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SUMMARY,

A formalism for caleculating the photonuclear reaction cross sections has been developed by ex-
tending a natural boundary condition method employed so far for the accurate description of the nu
cleon induced reactions from a definite nuclear model. The comparison of the present approach
with some coupled-channels type methods for one-particle continuum treatment is also discussed.

' stato sviluppato un formalismo per il calcolo delle sezioni d'urto di reazione fotonucleare;
partendo dal metodo della condizione al contorno naturale, fino ad ora impiegato sulla base di un
prefissato modello nucleare per la descrizione accurata delle reazioni indotte da nucleoni. Il pre-
sente approccio viene confrontato con alcuni metodi di canali accoppiati per il trattamento di una
particella nel continuo,

INTRODUCTION.

The continuum shell model ideology has been regarded as a convenient framework for carrying
out the dynamical calculations of typical reaction processes. It has been used mainly to interpre-
te the origin of the resonances observed in the elastic, inelastic and photodisintegration reactions
by analysing the corresponding reaction cross section over a wide energy range by taking into ac-
count the appropriate model potentials. PHILPOTT(1), however, has recently pointed out that a-
part from its remarkable success, the presently available continuum shell model calculations are
still quite primitive in comparison with the standard nuclear structure calculations and there is
much scope for advancement through the development of valid approximation techniques and more
automated calculational approach.

(%) Work supported in part by INFN under the contract No. 720: 6/10/78
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In this spirit, the present work deals with the extension of a natural boundary condition method
for studyving the photonuclear reactions within the framework of a one-particle in continuum for-
malism, The underlying methodology of this approach is essentially the one employed by B. A, ROB
SON and coworkers(2-5)in the iterative R-matrix method for calculating the cross sections as one
of the alternative approaches to the standard coupled-channels calculations(6), Since the observed
photonuclear reactions can be regarded as a proper nuclear reaction phenomenon, the main moti-
vation behind the present approach is the belief that a method formulated for the direct calculation
of the nuclear reaction cross sections may also he appropriate for studying the photonuclear react-
ions including those involving the giant resonance excitations,

As well-known”'g), the central idea is to construct a total nuclear wave function of the A-parti
cles system in terms of reactions initiated bya nucleon incident on the target containing (A-1) par-
ticles. Of course, in practice, only the components of predominant importance in the treatment of
the photonuclear resonances - for example the channels with total quantum numbers JT =17, cor-
responding to the excited A-particles system - will be of major concern. This can be utilized in eva
luating the probability amplitude for the decay into a ground state through the photon emission.
Consequently, one may calculate the radiative capture cross section which in turn enables one to
calculate the photodisintegration cross section through the employment of standard techniques,

The present work emphasizes upon an alternative approach for handling the construction of the
total wave function incorporating the discrete and continuum effects in the A-particles sysiem appe
aring in the methodology mentioned above. This is of considerahle importance since the conventio
nal calculating techniques are very time consuming owing to the fact that in the resonance region
the continuum seems fo vary so rapidly that a safisfactory numerical integration requires a very
dense mesh and hence the inversion of extremely large matrices. Thus, because of the necessity
of saving computer time and storage requirements, either many useful ingredients are sometimes
left out of the model(10) or, in some cases, the numerical solution becomes quite 1rnpr-actlcable(11)
Hence it seems worthwhile tackling the same problem from alternative viewpoints which may not be
only merely efficient but also help in accumulating rather refined information and, perhaps, a wi-
der understanding of the otherwise relatively less satisfactory interpretations and calculated results.

The plan of the paper isasfollows. Section 2 describes the present approach for the one-particle
in continuum treatment of photonuclear resonance reactions together with the necessary ingredients
for calculating the corresponding cross section. A detailed discussion on the comparison of this ap-
proach with some of the contemporary coupled-channels type methods is given in Section 3,

2. - FORMULATION OF THE METHOD,

In order to present the overall formulation in a transparent form, this section is subdivided into
three parts. Starting from a brief description of the necessary ingredients and an unambiguous defi-
nition of the various notations for the formulation (Subsect, 2. 1), the actual method for constructing
the total nuclear wave function is given in Subsect, 2. 2. Finally the formulas for calculating the pho-
todisintegration cross sections are recalled in subsection 2, 3; for the sake of completeness.

2. 1. - The basic ingredients.

Consider a reaction initiated by a single nucleon with the (A-1) nucleons rarge‘ such that all the
nuclear interactions occur in the internal region of the configuration space where the surfaces of
the boundaries are defined by the channel radii a,; as in the reaction formulation of LANE and D,
ROBSON(12), Tet Y be the complete wave functlon corresponding to the A-nucleons system and may
be expanded in the eigenstates of total angular momentum J such that

Y = Euc(rc}[c) (1)

where the antisymmetrized channel surface functions | c) incorporate the target-nucleon angular
momentum coupling in the standard fashion, viz.

5 F’_‘



= of [ 3 Ci{l, J{mM,M) e (r M, PULRRRE Y 1)] (2)
m My 2a/2); L" ;)

and the operator . antisym -netri?es the particle states (with space and spin coordinates denoted by

<) wi ; =
1 ,) with that of target GDI “ LTy Lo 1) |d>>

The antisymmetrized target \\a\e functions satisfy the orthogonality relation < GD#IQb.,,} (5 pand the
channel radii are chosen such that the wave function and its first radial derivative vanish at the cor
responding surface: as described in detail by BARRETT and B. A, ROBSON{4), Although the excita-
tion energies m, of the target spectrum can be calculated satisfactorily by adopting an appropriate
procedure for the spherical or deformed nucleill3) with a suitable target Hamiltonian through the

relation

(H -ay) | $,2=0, (3)

the quantities @, may be taken from the observed data so that a correct threshold behaviour may be
ensured,

The single-particle wave functions

1 b <
" 3 g Lo b
@ (x;) min_ Cleyi lmzmsm}l YBmE (Ei)x(l/z)m-s uy (r,) (4)
satisfy ihe orthogonality relation { @ | = 1J over the internal region and are such that their
logarithmic derivative are independent of) the radial quantum number (which is amalgameted in the

subscript i with thespinandangular momentum quantum numbers] at the matching boundary. The
single-particle Hamiltonian (H'S p ) is assumed to incorporate the potential

v (r.)=-9 flr.)+ v Lo dling)

; g-£ + v (r,) (5)
gape Ol s.o. 1y gy | ==

Coul

where 1/20 and E denote the spin and orbital angular momentum operators of the nucleon and v,
Vsg.0. are the strengths of the central and spin-orbit potentials with a suitable form factor f(r;) and
the Coulomb potential r~q,1(rj) for the incident proton. The employment of a suitable nuclear form
factor - for example the Saxon-Woods type - generates the corresponding energy spectrum with a di-
screte and a continuum part through the equation

H - ey |<,-ui (£)» =0 (6)

At this stage it may be convenient to introduce the total Hamiltonian of the system, viz,

= 7

H HS.pI+HT+VR (7)
where Hg(=H T) is assumed to be diagonal in the channel space and generates the antisymme-
tric basic states Ei( ry,ro,. r‘-\) which will be assumed(14) to form an orthonormal set. Moreover,

one may note that

(e'| &)= 4 and (¢! | §;) = ui(r‘ L (8)

ce' c ic!

7-10,15-17 ; : .
Finally, as is customary( il ), the residual interaction may be taken of the form of a zero-

range force with a Soper mixture, e. g,

VR(Ey £) 7V, oy - 2@ e, gy - 2) (9)

where the parameters VO, a, and a, are to be taken according to the specific reaction,

"y

co
w-‘



2.2, - The Method.

Consider the Bloch-Schr8dinger equalion corresponding to the Hamiltonian H of eq. (7) in the
form

[H -Z(b) - E}Wk > = Z(b) Y > (10)
where the A-particles Bloch Operator“‘ﬂ) is given by(‘“
£(b)= 2 |c)_‘; (b_) (c|
2 e o
2 A b -1) (11)
h ] C
& ek = 23 ) _
2 |° 2m_ =1 O = ac)[ﬁri a_ ] (cl

and the boundary condition parameters bce{g} will be specified later.

As well known, the differential equation (10) assumes as many linearly independent degenerate
solutions, lwk) , as the number of open channels in the raction under consideration; say M. Follo-
wing the standard teclmiques(z‘sn 12), one may write in the internal regri(m(‘ng

| ¥k~ Jzakj| & >

12)
=Zl > g« lﬂ’(o)lw)‘ (
Pq §p Pg g-1 k
where uk,j are the expansion coefficients and the states ‘Ei > are the solution of the equation
: (o) ;
Hlo—si )|§i>~0 (13)
satisfying the boundary conditions

y("g1|§i> = (14)

and the parameters"fn & !T:; | are yet unspecified. Morcover, the propagator 4 is introduced throu
gh the matrix elements(207

97 <t|9| >

% (15)
=<§i| (Hy +Vp +£0) - B) | £,

where the boundary condition parameters b, are chosen to be zero for the sake of simp]icity{2‘5)_

In the extzsrnal region the wave function can be expressed in terms of the antisymmetric unit
flux incoming ( .#g) and outgoing (G?é-) nucleon waves and the target/residual nucleus through the
relation

>=>:[., w8 _jl- e o L 6
w#. g ﬁC ()#C ,uC mC %‘S.u' m ) |u » ) (] )
where, in the notation of BARRETT and B. A, ROBSONM), ¢ (c) denotes open (closed) channels, S
are the usual S-matrix elements, - describes a fully antisymmetric exponentially decaying outgo™-
ing nucleon wave and the residual n‘itcleus, viz,

@E =W5 (Q(-:) c) (17)

1/2 . e
with Q(—: = ké rE, kci (ZmCE) /‘H such that E = EX—QC, Ex being the excitation energy and Qc the c-

channel threshold and WE (0= ) represent the usual Whittaker functions for the case of protons and
the modified sphericl Bessel functions for neutrons(24~25), On the other hand,

g Eloat | B =t (18)
[] e ¢ C
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where vy is the relative velocity in channel ¥ and the radial wave functions Iy and Oy are such that
1y = 0; = [Galey)- i Fyle,) | exp iy (19)
v =0, = inl0,)- 1 F, exp (iwd), )
¢ c g ¢ 2% P

with @y being the Coulomb phase in channel ¢ (zero for neutrons) and FE(GE) representing the re-
gular (irregular) Coulomh funetion with the well defined asymptotic behaviour for protons and sphe
rical Bessel (Neumann) function for neutrons(24, 25),

The states | Yy > May now be transformed into the corresponding antisyvmmetric standing-wave
solutions for the open channels ; viz,
!wv>: 2 (Q )vplwl-l-> y
(@) i - (Q7) 0 |+F(4 ).
L'lec"i: )vc(pc] g )vé@

c

r20)

]
b4 =

where n
(9 )y = Yy exp( i Opp )
= - -1
g § . 5 S 5] =
Iz H )'1’.” g‘uc S,uc E (9] J;w ].,,3 4

and v, aad dpm refer fo the corresponding (real) amplitudes and phases,

n

(4) _
e

By using the equations (12)and (20) it is straightforward to see that the wave function of the sy-
stem under consideration can be derived from

P,7= 2(Q7) .a 22
| 2,7 F@, e |8 (22)
; i ; (26, 27)
and the expansion coefficients mayv be evaluated in the standard way . However, the operator

£~ remains to be determined. This is done by matching of the wave functions in the external and in-
ternal regions through the employment of the natural boundary conditions which ensure a smooth
matching(2-5), In fact egs. (12) and (20) give the following set of coupled equations:

[ - ¥ = - -v1 + ~ 5 ~
L(g ), Ly~ (2 ’v“o'“] - 3 Rge| () T - (8 .,Oé,] +3 Ryela), O

d d N v ve
P 4 (23)
A) -=0< = ) IL 0L | + 5 B _ o
( )vd Od é Rdé[(g )veIe (Q)ve Oe] g Rde (A)'veoé‘
~ ~
where the primes denote the radial derivatives and Og = rg Oc' I, = rolg. Finally the R-matrix
elements are given by
le a / h a /
d 142 y e.l/2
R =5 (s ) 2(d el P . 24
- 2 Zlelg> 9, < 8,1 el 2mEJ (24)

and it is understood that the reduced width amplitudes are evaluated at the surface,

The operators Q* may now be determinec in the following manner:

(v)

a) start with the arbitrary values of the parameters by ° for all except one of the open channels v,
known values of the n. b. c. parameters for the closed channel (cf, through the eq. (11) of ref. (2))
and an initial guess for the value IJL").

h) construct a finite set of basis states by solving the inverse Schriddinger equation satisfying appro
priate boundary conditions.

¢) calculate the matrix elements of eq. (24) in the above basis and solve the set of coupled equations
(23) to obtain the phases d,, and the relative amplitudes (v~ | Mg 3

d) use this derived value of d,,to calculate a new value of b,y'v by using the eq. (12) of ref., (2) and
repeat the calculations with the new basis set,

In this way an iteration procedure is developed for a particular open channel which needstobere
peeted at each energy for all the open channels separately. The knowledge of allthe phases and rela-
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tive amplitudes thus obtained enables one to calculate the transformation operators in eq. (21).

Alternatively, since the operators 0Qf are known, instead of introducing the expansion coeffi-
cients in eq. (22) and the basis states corresponding to the natural boundary conditions, one may di
rectly calculate the state lwﬂ > and hence | y, >through the equation (20) by the knowledge of Ig, Og
and O(—: in the external region(28),

2. 3. - The Photodisintegration Cross Section.

Assuming that the first order perturbation theory can be used to calculate various electroma-
gnetic processes, we start from the electric dipole operator D (1, ) for the emission of an E1 pho
ton (angular momentum 1, Z-projection u) to obtain the electric dipole matrix element for the cap
ture of a nucleon of spin s and Z-projection mgincident along the direction g on to a target (spin I
and projection MI) in the form

Q,, (E;smgiMp =< gs. | D (L) | F (ks sm_ 1M > (25)

where the total state vector for the system under consideration is given by
| 55(12 ;sm_ IM) > = = _; exp (i, )
= s A g

. (k) x
J M2 m g dm

4
¢m, —
t (26)

C(&sj|mym_ m) CGLI | m M, MJIE,,JM>

The dipole photoemission cross section for the capture of a nucleon incident on the target may
be written as(33)

doC_apt
1 x & o 18 g 1 -1 2
—g— (& k) = T aE, /e [ (2eeneren] | @,k sm_ 1) (27)

where v is the velocity of the incident nucleon and E., is the energy of the emitted photon, It is now
straightforward to obtain the total cross section for El capture y-rays by integrating the last equa
tion over all directions which in turn gives the total integrated cross section for the absorption of
the};;rays of energy E, with the emission of the nucleon and the residual nucleus in the standard
way

29
Alternatively, one may adopt the prescription given in the wotk of BARRET and DELSANTO( )

for determining the total photoabsorption cross section from a knowledge of the dipole matrix ele-
ment in eq. (25),

3. - COMPARISON AND DISCUSSION.

Various methods have been proposed so far for the calculation of photonuclear reaction cross
section within the domain of the one-particle in continuum version of the continuum shell model ideo
logy. Amongst these methods, a number of calculations(7, 14, 34) _ carried out for different nuclei
from the Tamm-Dancoff approximation, Eigenchannel method and the coupled-channels reaction theory-
revealed that although the degree of accuracy in reproducing the photodisintegration cross section to-
gether with the incorporation of more sophisticated nuclear models seems to increase respectively,
neither of these methods is completely satisfactory and require considerably long time for compu-
tation(29), Consequently, the main effOrts during the last few years for the further improvement of
the continuum shell model calculations were inthedirection of extracting the new methods from the
previously established conventional theories by substantially simplifying the numerical procedure;
e.g. the separable expansion method due to BIRKHOLZ(8,35) the BARRETT and DELSANTO me-
thod(2-4, 10, 29) and the modified continuum treatment of MICKLINGHOFF(11, 35, 36, 37)
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Whereas a detailed numerical calculation regarding the convergence of these methods together
with their comparison with the present approach for the realistic photonuclear reactions will be the
subject of a subsequent work; it may be of some interest to outline hare a formal comparison which
may reflect the inherent difference and/or the formal resemblance among the various techniques,

In this respect we may start the BARRET and DELSANTO (BD) method which is based on the
hypothesis that an optimum choice of the boundary condition parameters and the employment of the
most realistic physical model should minimize the number of basis states for achieving a desira-
ble accuracy; especially in cases where the number of reaction channels is large, The formalism
presented here for the photonuclear reactions resembles the BD approach inthe sense that both employ
the basis states which satisfy the natural boundary conditions., The main difference is inthe numerical techni
ques and the fact that the BD method employs a "matrix diagonalisation" technique - similar to that B
of the Eigenchannel theory without requiring, however, the S-matrix to be obtained in a diagonal
form, Consequently the overall calculation of the cross section takes remarkably less time for com-
putation,

Since the results of the application of the BD method for the realistic and simulated elastic and
inelastic reactions were identical to those of the Iterative R-matrix method and both results were
in very good agreement with the experimentswl 3, itis expected that the present approach may
also retain the same standard. In addition, the results of DELSANTO et al, for the continuum cal
culations(38) of photonuclear reaction cross sections in 4He may also be reproduced by the present
approach if one incorporates appropriately in the formulation of section 2 the method of PHILPOTT
(see refs, (40), (41)) for the elimination of the centre-of-mass spuriosities,

Recently, MICKLINGHOFF(33) hag presented a very interesting formal and numerical compa-
rison of his perturbative conti nuum treatment (PCT) with the separable expansion (SEP) method of
BIRKHOLZ(8), Transforming the Schr8dinger type description of the continuum shell model treat-
ment into the Lippmann-Schwinger type approach, the underlying idea involved in these methods is
to separate the corresponding Lippmann-Schwinger Kernel into a separable and a residual kernel
and treat the later as a perturbation. In addition, the model space corresponding to the unperturbed
system is separated into afinite number of square integrable functions (e. g. the harmonic oscillator func
tions) and a modified continuum, Inthe present approach, onthe other hand, this distinction is not mentioned
explicitly but the continuum states are discretized within the internal region by using the Bloch ope-
rator and, of course, no residual kernel - which may give to continuum-continuum coupling - is in-
volved(36), This type of coupling, however, is often neglected in the other methods as well. More
over, in the present approach, the bound-continuum coupling is introduced through the Bloch ope-
rator which guarantees that the total wave function is smooth at the boundary. Since the SEP method
neglects the bound-continuum coupling and deals only with the bound-hound coupling, one may be in-
clined to think that the present approach may give slightly better results for a given number of ba-
sis states. In the PCT, on the other hand, the neglect of the bound-continuum coupling is optional
since for light nuclei - provided one uses a sufficiently large number of oscillator functions - only
bound-bound coupling may yield very good results(35),

The reason why the natural boundary condition methods give a rapid convergence to the corre-
sponding coupled-channel calculations may also emerge from the last remark; e, g. although the
bound-continuum coupling is minimized through A% ——> 0, the resulting basis states are modified
in such a way that a small number of them is sufficient to introduce an appropriate bound-bound
coupling in the overall formulation, These points will be elaborated mathematically in a subse
quent work.

In conclusion we may remark here that in view of its remarkable success for
the particle induced reactions, the present formulation can offer an alternative approach for analy-
sing the photoreaction cross sections and may be applied to the photoionization of atoms with appro-
priate modifications,
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APPENDIX

Consider the Lippmann-Schwinger equation corresponding to the physical solution at energy E,
viz,

W5 fo>e 5y v | WE>

where |®» is un eigenstate of the Hamiltonia Hy to which is associated the propagator ,ffo. The
standing-wave solution, on the other hand, satisfies a similar equation

E .
| w > =|tp>+ F,Vp| © B, D, (A. 2)

where @ represents the principal value Green's function.
From now on the superscript E will be dropped for simplicity. Since the transition operator T is re-
lated to the solution|yy > through the relation: VR | 'wk > = T|®>, one can write

[Lgovﬂ_”wk):(lnnr)[1-9VR]‘w> (A. 3)
where use has beem made of the identity
lim 1 ~ i = .
7 —sgt g Eig ) ¥ PR ¥ twlg (A, 4)

in the standard notation(31), Finally, one can write
an o = 1-1 . -1 & ;
| 7, [:1-govRJ (1+iT) [1-g0xﬂ}| v, > (A. 5)

A comparison of the above equation with eq. (20) shows that the operator Q- may be written as

-1 -1
@ [1-@\1 (1+imT) [1-(4V} (A. 6)
0 R
which shows the involvement of the principal value Green's function and the residual interaction toge-
ther with the transition operator in the trasformation of a physical solution into a standing wave solu-
tion, Finally, one may note that the substitution

_ o 1-1 _ 7.
[1- %, \-RJ (T)[l-gUVR]=K (A, 7)

enables one to rewrite (A, 6) in the well known form
o- =L1+inK:l-1 , (A. 8)

where K may be r‘egarded as the reactance matrix and may be written in a -form similar to that of
VITTURI and ZARDI 32 by the employment of the natural boundary conditions.
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21 (22 5
As emphasized by D. Robson and Lane( ) and Vitturi and Zardl( ), this approach enables one to
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)
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v si -E L ej -E

which leads to the interpretation that the formation of a typically large resonance may be due to the
partial dissolvement of a special state, | §i 5, by Vi andA%in the presence of the neighbouring
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the employment of the minimum number of basis states which automatically adjust the mixing of the
special and ordi(nary states. This resembles in some extent the alternative of the methodology adop-
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in the next section,
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