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SI.:'VI:lL\RY. -----
A formalism !'or calculating the photonuclear reaction cross sections has been developed by ex­

lending a natural boundal'Y condition method employed so far for the accurate description of the 11!:,!. 
clean induced reactions from a definite nuclear model. The comparison of the present approach 
with some coupled-channels type methods fOJ' one - particle continuum treatment is also discussed. 

HIASS l1NTO. - ,-------
E' stato sviluppato un formalismo per il calcolo delle sezioni d'urto di reazione fotonucleare; 

partendo dal metoda della condizione a1 contorno naturale, fino ad ora impiegato sulla base di un 
prefissato modelIo nucleare per la descrizione accurata delle reazioni indotte da nucleoni. 11 pre­
sente approccio viene confrontato con alcuni metodi di canali accoppiati per il trattamento di una 
par ti cella nel continuo. 

I NTRODUCTION. 

The continuum shell model ideology has been regarded as a convenient framework for carrying 
out the dynamical calculations of typical reaction processes. It has been used mainly to interpre ­
te the origin of the resonances obseryed in the elastic, inelastic and photodisintegraUon reac tions 
by analysing the corresponding reaction cross section over a wide energy range by taking into ac ­
count the appropriate n13del potentials . P HILPOTT( 1), however, has recently pointed out that a­
par t fr om its remarkable success , the presently available continuum shell model calculations are 
still quite primitive in comparison with the standard nuclear structure calculations and there is 
much scope for advancement through the development of valid approximation techniques and more 
automated c alculational approach. 
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In this spirit, the present work deals with the extension of a natural boundary condition method 
for studying the photonuclear reactions within the framework of a one-particle in continuum for­
malism. The underlying methodology of this approach is essentially the one employed by B. A. nO.B 
SOl\J Hnd coworkers(2-~hn t he iterative R-matrix method for calculating the cross sections dS on~ 
of the alternative approaches to the standard coupled-channels calculations(6), Since the observed 
photonuclear reactions can be regarded as a proper nuclear reaction phenomenon, the main moti­
\'ation behind the present approach is the belief that a method formulated for the direct calculation 
of the nuclear reaction cross sections may also be appropriate for studying the photonuclear react­
ions including those involving the giant resonance excitations, 

As well _kno\vn(7-9), the central idea is to construct a total nuclear wa\-e function of the A-par~ 
cles system in terms of reactions initiated by a l1ucleon incident on the target cO!ltaining (A -1 ) par­
ticles, Of course, in practice, only the components of predominant importance in the treatment of 
the photol1uclear resonances - for example the channels with total quantum numbers JJli = 1 -, cor­
responding to the excited A-particles system - will be of major concern, This can be utilized in ev~ 
luating the probability amplitude for the decay into a ground state throug~ the photon emission, 
Consequently, one may calculate the radiative capture cross section which in turn enables one to 
calculate the photodisintegration cross section through the employment of standard techniques , 

The present work emphasizes upon an alternative approach for handling the construction of the 
total wave function incorporating the discrete and continuum effects in the A-particles sys tem app~ 
aring in the methodology mentioned above, This is of considerable importance since the conventi~ 
nal calculating techniques are very time consuming owing to the fact that in the resonance region 
the continuum seems to vary so rapicily that a satisfactory numerical integration requires a very 
dense mesh and hence the inversion of extremely large matrices. Thus, because of the necessity 
of saving computer time and s~orage requirements, either many useful ingredients are sometimes 
left out of the model(10 ) or, in some cases, the numerical solution becomes quite imp.racticable(ll). 
Hence it seems worthwhile tackling the same problem from alternative viewpoints which may not be 
only merely efficient but also help in accumulating rather refined information and, perhaps, a wi­
der und erstanding of the otherwise relatively less satisfactory interpretations and calculated results . 

The plan of the paper is as follows. Section 2 describes the present approach for the one-particle 
in continuum treatment of photonuclear resonance reactions together with the necessary ingredients 
for calculating the corresponding cross section. A detailed discussion on the comparison of this ap­
proach with some of the contemporary coupled-channels type methods is given in Section 3. 

2. - FORMULATION OF THE METHOD. 

In order to present the overall formulation in a transparent form, this section is subdivided into 
three parts. Starting from a brief description of the necessary ingredients and an unambiguous defi­
nition of the various notations for the formulation (Subsect. 2. 1), the actual method for constructing 
the total nuclear wave function is given in Subsect. 2. 2. Finally the formulas for calculating the pho­
todisintegration cross sections are recalled in subsection 2. 3: for the sake of completeness. 

2. 1. - The basic ingredients. 

Consider a reaction initiated by a single nucleon with the (A -1) nucleons targe' such that all the 
nuclear interactions occur in the internal region of the configuration space where tile surfaces of 
the boundaries are defined by the channel r adii a c; as in the reaction formulation of LANE and D. 
ROBSON(12). Let 1J1 be the complete wave function corresponding to the A-nucleons system and may 
be expanded in the eigenstates of total angular momentum J such that 

J: u (r ) 1 c) c c c 
(1) 

where the antisymmetrized channel surface functions I c) incorporate the target-nucleon angular 
momentum coupling in the standard fashion, viz. 
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(2) 

a '1d the operator.s# antisym-netriz€s the particle states (with space and spin coordinates denoted by 
~ ,,) with that of target cP ""l.[ (::. , r •.. , ':"A )= 14> >. 

"1. 1)1 .\ l' 1 2 -1 v 
Tile antisymmetrized target wave functions satisfy the orthogonality relation < cl>,ulcPv> =0,uv and the 
cha nnel radii are chose!"} s'..lch that the wave function and its first radial derivative yanish at the cor 
J'esponding s urface: as described in detail by BARRETT and B. A . ROBSON(4) , Although the excita=­
[ion energies Wv of the target spectrum ,"'an be calculated satisfactorily by adopting an appropriate 
pl'ocedur€ fOl' the sp"erical or deformed nuclei(13) with a suitable target Hamiltonian through the 
l' elation 

(3) 

tile qua nrities Wv may be taken from the obser\'ed data so that a correct threshold behadour may be 
ensured. 

The single-particle wave funct ions 

lI, (r,) 
1 1 

(4) 

satisfy i.h e orthogonality relation < gJi I gJ. > = !5 ij over the internal region and are such that their 
logarithm jc derivative are independent of the radial quantum number (which is amalgameted in the 
su bscript i with the spin and angular m om enturn quantum numbers~ at the matching boundary . T he 
single -paJ·ticle Hamiltonian (B ) is assumed to incorporate the potential s. p. 

V (r,)= -v f(r,) + v 1 df(n) a.t+v (r) (5) 
s . p. I 0 1 S. O. r i dq - - Caul i 

where 1/ 2~ and £ denote the spin and orbital angular momentum operators of the nucleon and va' 
vs.o. are the strengths of the ce!1tral and spin - orbit potentials with a suitable form factor f(r i ) and 
t he Coulomb potential uCoul(ri ) for the incident proton. The employment of a suitable nuclear form 
factor - for example the Saxon- Woods type - generates the corresponding energy spectrum with a di ­
screte and a continuum part through the equation 

(H - E i ) I"" (Ii) s. p. 1 
= 0 (6) 

At this stage il m."l.y be convenient to introduce the total Hamiltonian of the system , viz. 

H = H +H +V 
s. p, T R 

(7) 

where HO( =H +l IT) is assumed to be diagonal i":1 the channel space and generates the antisymme­
tric basic st:(!s' £i(!:j,E2" " !'A) which will be assumed(14) to form an orthonormal set. Moreover, 
one may note that 

(c' I' c) = (\ 
cc ' 

and (c ' l 5,') = u,(r ,) (\' " 
I C IC 

(8) 

( 7-10,15-17) 
Finally, as is customary , the residual interaction may be taken of the form of a zero-
range force with a Soper mixture, e. g. 

V
R

(_r,,' _rJl = V o O(r, - r ,)(a + a a , ' 0,) (9) 
J. - J 0 a - 1 -J 

wher e t he parameters V 0' a
O 

and au are to be taken according to the specific reaction. 

\ 



2. 2. - Th e :IIIethod. 

Consider the Bloch-Schrt)dinger equation corresponding to the Hamiltonian II of eq . (7) in the 
form 

[H ",S!'(~) - Ejl1J!<:> ~ ,S!'(~) I 'Pk> 
where the A-particles Bloch operatorOS) is given by(4) 

,S!'(~) 1: I e)Y (be) (e 1 
e 

~2 .~ 

d (r.-a {f- Ib - I I l 
1: 1: c 

1 01 -e 2'1'l i:: 1 a 
0 

1 C r i e 
le i 

and the boundary condition parameters b E:{b} will be specified later. e -

(10) 

(ll) 

As well known, the differential equation (1 D) assumes as many linearly independent degenerate 
solutions, !Wk> • as the number of open channels in the raction under consideration; say M. Follo­
wing the standard techniques{2-5, 12), one may write in the internal region(19J 

i1J!k> ~ f "kj I Sj> 

( 12) 

where akj are the expansion coefficients and the states lSi) are the solution of the equation 

(II _,(0))1,.>"0 (13) 
o 1 0:. 1 

satisfying the boundary conditions 

,S!'(b) Is.) " 0 
- 1 

( 14) 

tlnd the parameters b €:: I\; l are yet unspecified Moreover, the propagator '1) is int.'otluced thro,!:!. 
gh the matrix elemenfs(2or 

(!iij " < S i I '§ I S j > 

" <Si I (Ho + V
R 

+,S!'(O) - E)-I I s/, 
(J 5) 

where the boundary condition parameters be are chosen to be zero for the sake of simplicity(2-5) . 

In the external region the wave function can be expressed in terms of the antisymmetric unit 
flux incoming (.Ic;) and outgoing ((!)c) nucleon waves and the target/residual nucleus through the 
l'elation 

1 1J!1' >" 1: [.f'" <I ~ - S - I!'_ J - J: S I!' c C I-lc I-tC c c /-Lc C 
1'" 1,2,."" M ( 16) 

where, in the notation of BARRETT and B . A . ROBSON(4), c (c) denotes open (closed) channels, S 
are the usual S-matrix elements, (!)-:, describes a fully antisymmetric exponentially decaying outgoe-

c 

ing nucleon wave and the residual n'tcleus , viz . 

I!'-"W-(Q-) I C) (17) 
e e e 

with Q-" k - r-, k 0 (2mc E) 1/2flfi such that E " E -Q ; E being the excitation energy and Q the c-
ecce Xcx C 

channel threshold and W - (Q - ) represent the usual Whittaker functions for the case of protons and 
the modified spheric1 Bes<§el functions for neutrons(24-25). On the other hand, 

" I~ v.:,l / 2 I e) 
e e 

" = t!J.! 
C 

( 18) 
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where Vc is the relath'e velocity in channel c and the radial wave functions Ie and O~ are such that 

(191 

with we being tile Coulomb phase in channel c (z ero for neutrons ) and Fc(Gc) I"epresenting the re­
gular (irTegular) Coulomb function with the well defined asyrn;Jtotic behadour for protons and sphe 
l'ie al Bessel (Keumann) function for neutrons(24, 25), -

The states 11J.1{1-> may now be tra nsformed ieto the corresponding antisyrnmetric standing-wave 
solutions for the open channels; viz . 

(Q + 1 - (f), ] + I ( A 1 - (f)c-v e c C vc 

( 201 

V P.11 exp ( t i d,.w )' 

-X ( Q- I S _ , s . oI [ (Q- )-l i [ +] 
fL vp.. J-Lc:. Ike l ' J,uv vc 

(21 1 

a 'l d v lW n.'ld () refel" to the corres ponding (real) amplitudes and phases. 
, p..'I1 

B.Y using the equations (12) and (2 0 ) it is straightforward to s "ee that the wave function of the sy ­
stem under consideration can be deri\'ed from 

I - '- I Q- a I > 'P.I - ij ( ). i ij Sj (22) 

and the expansion coefficients may be evaluated in the standard way(26, 27). However, the operatol' 
,Q- rennins to be determined. This is done by matching of the wave functions i n the external and i n­
ternal regions through the employment of the natural boundary conditions which ensure a smooth 
matching(2-5). In fact eqs . ( 12 ) and (20) gi ve the following set of coupled equations: 

(A) d-Od- 0 I R
d

, [(Q- I . j, - Uti _ O~ J + ~ R
d
-- (A) _ O~ , 

vel;:: ve e v e e 'C e v e e 

( 23 ) 

~ 

\v~lf're the primes denote the radial derivatives and Oc ;;; rc Gc ' 
elements are given by 

Ic == rc I c . Finally the R-matrix 

2 
~ ad 1/ 2 

I1de (2m
d 

1 ,.I,, (d Is.) Wv ,. < s,.1 
~2 

el ( __ a~)1 / 2 
2m 

e 

and it is understood that the reduced width amplitudes are evaluated at the surface. 

The operators !r± may now be determined in the following manner: 

(24) 

a) start with the arbitrar y values of the parameters b~v) for all except one of the open channels v , 

known values of the n. b. c. parameters for the closed channel (cf. through the eq, (l l ) of ref. (2» 
and an initial guess for the value b(v) . • 

b) construct a finite set of bas iS states by solving the inverse SchrtCdinger equation satisfying appr£ 
priate boundary conditions. 

c) calculate the matrix elements o f eq. (24) in the above basis and solve the set of coupled equations 
(23) to obtain the phases bvv and the relative amplitudes (v ve I vvv ). 

d) use this derived value of ovvto calculate a new value of b~v) by using t h e eq. (12) of ref. (2) and 
repeat the calculations with the new basis set. 

In this wayan iteration procedure is developed for a particular open c hannel which needs to be re 
pep,ted at each energy for all the open channels separately . T "!€ knowledge or all the phases and rela--

\ 
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tive amplitudes thus obtained enables one to calculate the transformation operators in eq . (21). 

Alternatively, since the operators .Q± are known, instead of htroducing the expansion coeffi­
cients in eq. (22) and the basis states corresponding to the natural boundary conditions, one may di 
rectly calculate the state!1JJ,l ) and hence 11.Jl" >through the equation (2 0) by the knowledge of Ie. o~ 
and 0- in the exter nal region(28), 

c 

2. 1. - The Photodishtegration Cross Section. 

Assuming that the first order perturbation theory can be used to calculate various electroma­
gnetic processes, we start from the electric dipole operator D (1,11') for the emission of an E1 phD 
ton (angular momentum 1, Z-projection f-L) to obtain the electric dipole matrix element for the caE 
ture of a nucleon of spin sand Z -projection msincident along the direction k on to a target (spin I 
and pro,iection MI ) in the form 

where the total state vector for the system under consideration is given by 

.. . 
2>=,--_.,-. J: exp ( iW~) Yem. (~) x 
J M~l1~Jm ~ 

I- JM 
C( e sj I me ms m) C(jIJ I m "VI.: 1VI) 1J!v > 

(25) 

(26) 

The dipole photoemission cross section for the capture of a nucleon incident on the target may 
be written as(33) 

( 27) 

whe re v is the velocity of the incident nucleon and Ey is the energy of the emitted photon. It is now 
straightforward to obtain the total cross section for El capture y-rays by integrating the las t equ~ 
tion over all directions which in turn gives the total integrated cross section for the absorption of 
the y - rays of energy Ey with the emission of the nucleon and the residual nucleus in the standard 
way(7). 

Alt ernatively, Ol)e may adopt the prescription given in the wotk of BARRET and DELSA NTO(29) 
for determining the total photoabsorption cross section from a knowledge of the dipole matrix ele­
ment in eq. (25) . 

3. - CO~1PARIS01\J A:'<D DISCUSSION. 

Various methods have been proposed so far for the calculation of photonuc1ear reaction cross 
section within the domain of the one-particle in continuum version of the continuum shell model ideo 
logy . Amongst these methods, a number of calculations{7, 14, 34) - carried out for different nuclei 
from the Tamm-Dancoff approximation, Eigenchannel method and the coupled-channels reaction theory­
revealed that although the degree of accuracy in reproducing the photodisintegration cross section to­
gether with the incorporation of more sophisticated nuclear models seems to increase respectively, 
neither of these methods is completely satisfactory and require considerably long time for compu­
tation(29) . Consequently, the main effOrts during the last few years for the further improvement of 
the continuum shell model calculations were in the direction of extracting the new m ethods from the 
previously established conventional theories by substantially simplifying the numerical procedure; 
e. g. the separable expansion method due to BIRKHOLZ(8, 35), the BARRETT and DELSANTO me­
thod(2-4, 10,29) and the modified continuum treatment of 1VIICKLINGHOFF(lI, 35, 3G, 37) 

:i50 
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Whereas a detailed numerical calculation regarding the convergence of these methods together 
with their comparison with the present approach for the realis tic photol1uclear reactions \\ ill be the 
subject of a subsequent work; it may be of some interest to outline hare a formal comparison which 
m3.Y reflect the inherent difference and or the formal resemblance among the various techniques. 

In this respect we may start the BA HRET and DELSANTO (BD) method \\hich is based on the 
hypothesis that an optimum choice of the boundary condition parameters and the employment of the 
most I'ealistic physical model should minimize the number of basis states fOl' achieving a desira-
ble accm"acy; especially in cases where the number of reaction channels is large . The formalism 
pl'€sented here for the photonuclear reactions resembles the BD approach in the sense that both employ 
the basis states which satisfy the natural boundary conditions. The main difference is in the numerical tech ni 
ques and the fact that th e BD method employs a "matrix diagonalisationl! technique - similar to th3t -
of the Eigenchannel theory without requiring, however, the S-matrix to be obtained in a diagonal 
form. Consequen:1y the o\'erall calculation of the cross section takes remarkably less time for com­
putation. 

Since the results of the application of the BD method for the realistic and simulated elastic and 
inelastic reactions were identical to those of the It~rati\'eli -matrix method and both results were 
in \"ery good agreement with the experiments(2, 3), it is expected that the Dresent approach may 
also retain the same standard. In addition, the results of DELSA)JTO et a1. (10) for the continuum cal 
culations(38) of pnotonuclear reaction cross sections in 4He may also be reproduced by the present 
approach if one incorporates appropriately in the formulation of section 2 the method of PHILPOTT 
(see refs. (40), (41)) for the elimination of the centre-of -mass spuriosities. 

Recently, .111CKLINGHOFF(35) has presented a very interesting formal 3.nd numerical compa­
rison of his pertt:rbative conti nuum treatment (PCT) with the separable expansion (SE P) method oi 
BIR KHOLZ( 8). Transforming the Schr8dinger type description of the continuum shell model treat­
ment into th e Lippmann-Schwinger type approach, the underlying idea involved in these methods is 
to separate t he corresponding Lippmann-Schwinger Kernel into a separable and a residual kernel 
and treat the later as a perturbation. In addition, the model space cOrresponding to the unperturbed 
system is separated into a finite number of square integrable functions (e . g. the harmonic oscillator fun..£ 
tions) and a modified l:ontlnuum. In the present approach., on the other hand. this distinction is not mentioned 
explicitly but the continuum states are discretized within the internal region by using the Bloch ope­
rator and, of course, no residual kernel - which may give to continuum-continuum coupling - is in­
volved(36). This type of coupling, however, is often neglected in the other methods as well . More 
over, in the present approach, the bound-continuum coupling is introduced through the Bloch ope­
rator which guarantees that the total wave function is smooth at the boundary. Since the SEP method 
neglects the bound-continuum coupling and deals only with the bound-bound coupling. one may be in­
clined to think that the present approach may give slightly better results for a given number of ba-
sis states. In the peT, on the other hand, the neglect of the bound-conti nuu m coupling is optional 
since for light nuclei - provided one uses a suffiCiently large number of oscillator functions - only 
bound-bound coupling may y ield very good results(35). 

The reason why the natural boundary condition methods give a rapid convergence to the corre­
sponding coupled-channel calculations may also emerge from the last remark; e. g . although the 
bound-continuum coupling is minimized through Li~---!t 0, the resulting basis states are modified 
in such a way that a small number of them is sufficient to introduce an appropriate bound-bound 
coupling in the overall formulation . These points will be elaborated mathematically in a subse 
quent work. 

In conclusion we may remark here that in view of its remarkable success for 
the particle induced reactions, the present formulation can offer an alternative approach for analy­
Sing the photoreaction cross sections and may be applied to the photoionization of atoms with appro­
priate modifications. 

\ 
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A PPENDIX 

Consider the Lippmann - Schwinger equation corresponding to th e physical solution at energy E, 
vi z . 

(A. 1. ) 

where I (jJ> is ::.n eigenstate of the Hamillonia I-IO to which is associated the propagator ~O. The 
standing-wave solution, on the other hand, satisfies a similar equation(30) 

I 1p~ > ' I rp > + i 0 V R I (A. 2) 

where rJ 0 represents the principal value Green's function. 
From now on the superscript E will be dropped for simplicity . Since the transition operator T is re­
lated to the sulution!%> through the relation: V R 1 VJ

k 
> = T i fJI), one can write 

[1 - ~~VR JlljJk> ' (1 + in-T ) [ 1 - !io V~11jIv> (A.3) 

where use has be em made of the identity 

lim (1 ) P ( .!.) _ 
7f~O+ q±i1/ = q + 

in- (q) (A.4) 

in the standard notation (31) . Finally, one can write 

I ;P,,} '[1 -!iO vRl l 
(1 + in-T)-l (11 . 5) 

A comparison of the above equation with eq. (2 0~ shows that the operator.Q - may be written as 

!r ' [1 - ~O v Rl l 
(1 + irrTI-

1 
[1 - ~O VR] (A. 6) 

which shows the involvement of the principal value Green's function and the residual interaction toge­
ther with the transition operator in the trasformation of a physical solution into a standing wave solu­
tion. Finally, one may note that the substitution 

(A. 7) 

enables one to rewrite (A. 6) in the well known form 

Q- =[l +inKJ-l (fl. 8) 

where K may be regarded as the reactance matrix and may be written in a -form similar to that of 
VITTURI and ZARDI (32) by the employment of the natural boundary conditions. 
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of the fr ee propagators ~O corresponding to the Hamiltonian H in th e standard fashion(21-2 3) . viz . 

- I - I 
'!f ~ (170 (J + h (170) ~ ( 1+ '!f

0 
h) '!f

o
' (3a) 

where h = VR +.12' and .12'= 2'(~)- .P(~) . Th e invoh·elllent of the boundar y condition mixing and the 
residual interaction may be m ade explicit th roug h the relation( 23) 

(17 ~ (170 [I - [ 1 + V
R 

'!fo+Ll!t''!fo :· -
1 

V
R 

'!f;l [!+Ll.I!'(I7o J1 (3b) 

As emphasized by D. Robson and Lane{21) and Vi tturi and zardi{22), this approach enalJles one to 
introduce event ually the concept of the intermediate structure (fine structure) occurring in the fo.£. 
mation of, say, a giant resonance. In fact , the spectral representation of the free propagator may 

be used to write Is. > <- ;'1 1 s > < s I 
<!J 1 1+1: J J 
o ,(O)_E if i , ( O)_E 

1 i 

(3c ) 

whi ch leads to the inte rpretation that the formation of a typically large resonance may be due to the 
partial dissolvement of a special state, \ Si >, by VR andLl.Pin th e presence of the neighbOu ring 
ordinary states Is· >. In t he present approach, however, this distinction is no longer retained and 
the line shape of thJe r esonance is for ced to emerge into the photodisintegration cross section by 
the employment of the minimum number of basis states which automatically adjust the mixing of the 
special and ordinary states. This rese mbles in some ext ent the alternative of the methodology adop­
ted by Birkholz l8 ) within th e spirit of Buck and Hill's formulation(7) and will be discussed further 
in the next section . 

I 
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