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I. - I:lTRODUCTIOCl. 

In the last years several calculations( 1-7) have been performed to evaluate the bind ing ener 
gy B 11 of a ;10 particle in infinite nuclear matter. This parameter plays a fundamental role in
the analysis of the AO-nucleon interaction and can give some information about the features of such 
an inter~ction in higher partial waves(5). 

It is commonly accepted that its phenomenological value, as extrapolated fr om the k nown 
AO-binding energies ill finite hypernuclei, is about 30 MeV with an upper limit of 35 MeV(6). The 
theoretical estimates , given by various authors, for BA are much larger than the empirical va -. 
lue. Attempts have been made to soh'e this overbinding problem by considering A-N forces wich 
involve tensor components(S, 9) or by the inclusion of three -body ANN forces(lO). Yet this prob 
lem does not appear to be satisfactorily solved. 

Another disturbing feature of the' calculations of BA is the large discrepancy between the re 
action matrix(1l) results(4-7) and the variational results{2) . This disagr'eernent is certainly due
to the app r oximations which have been made in the reaction matrix calculations, or in the variati,£ 
nal ones, or in both of them . The present paper is mainly devoted to the understanding of this last 
disagreement, by means of an inprovement of the Jastrow( 12) variational calculation. . 

i\Iuellcr and Clark(2) have performed a detailed numerical analysis of Bn in the framework 
of the .Jastro\\· approach wit!1 a state - independent correlation function. In thei r paper the quantity BA 
has been expanded in a cluster series , according to the Iy(13) formalism , and calculated includ
ing the t\ .... o and the three -body cluster cont r ibutions; some constraint on both the N -A and the N - N 
correlation factors have been imposed to avoid the Eme r y( 14) difficulty . 

In order to ascertain the importance of the many-body cluster contributions , which have been 
disregarded in ref. (2), a FHNC calculation of BA is performed in the present paper. The quantity 
BIt is expanded by means of the PS cluster expansion( 15) . T he expansion is shown to be linked and 
irreducible. 

Furthermore a set of in tegral equations are derived; the solutions of t he se equations permit 
the calculation of the two - body N -A distribution function in the FHNC approximation . 

In Section 2 the expression for BA is derived in terms of the N -A distribution function. 

In Section 3 the N -A distribution function is expanded in a cluster series and a set of integral 
equations is derived by means of the covolution technique . 
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Tn Section 4 the)! -): and N -A potentials and correi:ltion factors, employed in the pre sent 
calcll'iation, are presented. 

Finally Section j is devoted to the analysis and the discussion of the results obtained. 

2. - DESCRIPTIO'! OF TilE ilIETHOD . 

The hamiltonian for the system, constituted by A nucleons and one AD_particle , is taken to 

2 
17 .,. 
A 

A 
L: 

i = 1 
,. I i A ) 

nil 

where the hamiltonian II(A) for the nuclear substratum is given by 

A 
17 ~ + L: V Ii j) 

i < J=l nn 

!\In and MA being the nucleon aqd AOmasses, respe ctively . 

( J ) 

(2) 

Let us denote the ground state wave function of the host medium by tp (A) and that one of t he 
whole system by tp (.A. -I--A ) , The binding energy of the AO particle 'is defined as: 

( 3) 

T he wave functions tp (.A.) and lP (A + A ) are taken of the Jastrow type, that is : 

IA) 
P (1 , ... ,A) = 

A 
IT r Ir .. ) </>, 

i':J=2 nn IJ 
(4) 

IA +A ) IA) 
P (1 ". ,A , A ) = F (J , . . , A, A ) P (1 , .. , A) (5) 

.. \there fnn(r i j) and fn A(ri A) a re the state independent N - N and N -A cor r elat ion facto rs respect..! 
v_ely, and <P is the ground state wave function of a Fermi gas with density Q. 

The N -A potentials are assumed to be central but spin dependent and are written in the form 

(6) 

where POA) denotes the space -ex change operator for particles i and A? and, 

(7) 

with Ps and P t projection operat ors into the singlet and t he triplet states , r espectively. 

The following expression for BA results: 

}
_.Jr 1.2 1- rrnA(r) 2 17

2
rnAlr)] 1\2 

-p dr 1 L4MA ~lfn ll lrT) - -rnll lr)- + 2Mn 

+ vDlr~ Glr) + 01r) GX(r)} + Ll , 

(8) 
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- D X \\l.\..'re \r, are the N -it spin averaged potentials and are given by 

(9) 

.::lnd G( r) and eX(r) are the direct and exchange N -It radial distribution functions and are defined 
as: 

G(r 1/\ ) 

the quantity 

2J 

jdr
2 
... de A (p(A))" F P(lA) F 'P (A) 

jd<A d~11 ~(A+A)P-----

( 10) 

( II) 

( 12) 

\"anishes identically if qJ(A) is an eigenfunction of the hamiltonian I-I(A). In the present calcula 
tion thic; quantity is assumed to be zero. 

3. - CALCCLATIO;\1 OF G A)lD GX 

The distribution function G can be expanded in terms of an app r opriate series of cluster con 
tributions, which are easily derived by using the PS expansion(15) . The details of the derivation a~e 
given in the Appendix . 

It is useful to associate a diagram to each cluster contribution of the expansion . The diagra
matic l"epresentation of ref. (15) will be used, that is , the internal and external indices a r e repre
sented by solid and open circles; both the correlation factors hnn(r) = f~n(r) - 1 and hnA(r) = 

- ? 2 
= f~A (r) - 1 are represented by solid lines, while the statistical linkages - l(krd/ 4 and - 1 (krr)/4 
are represented by dashed lines and by helical lines, respectively. 

The diagrams associated to the cluster contribu~ions satisfy the following rules : 

- a solid circle involves a factor g and a summation over the corresponding coordinates; 
- each inte r nal point is an extremity of at least one solid line; 
- the solid lines can superimposed on dashed and helical lines; 

the dashed lines are arranged in closed polygons and there are no common points between one p~ 
lygon and another; each polygon involves a factor - 8 ; 
each helical line has no common points with another statis ti cal line; 
the particle point A is never an extremity of a statistical linkage . 

In the Appendix it is proved that the diagrams involved by the cluste r expansion are irredu 
cible; as a conseguence the following expression for G(r1A) holds : 

(13) 
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where X~ll ind icates the cluster 'ontribution associated tC' an allowed irreducible diagram' 'with m 
internal points and the two external points 1 and Ii and Sj is the s,ymmetry number assucc iated 
wiTh the diagram . 

in tllP evaluation of eX(l'l A ) the space -exchange operator P(lf1. ) is considel'ed to adt only 0:1 

tile model wave function cP in analogy with preceding calculations(2) . . ~\s a consequence Hue follo \\'·· 
ing E>xpl'essi on fOl' GX is used 

The PS expansion of the r. h. s. of eq, (14) leads to a series of irreducible cluster cmmtribu 
tions which can be associated to diagrams obeying the diagramatic rules previously gi\'em "and the 
following ones: 

the two external points 1 and A are always joined either by a dashed line or by a chabn of das 
hed lines ; 
each diagram has a factor - 4. 

Some examples of irreducible digrams which contribute to G and GX are shown in.1F'igs. 
and 2 respectively . 
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FIG. 1 - Irreducible and topologically distinct diagrams with two external 
points and one internal point associated to terms contributing to G{r 1A ). 
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FIG. 2 - Irreducible and topologically distinct diagrams with two external 
points and one interna1 point associated to terms contributing to eX(r 111). 

,~ 

The var ious cluster terms contributing to the distribution functions G and GX can be sum 
m ed by means of a FH)IC technique . It is useful to distinguish the following three classes oj 

?oJ -A diagrams; 

(sA) the point i is affected only by dynamical correlations; 
(h A ) : the point i is either an extremity of one statistical1inkage - 1/ 4 12(kf 1') or a common ex

tremity of two different statistical correlations - 1/4 l(kfrl . 

Let us indicate by ZmA(l,A) and a m A(I,A) the sums of all the nodal and non-nodal dia
grams of the class (rnA) respectively . Moreover, let us indicate by gmn(I , 2) the whole set of 

\ 
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allowed dia ;JTam s of the type mn (55, 5h , hh or dd)( 16) having the external points 1 and 2 both cor 
respond ing to nucleonic coordinates . The corresponding functions g mn (r 12) are given by: 

with 

g Ilr I ?) S 1 _ 

Fnnlr12) - 1 , 

Fnnlr12 i[GS h lrI 2)· E Shlr12 )] ' 

ghh lr 12) " Fnnlr12){- ~12Ikrr12 ) + Ehl1lr12) + Ghl1lr12) + I]<; shlr 12) + 

+ G Sh Ir 128
2 

- 4 J!: dd( r 12) + G ddlr 12 J 2 + 2 Ilkrr 12) [i;;ddlr 12 ) + G dd lr 12~} , 
(l5) 

The functions Gmn (!' 12) and E mn(r 12 ) correspond to the sums of all the 1 - 2 nodal and ele
mpntary diagrams of t he type mn respectively (see re f. (16)). 

The set of all the nudal diagrams of th e type (s A), 2 s11 0, 11 ), is obtained by making the 
chain connection of gss(l ,2) with a s11(2 ,i1 ), of gsh{1 ,2 ) with a sA (2 , J1 ) and of gss{l,2) with 

"luI12 ,A). 

Corl'espondi ngly the following int egr a l equation holds for the fu nct i on ZsA{r Vl ) : 

where (a(r i l )! b(t'lj)) denotes the covolution integral: 

(a l ril1 I blrjj)) " ejdrj alril)bl rlj) 

In a similar way one obtains : 

The functions a m A(r lA ) which cor r espond to the 'non - nodal diagrams 
in term o f the functions Zml1(r 1A ) by the follow ing relations: 

with 

(16) 

(17) 

(l8 ) 

(19) 
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(20) 

an d whel'e the functions E m J1 (r
1A

) cor r espond to the contributions of the element::lry diat,gr ams of 
th~ ty pe (01 11 ), 

In place of the i ntegral equations (16) and (18) together with the relations (19), or.-eo (C an solve 
the following set of thre:e integl~al equations, only two of which are coupled: 

gs:l(l'IA) + I I 
In? o(g (1'12)+gI I1'12) l g A( r 2A ) - ln 

f- (l~) .55 51 S 
nA 1,1 

ghA Ir IA 1 

gsAl r lJl )+1 

gs il (r 2A 1 gil A I I' 2A 1 

gs Alr2/1 1 + 1 

gs Alr2A1 gh Alr 2A1 

gs Alr2A ) + I 

gd A lr2 .~ ) gSAlr2A 1 

gsAlr2A ) + 1 

gs A(l'21I ) + I 

2 
f nA(1'2 A 1 

+ E (I' I) + 
sJ\ 2A 

(211 

The functions gmJt (rlil) are related fa the functions am A(r ll1. L Zm A(rJ.A) and Em A(r
W

) through 
the following equ ations : 

gs AlrlA ) a s Alr 1A I + Z5 AlrlA I 0 FnAlr lA I - I , 

ghA lr lA ) a hA;r lA I + ZhA1r lJl I 0 F ni\ lr1A{< AIl"IA ) + Eh Alr lJl >J 1221 

The radial distribution functions G an d GX are given by; 

(23) 
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4. - POTE:nIALS AND CORRELATION FACTORS. 

The ')J - )J potentials V nn used in the present cal cu lation are the two hard core central pote~ 
Hals of the Serber type usually denoted as 01\Iy(17) and ry(18) potentials. 

The N - A potentials, con sidered here, are the two bod;, effective central potentials H, E 
and £1 which Herndon and 'Tang(19) obtained by fitting the A-binding energy for light hypernuclei 
and the available Aq,proton scattering data , T hese potentials are of the general form shown in 
eq. (6) and (7) and are suppl ied with a state independent hard core cn A as well as a space - excha~ 

ge component given by VX = X(X - 1) -1 V D (X is fixed to the value O. 2). 

Calculations ha\'e also been performed with another potential , denoted D\V, used by Downs 
and Ware(20) in thei r independent pair model calculation of the AO-binding energy in nuclear mat
tel'. This potential, provided with a state independent hard core, has the same strength in all 
partial waves. 

The I'adial dipendence of the spin averaged potentials VD , X (see eq. (9)) is of the form: 

(24) 
r :> c

nA 

The values of the parameter )., cnA V~ and v~ are listed in Table I. These potentials have been 
used to calculate the .1~binding energy in nuclear matter by means of the Jastrow variational met 
hod(2) and the reaction matrix methodt6 ) as well. (For a complete discussion on the merits of the
se potentials see ref. (19) and (2)) . 

TABLE I 

N -11 potential parameters (eq. (24)) (b is the intrins ic range). 

I 
, -~ -.-----~---

b ). - D - X 
Potentials 

c
nA Vo Vo 

(Im) (fm - 1) (fm) (MeV) (MeV) 

H 2 . 1 3.935 0 . 60 548.8 137.2 

E 2 . 0 3.219 O. 45 I 331.6 
i 

82 . 9 , 
i E' 2.0 3 . 219 O. 45 , 319.2 79 . 8 I , 

I 
DW l.5 3.219 O. 40 i 330. 9 O. 0 I 

I 

, I 

For sake of cornparison the corr'elation factors fnn(r12) and fn A (r 1il ), used in the present 
paper, ila\-e been chosen to be the "optimal " correlation functions obtained by Mueller and Clar k 
in the ir variational calculation(2) . The correlation factol' fnn has the form : 

f (r) 
nn - - l) [ l. 

- exp L-a (r - cnnU J l 1 + P exp -a{l' - c nn)] J 
(25) 

where cnn = 0.6 fm is the hard core radius . The values of a and p, for both OMY and IY po:'" 
tentials , are reported in Table II together with the corresponding nuclear matter energies evalua 
ted up to the second and third orders of the cluster expansion . The correlation factor fnA has -
the form: 

<J r~ I"l 
., ., i 

(26) 
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whel'C' en A is the hal'd core of the potential: the values of the parameters i', ,u 
ill Table lIt. 

and 'U :are given 

Optimal \'alues of the :x - X correlat ion factol' pal'ameters (eq. (25)) 
and corresponding \'alues for the t\\"o and three - body contributions 
to the expected nuclear matter en€'l'gy per pa rticle. 
------------,------ ------
I . I a I fJ I E(2)/r\ : E(3) j,-\ I 

P otent Ials . . i I (fm - I ) ; (;\ l eV) : (;\Ie\') i ____________ .:..J ________ , ______ , _ _ -----' 
I ' i 

O:\lY . 2 . 3 1. 39~ 12.49 0 . 02 1 

1'1 _2~0 _ __ ~~_ 6._5_6 ____ ~~~_1 _J 
TABLE III 

Results of the present calculation for the AO-bindin g ener gy in t he FtI:\C appl'oxi m a t ion , obtai 
tied with the cOITelation factor of eq , (26) . Bfl (:'I IC) denotes t he variational results of :\Tu e ll e ;
and Clal'k(2 ), RA (BR ) indi cat es the reaction matl'ix results of Bodm e r and Rote (6) a t :'I~ :'In = 

- 0 .638 anJ LI n = 81 . "1,. The results marked "'ith (a) correspond to a n odd - state s tre:1g!h 
eq.lal to 0 , 6 of the e\'en - state strength; the results marked with tb ) cOl'l'espond to the same 
strength in all partial waves, 

i " ulcd"b I r Tlil " I--'''--~ (c1~:-;~~1 B~~ICl ~; I' ", '0'" i '" ' :':-;"l~:~~,;' ~: ' ;-~'I 
~ ___ l !~1~~1~_~~__ ~~ __ r_~:~~_,_~rev \ _~\r e\·_) __ t_-~~~2-~-~\'e~~ 

I "O\lV 0 3 5 I..;; I I. 2 4" '0.2 I r,;, . I 45.6 RO . 23 I "" 1;68 I 
I " / 1\' 0 . 90 ' , 60 ( I.,, '; 1; 9 . 3 I ';4. " 70 .07 74. 3 'I 

i C / O"Y 0 10 I '0 1 , . 0 (; 4 66 .; . G2 R .;, 9 " (,' i 10 0 " , 

i "' /o""io)o I,"' io-go; " 05 I ';1 2 17 1 1 ""' I " ' S j j6, O : 

I I)\'. ow 1
10. ' " 1 I " 1 0 " " I - - -- I ---- 1 --- - I ;; I " 1 ----

I I ' I I ' , __ _ _______ ----l ___ ___________ ______________________ _ _ __________ _ 

A variational calculat ion of the It': binding energy, evaluated in the F[I)JC approximation, 
has been performed wi t h tJ le correlation facto r fnA hav ing the form: 

o 
(2, J 

\\ilel'E! a is the unique tdal parameter . This type of correlation factor was first used by Downs 
and Grypeos(21) and later by Whesthaus and Clark(22) and by ;" Iuelle r and Clark(2 ), The A~bind 
ing ene r gy ohtai.ned by these authors using t he correlation fu nction given by eq , (27), is about 1-
MeV less than the value fo r nished by the more flexible cor r e lation factor of eq. (26), 

5. - A:"IALYSIS OF RESULTS AN D CONCLUDIXG REMARKS, 

Table III shows the results obtained in the Flf)lC approximation by llsing the optimal correIa 
tion factor fn A of ref. (2) (eq, (26)), for various potential combinations and for fixed values of the 

\ 
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nuclear substratum parnmeters (kf = 1.366 fm-I). The table shows the results fo,.md by Mueller 
alld Clark(2) with the procedure marked in their paper with (i), together with the corresponding 
opti m al values for the parameters i', !1 and v . The reaction matrix results of Bodmer and Ro 
te(6) are also reported. 

The columns marked with (a) and (b) , in Table III, corresponds to an odd - state strength 
equal to O. 6 of th e even state - streng:h and to the same strength in all partial waves, respectively. 
Two observations may be made from the comp'3.rison of the FHNC results and those of ref. (2) and 
(6) : 

i) In all the cases consideeed the many body cluster contri butions produce modifications of less 
than 7%, so that the constrain t imposed in ref. (2) on the N -11 correlation factor of eq. (26) 
yields quite gO::>d expansion convergence. 

iO The difference between the the::>retical values of BA calculated by the \'ariational method or by 
the reaction mat r ix method is increased by the many boJy cluster contribution s . This differe.!:!. 
ce may hE' further increased by perfo r ming an unconstrained variational calculation . 

It should be noted that the qu,antity .d (see eq. (8) and (12» has been disregarded in the pre
sent calculation, becallse the third order estimates obtained by Mueller and Cla r k(2) are negligi 
ble and th e expansion convergence is quite good . Nevet"theless, an evaluation of .d in t h e frame 
work of the F H)JC approximat ion would be interesting. 

The variat ional results marked \Vith (a) are affected by another approximation related to the 
enlluation of the space -excha!1ge radial distribution function ~'((r lA) (efr . eq. (11) and (14)). Ne 
vertheless' observation iO can also be shown to follow from the results ma r ked with (b) in Table 
III \Vhich are not affected by this approximation . 

Analogous conclusion can be drawn from the results obtained by use of the correlation factor 
(27), Table IV shows the optimal values for the parameter a and the cor r esponding values of 

TAB L E IV 

Optimal values for the N -11 correlation factor parameter a (eq. (27) and 
corresponding values for the AO-binding energy in the F HNC approximation 
obtained in the present calculation. BA (MCA) denotes the two aIld the 
three - bojy cluster contributions. The label (a) and (b) have the same 
meaning as in Table III . 

____ ~~n~~~~r~-e-~)--- _~Me\~_ , __ (l\I~e_v) _ _ (MeV) 

H! OMY . S.4 ' 65 . 1 63.2 73,7 72.3 

I I 
H / lY 5.5 I 65 . 0 63 . 3 73 . 3 72 . 6 

E / OMY 5.5 62. 4 61. 69 . 4 68 . 2 

E' / OMY 5 . 3 5 7 . 3 5,0, 9 64 . 0 62,8 

DW/ OMY 5 . 3 42,8 41. 5 
~ ____ L -----

BA (F'HNC) togethe r with the results for the A~binding evaluated up to the third order (BA (MCA)). 
The behaviour of BA (FHNC) as a function of a is shown in Fig. 3 . 

The results denoted BA (MeA) a r e in good agreement with the corresponding ava ilable re 
sults obtained by Mueller and Clark(2 , 10) . The expansion convergence is very good , but the re
sults, obtained in the FHNC approximation are worst I from the variational poi nt of view I than the 
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cOlTesponding ones found with th e more flexible 
correlation factor (26). 

The re sQ lts of the present pape r confirm 
the well known inadequacy of two - body effective 
central potentials in hypernucleat' matter calcu 
lations .. -'\s a consecpence potentials containi n g 
tensor and (ol') three -body components seem to 
be necessary to solve the J\ ~o\·erb inding prob 
l em. 

When a realis t ic 1t -:\ potential is used [2. 
gether with a pUt'ely central :\ - "X potential, it 
is necessary to adopte a Jastro\\' wa\'e function 
\dth a state dependent N - 11 co r relation factor; 
a corresponrling FH:\C ca1culatio:1 of Bil could 
be interesting in order to exp10rate, in a sem 
plified situat ion, the problems related to the 
development of the Jastl'ow variational method 
\\"ith state dependent correlat i on factors(23) . 

FIG. ~ - Beha\·iour of Bit (FII:\C) - L1 as a func 
tion of the ?'.J -11 correlation factor parameter a 
(eq. (27)), for the \'ariO~lS potenti a l combinations . 
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APPENDIX . -

In this Appendix the cluster expansion for G(r 1t1) and eXtr lA ) (eq. (10) , (11)) are made and 
are shown to be linked and irreducible. 

A 
L et us consider a Jl-N operator 0:: .I O(iA ), where O(i A ) has no space-exchange compo-

nent. In order to derive the P S expansion i=1 for the mean value 

o 
J Ip lA +A ) )* 0 qJ IA + A ) dr

A 
d<A 

11 p iA +A ) 12 d~ d<A 

the following fun ction must be considered : 

A A 2 
A f dr

A 
d<A <Jj* a(1A) IT f2 Ir", a) IT f Alr'A,P)<Jj 

nn 1J n 1 
i<j=2 i=2 

B la ,p) 
" A A 2 A 2 
( - d< ,"* () ( ) Jdljj '¥ IT f r",a IT fnA riA,p <Jj 

i <.J =2 nn 1J 1= 1 

J; 
n=O 

J; 
n=O 

IA 1) 

(A2) 

Th e generic coefficient o,j, n-j is given by tilt:! !:)urn of the expectation value on the Slater de 
terminant ([1 of all the possible products of the operator 0 and of n cor relation factors, j of the 
type hnn(rij) and n - j of the type hnA (riA ), Grouping all the products having the same topological 
structure and symmetry number S but m differing particles. one obtains the result : 

a, , 
]. n - J 
b 
0,0 

m 
J; J; ~ 
m (a) 5 

IA3) 

bo 0 is the normalization integral; the summation I is extended over all the possible co mb ina 

tio'ns of j hnn-factors and n-j hnA-factors involdn£a) the indices 1, 2 .. m . The function D(r1. ~ 
.. r m) comes from the integr ation over the variables r m+l' .. r A and is fully expressed in eq. (20) 
of ref. (15). An analogous expl'ession holds for b j n_/bo o ' The power series expansion of 
BI a, P) around a ~ p ~ 0 leads to: " 

whel"e 

the relation 

B la , p) ~ J; Ak(a,p) 
k 

l /k l, r d k 
(at Ot)-I 

Ldtk 'PJt~O 

341 

(M) 

(A5) 

(A6) 
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holds: the coefficients ~\k satisfy tile recurrence relatio;'1(15) 

with a " a 

a 
~ a. . 

j" 1 
J, a - J 

'~k - 2 ... . , 

and 

IA71 

The \-a rious coefficients . .l,h, can be expressed in term of ak,l and bk,l with the result : 

.\ , k 

k k -e 
~ ~ 

1"0 P"O 1

'- ~ 

, k +k +2(k +k +k )+ +m(k +k + .. . k ) 
- 1,0 0,1 0.2 1.1 2,0~' O,m l,m - l m,D 

.i 
~ k . .. 1 

i=O 1, J-1 

k 
I-b I b 1°,1 

0, 1 0, a 
k 

0 , 1 

k 
I-b I b ) 1,0 
__ l-l~~o ____ _ 

kl ' ,0 

k 
I-b t b 1 1, 111 -1 

1,111 - 1 0 , 0 

k 
( - b b ) m,o l 
-~-~_o_---

a 
p,k - l - p 

k 
1, m - l 

k . 
nl , O .J 

b 
0,0 

k 
( - b /b lo,m 

0, m 0 , 0 

k 
o , m 

The foHowing t heorem holds : 

(A81 

in eq.(A(;) all the inregrals coming from the terms of the form aaa . Po b al , PI'" bak . ~k (k >0) 

t:ancell all th e integl~als which are unliked or reducible in the pOint -pa rticle AD and are contained 

in 1.he terms of the type aj , n-j ' 

Let llS cons ide r an integral T corresponding to an unliked diagram or to a diagram which 
is l'educible in the point A, This integral can be factored into two parts: one part is linked and 
in'e du cible in A, and it is produced by one aa Q ; the other part is in general unliked a nd it is 

oeo 
contaillE'd in vadous combinations of the form b al , ~1 b a2 , fJ2 .. , ban , ~n' L et th e combinati on 

C == aa Q b a Q • •. b a - Q contain the integral T multiplied by a factor Z; then also the 
0,1'0 1,Pl n,pn 

combinations C ' " aao+uJ. fJo~fJ.T bal, PI '" baJ _1, PJ - l b ah1 , PJ~I'" ban, Pn (-\fj"I , 2 .. ,nl 

contain T with the same facto r Z. The coefficient of C in eq , (AS) is : 

n 

F 

n 

~ka.Q -': 
i == l l'Pl 

n 

while th e coefficient of each C' in eq. (A8) is: 

n n 

(I ~ k a . p-' - 11 
i == 1 l' 1 

1- ) F' 

IA91 

Ir\ 1 0) 

\ 
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Summing all the F' for all the combination C ' one obtains - F and this fact proves that the 
integral T is not present in the cluster expansion. The theorem then follows from the arbitrariness 
of the product b 0.1 J PI b a2' P 2 . . . ban . P

n
' A s a conseguence of the theorem, the PS expansion is 

linked and irreducible in the particle point ,,0 and one can write: 

o 
a 

:i (~) 
n k b linked and irred . in 1\ . 

• 0,0 

(A II) 

The integr als conta ined in the r . h. s . of eq, (A 11 ) corresponding to reducible diagrams cancel as 
well as i n pure nuclear m atter(15). 

Therefore one can write: 

a . 
o :i (-'2!-L) 

n J' b lrred 
• 0,0 

-m J ... h ,A D(rl ... r) 
nf' m irred. 

m 
:i _Q- :i 
m V 

I 
S. 

J 

(A 12) 

where x~ is associated to an irreducible diagrams with m+l points (m ~l) and symmetry num 
ber Sj" 

T he expression for the two -body radial distribution function Gir l"') (eq. (10)) can be derived 
fl'om eg, (A 11) by considering an appropriate (} - function as ope r ator O. A 

The evaluation of the mean value of a space -exchange operator OX = ~ X (iA) P (il\) is per-
i : 1 

formed assuming that th e space - exchange operator P (il1) ac t s only on the moael wave function 
This leads to the expression: 

(A.J3) 

The cluster expansion ~f OX can be easily derived by using the preceding p r ocedure, It must 
be noted that the function D(rl • .. '. I'm) which appears in eg, (A3) must be replaced by the function 
D ' (rl '" r m' r,,) given by: 

I A-mJ - - ,. 
D '(rl,· .. r m,rA ) = (A -ruT " V drm+l .. drA </> pOf\ ) </> . (AI4) 

It is usefull to observe t h e corresp ondence between t h e te rms of D ( r ~ ., . . • I'm) and D' (r 1. " 
, .• rm' r" l : each term T , in D , which does not involve the coordina te 1'1 15 replaced, in D ' , by 
the produ ct T' = l(kfr1 l\ ,T : each factor - 12(kfrlj) / 4 in D . is replaced in D'. by the product 
- 1/ 4 1(kr l'lj)!{kr l"j A)' and each product (-8)(-1 / 4 1(krrlj))' " ( - 1/4!{krrli)) by the sum or products 

( - 4)( - 1/4 I (krr 1 j))' . . ( - 1/4 !(krr i " )) + (- 4) (- 1/ 4 1 (krr 1 i)' .. ( - 1/ 4 !(kfr j A))' 

It results that: 
-x o :i 

m 

1 j 
:i --- Y 
j Sj m 

(A I 5) 

whe r e Y~ is associated to an irreducible diagram with m + 1 points (m ~ 1) a nd symmetry number 

The expression for the two -body radial dist r ibution function GX(r 1A ) (eq. (11)) can be derived 
f r om eq. (A15) by cons idering a n approp r iate 6 - function as operator OX , 




