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1. - INTRODUCTION.

In the last years several calculations!!~7) have been performed to evaluate the binding ener
gy B{ of a AC particle in infinite nuclear matter, This parameter plays a fundamental role in~
the analysis of the A®-nucleon interaction and can give some information about the features of such
an interaction in higher partial waves(3),

1t is commonly accepted that its phenomenological value, as extrapolated from the known
Ao-binding energies in finite hypernuclei, is about 30 MeV with an upper limit of 35 MeV(6). The
theoretical estimates, given by various authors, for B, are much larger than the empirical va-
lue. Attempts have been made to solve this overbinding problem by considerin% A-N forces wich
involve tensor components(B: 9) or by the inclusion of three-body ANN forces(10), Yet this prob-
lem does not appear to be satisfactorily solved.

Another disturbing feature of the calculations of B4 is the large discrepancy between the re
action matrix(11) results(#-7) and the variational results(2), This disagreement is certainly due
to the approximations which have been made in the reaction matrix calculations, or in the variatio
nal ones, or in both of them. The present paper is mainly devoted to the understanding of this last
disagreement, by means of an inprovement of the Jastrow 12) yariational calculation.

Mueller and Clark(2) have performed a detailed numerical analysis of B4 in the framework
of the Jastrow approach with astate-independent correlation function, In their paper the quantity BA
has been expanded in a cluster series, according to the 1y(13) formalism, and calculated includ-
ing the two and the three-body cluster contributions; some constraint on both the N-A and the N-N
correlation factors have been imposed to avoid the Emery(14) difficulty,

In order to ascertain the importance of the many-body cluster contributions, which have been
disregarded in ref. (2), a FHNC calculation of By is performed in the present paper. The quantity
BA is expanded by means of the PS cluster expansion 15), The expansion is shown to be linked and
irreducible,

Furthermore a set of integral equations are derived ; the solutions of these equations permit
the calculation of the two-body N-A distribution function in the FHNC approximation,

In Section 2 the expression for By is derived in terms of the N-A distribution function,

In Section 3 the N-A distribution function is expanded in a cluster series and a set of integral
equations is derived by means of the covolution technique.
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In Section 4 the N-N and N-4 potentials and correlation factors, employed in the present
calculation, are presented,

Finally Section 5 is devoted to the analysis and the discussion of the results obtained.

2. - DESCRIPTION OF THE METHOD.

The hamiltonian for the system, constituted by A nucleons and one AC-particle, is taken to
be :
A
3 2
Ht\+/1) - H ¢ e & F Vn

(id) , (1)
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A

where the hamiltonian H(}) for the nuclear substratum is given by

2 A A
- 2 o
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“n i=1 i<d=1 '
A, and My being the nucleon and Aomasses, respectively.

Let us denote the ground state wave function of the host medium by @(8) and that one of the
whole system by PA+A) The binding energy of the A%particle is defined as:

A A A A+A A

B, - (tp( ). H( )QJ( )) (Q(A‘FA), H( +. )gp(A+ )) -

(lp(A)J gp(A)} (lP(Aw“A)‘ gp(A +A))
The wave functions lP(A) and GP(A +4) are taken of the Jastrow type, that is:
A
@(A)(l,...,A) = II fnn(ri )P, (4)
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where fnn(rij) and an(riA) are the state independent N-N and N-A correlation factors respecti
vely, and & is the ground state wave function of a Fermi gas with density o

The N-A potentials are assumed to be central but spin dependent and are written in the form

v 404) - vPiA) + V() Plid) | (6)

where P(iA) denotes the space-exchange operator for particles i and A? and,

D.X

B K i o oDl
v (id) = Vs (riA)PS +Vt

(rm)Pt, (7)

with P and Pt projection operators into the singlet and the triplet states, respectively,

The following expression for BA results :
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wlere T’D’x are the N-A spin averaged potentials and are given by

VO Ry - 190w + 3

D, X
4 &

(r) , (9)

and G(r) and Gx(r) are the direct and exchange N-A radial distribution functions and are defined
as:
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vanishes identically if ¢(A) is an eigenfunction of the hamiltonian }I(A)

tion this quantity is assumed to be zero.

. In the present calcula-

3. - CALCULATION OF G AND G,

The distribution funection G can be expanded in terms of an appropriate series of cluster con
tributions, which are easily derived by using the PS expansion(ls). The details of the derivation are
given in the Appendix,

It is useful to associate a diagram to each cluster contribution of the expansion, The diagra-
matic representation of ref. (15) will be used, that is, the internal and egcternal indices are repre-
sented by solid and open circles ; both the correlation factors hyu(r) = f5,(r) -1 and hy 4(r) =

= n (r-) -1 are represented by solid lines, while the statistical linkages -1(k¢r)/ 4 and - lz(kfr)/4
are represented by dashed lines and by helical lines, respectively,

The diagrams associated to the cluster contributions satisfy the following rules:

a solid ecircle involves a factor ¢ and a summation over the corresponding coordinates;

- each internal point is an extremity of at least one solid line ;

the solid lines can superimposed on dashed and helical lines;

the dashed lines are arranged in closed polygons and there are no common points between one po
lygon and another ; each polygon involves a factor -8 ; N
- each helical line has no common points with another statistiical line;

- the particle point A is never an extremity of a statistical linkage.

In the Appendix it is proved that the diagrams involved by the cluster expansion are irredu-
cible ; as a conseguence the following expression for G(r,,) holds:

. I T
Glry ) an("lA)E‘+ fn f 5 Xm“mﬂ . (13)
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where X't'“ indicates the cluster ‘ontribution associated tc an allowed irreducible diagram with m
internal points and the two external points 1 and A and Sj is the symmetry number assocdiated
with the diagram,

In the evaiuation of Gxtrm) the space-exchange operator P(14) is considered to acit only on
the model wave function ¢ in analogy with preceding calculations(2), As a consequence thre follow -
ing expression for G** is used

. A 9 B
[aF,..dF, T £ (r JF @ P11
« ‘Az v 2 A jegeg DR 1]
G (1’1A) = —‘—2 A"‘/[)lg ; (14)

A {
Jdz drAl ¢

The PS expansion of the r. h,s. of eq. (14) leads to a series of irreducible cluster cwntribu-
tions which can be associated to diagrams obeying the diagramatic rules previously givem and the
following ones :

- the two external points 1 and A are always joined either by a dashed line or by a chaim of das-
hed lines ;
- each diagram has a factor -4,

Some examples of irreducible digrams which contribute to G and GX are shown im Fligs, 1
and 2 respectively,

1 A 1 A

FIG, 1 - Irreducible and topologically distinct diagrams with two external
points and one internal point associated to terms contributing to G(ry4).

FIG. 2 - Irreducible and topologically distinct diagrams with two external
points and one internal point associated to terms contributing to GX(rlA).

The various cluster terms contributing to the distribution functions G and GX can be sum
med by means of a FHNC technique. It is useful to distinguish the following three classes of
N-A diagrams:

(sA) : the point i is affected only by dynamical correlations ; 9
(hA) : the point i is either an extremity of one statistical linkage -1/41 (kf r) or a common ex-
tremity of two different statistical correlations -1/4 I(kfr).

Let us indicate by ZmA(l,A) and amA(l,A) the sums of all the nodal and non-nodal dia-
grams of the class (md) respectively. Moreover, let us indicate by gmn(l, 2) the whole set of



allowed diagrams of the type mn (ss, sh, hh or dd)!16) having the external points 1 and 2 both cor

responding to nucleonic coordinates. The corresponding functions gmn(rlz) are given by:

g (r..) =F_ [r

ss 12 nn 12) =1

ZnT1a) * an(rlz)[Gsh("lz’ i Esh“'m’] :

: 12
%n{F12) 1M gL Uer 1) * By(ryg) *+ Gpe ) + [Bopte ) + (15)
2 - 4
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with
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The functions Gyyp(ry5) and Ep,(ry,) correspond to the sums of all the 1-2 nodal and ele-
mentary diagrams of the type mn respectively (see ref. (16)).

The set of all the nodal diagrams of the type (sAd), Z_ 4(1,4), is obtained by making the
chain connection of gss{J,Z) with aSA(2,A), of gsh(I,Z} with aSA(2,A} and of gSS(l,E

) with
lui( A).
Correspondingly the following integral equation holds for the function st(rlA) ;
Z 40140 " sstT12) * 8nP10)| agn2a) * Eoslriz)] @patran). : s
where (a(ril} b(rlj)) denotes the covolution integral:
(a(r Jlb = gfdr a(r )b(r ) (17)
In a similar way one obtains:
. Zna'*1a) (?“1m“12’ sty asA(rZA)) N (,ghs(‘"w” ahA(rMD ?
(18)

ZgA'r14) (dd 19' dA{"zA’)

The functions amA(rlA} which correspond to the non-nodal diagrams amA(l,A) are given
in term of the functions ZmA(rui) by the following relations:

asa®ia) T Fualrig) - Zo4rqy) - 1
(19)
o ulT i) = Byl B 4l ) # By g 0] - 2 40rs )

b g0 = (rm)E(kIrlA)+ZdA(r‘1A)+EdA(r'1Aﬂ—l(kfrm)-Zd'd(rm) ,
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I:|1ullrlf1) I an(l IA} S lstA(I 111) 5 EsA[rlA)] g (20)

and where the functions Em_/l(rl -l) correspond to the contributions of the elementary diagrams of
the tvpe (mA).

In place of the integral equations (16) and (18) together with the relations (19), orne «an solve
the following set of threce integral equations, only two of which are coupled:

g Ar,  )+1 g (v, J+1
s 14 _ . . , " °sA 24 "
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The functions gmA(r‘M) are related to the functions amA(rm) Z‘mA(r]A) and Em/l(rui) through
the following equations:

(r

SA(F A - (FIA A IA) . Fn/l(rlfl} -1,

(r, )+ 2 ) = FnA(rM)EZhA(rlA} + EhA(I'M)J (22)

8h4'T14) ° “ha. 14 ha'T14

2041 7 %aa100* Zaa®14) T Fag®1a)[Baatia) * Baglrig) * Wer )] - 10 )
The radial distribution functions G and GX are given by ;

~ X
G(rm}‘ 1+gSA(r1A)+ghA(rm) 4 G (rm) l(krlA)+gdA( A) (23)
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4, - POTENTIALS AND CORRELATION FACTORS,

The N-N potentials V,, used in the present calculation are the two hard core central poten
tials of the Serber type usually denoted as OMY(17) and 1v(18) potentials.

The N-A potentials, considered here, are the two body effective central potentials H, E
and E' which Herndon and Tang(lg) obtained by fitting the A-binding energy for light hypernuclei
and the available A%proton scattering data, These potentials are of the general form shown in
eq. (6) and (7) and are sugglied with a state independent hard core c, 4 as well as a space-exchan
ge component given by V& = X(X -1)-1 vD (X is fixed to the value 0. 2).

Calculations have also been performed with another potential, denoted DW, used by Downs
and Ware(zo) in their independent pair model calculation of the llo-binding energy in nuclear mat-
ter. This potential, provided with a state independent hard core, has the same strength in all
partial waves,

The radial dipendence of the spin averaged potentials vb, X (see eq. (9)) is of the form:

(a0} r<c
(r) = il (24)

..V(I)):Xexpl::-),(r-an)] I‘}CI_LA

vD,X

The values of the parameter A, ChA V]OD and \7§ are listed in Table I, These potentials have been
used to calculate the .f‘lebinding energy in nuclear matter by means of the Jastrow variational met
hod'2) and the reaction matrix methodg(s) as well, (For a complete discussion on the merits of the
se potentials see ref. (19) and (2)). .

TABLE 1
N-A potential parameters (eq. (24)) (b is the intrinsic range),
Potentials 2 A “na \_'roD ‘_}%(
(fm) | (tm-1} | (fm) (MeV) (MeV)
!

H 2.1 3.935 0.60 548.8 137.2
E ‘2.0 3. 219 0. 45 331.6 | 82.9
E! 2.0 3.219 0.45 | 3192 4 9.8
DW 1.6 3.219 | 0.40 | 330.9 0.0 |

For sake of comparison the correlation factors f,(r4) and an(rlA), used in the present
paper, have been chosen to be the "optimal" correlation functions obtained by Mueller and Clark
in their variational calculatidn(2), The correlation factor fin has the form:

Jn £ % ¢n
(r) = - (25)

£ = ) =
nn 1 -{_1 = expl_-a(r-cnn) H 1 +5exp):—a(r-cnn)hL o XL

where ¢, = 0.6 fm is the hard core radius. The values of a and B, for both OMY and IY po-
tentials, are reported in Table II together with the corresponding nuclear matter energies evalua
ted up to the second and third orders of the cluster expansion. The correlation factor foa has -
the form:
(o
an(I‘) = 7‘ il

réan

exp[— y(r-anﬂ} {1+y, expli-v(r-cn/lﬂ§ e AL |

(26)
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where ¢4 is the hard core of the potential ; the values of the parameters y, # and » are given
in Table III,

TABLE II

Optimal values of the N-N correlation factor parameters (eq. (25))
and corresponding values for the two and three-body contributions
to the expected nuclear matter energy per particle.

(2) P og(3)
‘ Potentials ! « ! B [ BRAlfA : s B !
' I lfm“ll l [DTeV) (Me\) |
| . 3 L 1
| : |
enry T vt elg 1. 394 - 12,49 0.02 :

I Y 2.0 1,349 s, BB 0. 51

TABLE III

Results of the present calculation for the A%binding energy in the FHNC approximation, obtai
ned with the correlation factor of eq. (26). By (MC) denotes the variational results of Mueller
and Clark(2). B, (BR) indicates the reaction matrix results of Bodmer and Rote(6) at M¥/11 -
- 0.638 and A, = 81.4, The results marked with (a) correspond to an odd-state strength :
equal to 0,6 of the even-state strength; the results marked with (b) correspond to the same
strength in all partial waves.

i ‘ {a) 5y ;
! ) ’ B B, (FPUXC) -A1 B, (MC) -4 | By (BR) |15 (FIINC) -4 ] B, (M€) - 4| g B3R
| T'otentials A i A & ! § 1 1 |
! igm~ | (fm=1 (MeV) (AleV) (AleV) (MeV) | arew | arevy |
i |
b __, “._ |
nioMy | o0.85 | 1.55 |1.248 70, 2 65. 1 45,6 . 80,25 ‘ 74.8 l 56,6 |
/iy 0.0 | 1.60 |1.225 I 69.8 G4, 6 ies 0. 67 74.8 e I
| ? .
E/OMY | 0.70 ! 1.0 ‘I_OEH 66.3 [ 62,8 31.9 74,62 | 70,0 ’ 51,7 |
) ‘ ,
EYOoMY | 0,70 | 1.35 |0.965 0.3 57.2 1.4 |} 681 | 64 | 56.0
| !
PAWTONY l 0.70 1::35% 1§ 0. 871 ———- ---- ‘ B 45,1 ‘ 42,1 N e
! | r
J e e . et g e

A variational calculation of the Ao-binding energy, evaluated in the FHNC approximation,

has been performed with the correlation factor an having the form:
. i ~.' 0 r¥cug

i) ! 1 - e‘cpr—a(r -c )j r>c
= SR nA nA

where a is the unique trial parameter, This type of correlation factor was first used by Downs
and Grypeos 21) and later by Whesthaus and Clark(22) and by Mueller and Clark(?), The A%bind
ing energy obtained by these authors using the correlation function given by eq. (27), is about 1~
MeV less than the value fornished by the more flexible correlation factor of eq. (26),

5. - ANALYSIS OF RESULTS AND CONCLUDING REMARKS,

Table 111 shows the results obtained in the FIINC approximation by using the optimal correla
tion factor f 4 of ref. (2) (eq. (26)), for various potential combinations and for fixed values of the
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nuclear substratum parameters (kg = 1.366 fm-1). The table shows the results found by Mueller
and Clark(2) with the procedure marked in their paper with (i), together with the corresponding

optimal values for the parameters y, u and ¥. The reaction matrix results of Bodmer and Ro
te!B) are also reported, s

The columns marked with (a) and (b), in Table III, corresponds to an odd-state strength
equal to 0, 6 of the even state-strength and to the same strength in all partial waves, respectively.
Two observations may be made from the comparison of the FHNC results and those of ref. (2) and
(6):

i) In all the cases considered the many body cluster contributions produce modifications of less
than 7%, so that the constraint imposed in ref, (2) on the N-A correlation factor of eq. (26)
yields quite good expansion convergence,

ii} The difference between the theoretical values of B4 calculated by the variational method or by
the reaction matrix method is increased by the many body cluster contributions. This differen
ce may be further increased by performing an unconstrained variational calculation.

It should be noted that the quantity 4 (see eq. (8) and (12)) has been disregarded in the pre-
sent calculation, because the third order estimates obtained by Mueller and Clark(2) are negligi-
ble and the expansion convergence is quite good. Nevertheless, an evaluation of 4 in the frame-
work of the FHNC approximation would be interesting,

The variational results marked with (a) are affected by another approximation related to the
evaluation of the space-exchange radial distribution function GX{rL,i) (cfr, eq.(11) and (14)). Ne-
vertheless, observation ii) can also be shown to follow from the results marked with (b) in Table
IIT which are not affected by this approximation.

Analogous conclusion can be drawn from the results obtained by use of the correlation factor
(27). Table IV shows the optimal values for the parameter a and the corresponding values of

TABLE IV

Optimal values for the N-A correlation factor parameter a (eq. (27)) and
corresponding values for the A%binding energy in the FHNC approximation
obtained in the present calculation. By (MCA) denotes the two and the
three-body cluster contributions, The label (a) and (b) have the same
meaning as in Table III,

(a) (b)

. a B, (FHNC) -4 | By (MCA) -4 | B, (FHNC) -4 | B4 (MCA) - 4
- (fm'l) (MeV) (MeV) (MeV) (MeV)

H/OMY 5.4 E 65. 1 =% T 73.7 72,3

H/1Y | BB s | 65. 0 63. 3 ; 73.3 72,6

E/OMY i 5.5 | 62. 4 {11 | 69. 4 68.2

E'/OMY |, 5.3 | 57. 3 [ 55. 9 64.0 62. 8 |

DW/OMY f 5.3 | S | 42. 8 41.5 ‘

By (FHNC) together with the results for the Agbinding evaluated up to the third order (BA (MCA)).
The behaviour of B4 (FHNC) as a function of ¢ is shown in Fig. 3.

The results denoted By (MCA) are in good agreement with the corresponding available re-
sults obtained by Mueller and Clark(2, 10), The expansion convergence is very good, but the re-
sults, obtained in the FHNC approximation are worst, from the variational point of view, than the
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= EQ

8.4‘1 {FE;’H() correspending ones found with the more flexible
) correlation factor (26).
.r‘r]?-'.'] H
E The results of the present paper confirm
the well known inadequacy of two-body effective
central potentials in hypernuclear matter calcu-
) ' lations. As a consequence potentials containing
E tensor and (or) three-body components seem to
be necessary to solve the AZoverbinding prob-
lem,
When a realistic A-N potential is used to
— gether with a purely central N-XN potential, it
is necessary to adopte a Jastrow wave function
with a state dependent N-A correlation factor ;
a corresponding F'HNC calculation of B4 could
Dw be interesting in order to explorate, in a sem-
plified situation, the problems relaied to the
development of the Jastrow variational method
407 with state dependent correlation factors(23},
354
FI1G. 3 - Behaviour of B, (FIINC) - 4 as a func-
20 50 70 o tion of the N-A correlation factor parameter a
{fm'j leq. (27)), for the various potential combinations,
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APPENDIX. -

In this Appendix the cluster expansion for G(r]A and GK(I

are shown to be linked and irreducible, A

Let us consider a A-N operator 0= X 0(id), where 0(id) has no space-exchange compo-
nent. In order to derive the PS expansion 11  for the mean value

‘m) (eq.(10), (11)) are made and

f(zp(A’“A)}*qu(A +A) A gt

Mo DT gz o

oy 47
the following function must be considered:
A A
- AT ] 2 2
A fdrA dv @~ 0(14) _41?:2 fnn(rij‘a) ieranA(rm,ﬁ)gb
G(G‘B} s = s ] = _
o ol oobr oo 2 2
Jafy ac” T W g (re) I T (00
i<J=2 =1
(A1)
2 n=
Z o E 8 alﬁ d
_ n=0 Jg=o 3:7
: Jign-i
X X b, i
0 oo Bn-i”
where 12 (r,a) = 1+ah_ (r); £ (r,8) = 1+Bh_ (r) and 0(14) = £ (r, ) 0(1A). (A2)

The generic coefficient 24 n-j is given by the sum of the expectation value on the Slater de-
terminant ¢ of all the possible products of the operator 0 and of n correlation factors, j of the
type hnn(rij) and n-j of the type hnA(riAJ' Grouping all the products having the same topological
structure and symmetry number S but m differing particles, one obtains the result:

a - Qm A-m i a
b =2 2 8 TV drl' g drmdrA D(rlz‘l)(hnn' i hnn hn/l' . hnA)aD(rl' : r.m) (A3)
- o,0 m (a)
bo o is the normalization integral ; the summation ¥ is extended over all the possible combina
tmns of j hy,-factors and n-j h, 4 -factors involv 1nér ) the indices 1,2, .m, The function D(r,.
) comes from the integration over the variables ln 41+ -+ ¢, and is fully expressed in eq. (20)
of ref. (15). An analogous expression holds for bJ - 1/bo o The power series expansion of
O(a, B) around a=§ = 0 leads to:
6(a,p) =}:Ak(a,ﬁ), (A4)
k
where
<5 e 0]
A fa,B) = 1/k!  (at, gt) t=0 ° (A5)
- dt =
the relation
O+3a@0= 38 , (A6)
k k
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holds ; the coefficients Al\. satisfy the recurrence relation(13)

Ay b] b,
A T et - == AT)
Ak b b Ak-l b Ak-z """ (

o 0 o

wi
ith a,

a 8
= A . and bB E T - ;4
j=1 el =1 ¥ B-i

The various coefficients A) can be expressed in term of a | and b, with the result:

k k=t =
Ak = ¥ 5
1= = +k + < 2 =
1=d = ‘kl,o+k ,1+2(k0 2 kl. H'12 I *e m“\o, +]1,m-1+ km,o) !
k k k
neoj b g AN Cn e ) 1,0 (-b e B
; 0,1 “o,0 1,0 0.0 o, m' 0,0
¢ & = ki 1'—i)' = y T : = . (A8)
j=11i=0 o,1° l.e” o, m’
k k
. 1, m-1 m, o .
(—bl,m—l"bo,o) (-bm,o o,o} ] ap,k—l—p
s 1 -
1, m-1" I‘m,o - bo,o

The fellowing theorem holds :

in eq. (A6) all the integrals coming from the terms of the form 4, Bo bal, By b“k,Bk (k >0)

cancell all the integrals which are unliked or reducible in the point-‘particle A%and are contained

in i . - ’ ;.
in the terms of the type A, n-j

Let us consider an integral T corresponding to an unliked diagram or to a diagram which
is reducible in the point A. This integral can be factored into two parts: one part is linked and
irreducible in A, and it is produced by cne A, Bo’ the other part is in general unliked and it is

contained in various combinations of the form bal B4 ba2 Bo -re ban B Let the combination
C = aaﬂj Bo ba]’ By --- b“n,_zgn contain the integral T multiplied by a factor Z; then also the

. 3 ; T = gf 3 9
combinations C dagtay. Bo+B1 bQIJ Br<- baJ-l- BJ-l baJ+1_ 5‘]*1 2 ieks ban: Bn (#j=1,2..,n)
contain T with the same factor Z. The coefficient of C in eq, (A8) is:

= n n
> Kk (-Z k& ) !
; a., B . o, B
B i=1 Y1 i=] it Pi :
F = (-) i s (A9)
i{Il kOLi"Bi!

while the coefficient of each C' in eq, (A8) is:

n n
€3 by g0 (3 0
Frs(g 71 ! o S (A10)
n gy, gy - DT
i Bj
(1 1
=1 SeBy Ka g i
i !33

J42
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Summing all the F' for all the combination C' one obtains -F and this fact proves that the
integral T is not present in the cluster expansion. The theorem then follows from the arbitrariness
of the product ba] B, bﬂg, By +-- ban‘ By As a conseguence of the theorem, the PS expansion is
linked and irreducible in the particle point A%and one can write:

a
0= = ( bn,k )
n,k “o,0

linked and irred, in A ., bl

The integrals contained in the r. h.s. of eq, (A11) corresponding to reducible diagrams cancel as
well as in pure nuclear matter(15),

Therefore one can write:

m . (A12)

where Xg_n is associated to an irreducible diagrams with m+1 points (m 21) and symmetry num-
ber Sj.

The expression for the two-body radial distribution function G(rl,\) (eq.(10)) can be derived
from eq, (Al11) by considering an appropriate ¢ -function as operator 0. &

The evaluation of the mean value of a space-exchange operator 0¥ = 3 Z(iA) P(iA) is per-

i=1
formed assuming that the space-exchange operator P(id) acts only on the model wave function
This leads to the expression:

. J dv af, I fnn(rij) I o (e )87 Z(r) ) PUA) &

- i<J=2 i=2

0 = A A_ T E . (A13)
Jartar, | @ |

The cluster expansion of EX can be easily derived by using the preceding procedure, It must

be noted that the function D(rq,...,r,,) which appears in eq. (A3) must be replaced by the function
BHEY 000 S ) given by :

- iy - = _1____ 'A-mf T » x
D(11,...rm,rh)- &) Y drm+1..drAd5 p(1A) b ., (314)

It is usefull to obserVe the correspondence between the terms of D(r,,...,r ) and D'(r., ..
N r‘A) : each term T, in D, which does not involve the coordinate ry is replaced, in D', by
the product T'= l(kfrlA)T: each factor -lz(kfrlj)/4 in D, is replaced in D', by the product
-1/4 l(kfrlj] l(kfrjﬂ), and each product (-8)(- 1/’41(1{fr1j)). (- 1/41(kfrli)) by the sum of products

(-4)(—1,’41(kfr1j})...(-1/41(kfr1.,\)) - (_4)(~1/41(krr]i)... ('1/41(kfrjn))‘
It results that :
=X g 1l s
A )

where an is associated to an irreducible diagram with m+1 points (m 21) and symmetry number
Sj.

The expression for the two-body radial distribution function GX(rlA) (eq. (11)) can be derived
from eq. (A15) by considering an appropriate §-function as operator 0X,

S4 ¢





