm{~h}$) states ${ }^{(25)}$.

FIG. 17 - Ratio of the elastic to the Rutherford cross-section for the ${ }^{19} \mathrm{~F}(\mathrm{p}, \mathrm{p}){ }^{19} \mathrm{~F}$ reaction in the energy range $1.8 \leqslant \mathrm{E}_{\mathrm{p}} \leqslant 2.7 \mathrm{MeV}$ at scattering angles of a) $\Theta_{\mathrm{C}, \mathrm{M}}=$ $=98.0^{\circ}$, b) $\Theta_{\mathrm{C} . \mathrm{M} .}=125.5^{\circ}$ and c) $\Theta_{\mathrm{C} . \mathrm{M} .}=139.1^{\circ}$. The curves are intended . only as a guide for the eye.

By the arguments that only the elastic and α_{π} decay channels are observed, with $\gamma_{\alpha}^{2}>\gamma_{\mathrm{p}}^{2}$ and $\gamma_{\alpha}^{2} \sim 2 \%$ of the Wigner limit, a pure $(8 \mathrm{p}-4 \mathrm{~h})$ configuration is attributed to the state at $\mathrm{E}_{\mathrm{x}} \stackrel{\mathrm{p}}{ }$ $=14.92 \mathrm{MeV}, 0^{+}$, corresponding to $\mathrm{E}_{\mathrm{p}} \quad 2.18 \mathrm{MeV}$. This state shows consequently the highest probability to be identified with the 0^{+}band-head of the $|211|$ quartet configuration.

In this case one can easily obtain the unknown value of $V_{p, p f}$. In fact, recalculating the va lue $o^{\prime} V_{p}$, sd on the basis of the results of Middleton et al. (b) and taking the original value ${ }^{(3)}$ fur Ssd, pf, one obtains for $V_{p, p f}$ a value of $\sim 650 \mathrm{keV}$, in agreement with the previsions of the model $(\stackrel{M}{ } \leq 1 \mathrm{MeV})^{(3)}$.

This is consistent at least with the hypothesis of constant interaction potentials versus the number of excited quartets.

5. - CONCLUSIONS.

In conclusion, we can say that our search for quartet states has given some positive output.「wo states with sonce quartet component (at $\mathrm{E}_{\mathrm{X}}=14.467$ and $\mathrm{E}_{\mathrm{X}}=14.85 \mathrm{MeV}$ in ${ }^{20} \mathrm{Ne}$) have been found, possibly belonging to the same quasi-rotational band.

Moreover, the $|211| 0^{+}$band-head has been identified at $\mathrm{E}_{\mathrm{x}}=14.92 \mathrm{MeV}$ in 20 Ne , this permitting the evaluation of the unknown value of V_{p}, pf as $\sim 650 \mathrm{keV}$, in agreement with the pre isions of ref.(3). This has confirmed the validity of one of the fundamental hypotheses of the quartet model, i. e. the independence of the interaction potentials from the excitation energy, at least up to about $E_{x}=15 \mathrm{MeV}$. For higher excitation energies, it seems ${ }^{(7)}$ that the quartet states are spread out over many other compound states by residual interactions, this implying that the quartet model is inadequate.

The hypothesis that the two states at $\mathrm{E}_{\mathrm{x}}=6.06 \mathrm{MeV}, 0^{+}$and at $\mathrm{E}_{\mathrm{x}}=6.92 \mathrm{MeV}, 2^{+}$in ${ }^{16} \mathrm{O}$ belong to the same rotational band cannot be confirmed by our results; however, some differences exist between the excitation functions of a_{2} (leading to the 6.92 MeV state) and the other transitions leading to γ-emitting levels, this showing some fundamental difference in the struc ture of these opposite-parity states.

A CKNOWLEDGMENTS.

Thanks are due to Dr. N. Cavallo for his cooperation in the manipulation of part of the experimental data. The work of Mr. G. Criscuolo, who has drawn the graphs, is also gratefully acknowledged.

REFERENCES.

(1) - M. Danos and V. Gillet, Phys. Rev. 161, 1034 (1967) ; Zeit. f. Phys. 249, 294 (1972).
(2) - Proceedings of the Symposium on Four Nucleon Correlation Alpha Rotator Structure, Marburg (W. Germany), 1972.
(3) - A.Arima, V. Gillet and J. Ginocchio, Phys. Rev. Letters 25, 1043 (1970).
(4) - R. Caracciolo, P. Cuzzocrea, A.De Rosa, G. Inglima, E. Perillo, M. Sandoli and G. Spadaccini, Lett. Nuovo Cimento 11, 33 (1974)
(5) - R. Middleton, J. D. Garret and H. T. Fortune, Phys. Rev. Letters 27, 950 (1971).
(6) - A. De Rosa, E. Perillo, P. Cuzzocrea, G. Inglima, E. Rosato, M. Sandoli and G. Spadaccini, Nuovo Cimento 44A, 433 (1978).
(7) - W. Koenig, A.Riccato, R. Stock, P.Cuzzocrea, E. Perillo, M. Sandoli and G. Spadaccini, Nuovo Cimento 39A, 9 (1977).
(8) - M. Sandoli, G. Inglima, E. Perillo, E. Rosato and G. Spadaccini, Report INFN/BE-75/3 (1975).
(9) - V. Cozzolino, B. Rauch and G. Spadaccini, Report INFN/TC-76/9 (1976).
(10) - J. Mandel, The Statistical Analysis of Experimental Data (Interscience, New York, 1964) p. 164.
(11) - A. Isoya, K. Goto and T. Momota, Jour. Phys. Soc. Japan 11, 899 (1956) ; A. Isoya, Nuclear Phys. 7, 126 (1958).
(12) - C. Y. Chao, A. V. Tollestrup, W. A. Fowler and C. C. Lauritsen, Phys. Rev. 79, 108 (1950); C. Y. Chao, Phys. Rev. 80, 1035 (1950).
(13) - A. Isoya, H. Ohmura and T. Momota, Nuclear Phys. 7, 116 (1958).
(14) - W. A. Ranken, T. W. Bonner and J. H. McCrary, Phys. Rev. 109, 1646 (1958).
(15) - L. Ask, Ark. Fys. 29, 195 (1965) ; R. Hellborg and L.Ask, Phys. Scripta 6, 47 (1972).
(16) - R. L. Clarke and E. B. Paul, Canad. Jour. Phys. 35, 155 (1957).
(17) - G. Breuer and L. Jahnke, Zeit. f. Naturf. 19a, $4 \overline{71}$ (1964).
(18) - S. Morita, T. Nakagawa, C. C. Hsu and S. M. Lee, Jour. Phys. Soc. Japan 21, 2435 (1966).
(19) - F. Ajzenberg-Selove, Nuclear Phys. A190, 1 (1972); A300, 1 (1978).
(20) - E. B. Carter, G.E. Mitchell and R. H. Davis, Phys. Rev. $133 B, 1421$ and 1434 (1964).
(21) - G. E. Brown and A. M. Green, Nuclear Phys. 75, 401 (1966).
(22) - G. Dearnaley, Phil. Mag. 1, 821 (1956).
(23) - T. S. Webb, F.B. Hagedorn, W. A. Fowler and C. C. Lauritsen, Phys. Rev. 99, 138 (1955).
(24) - E. U. Baranger, Phys. Rev. 99, 145 (1955).
(25) - E. Vogt, Phys. Letters 40B, $\overline{3} 45$ (1972).
(26) - L. Satpathy, K. W. Schmid and A.Faessler, Phys. Rev. Letters 28, 832 (1972).

