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I. - I:lTRODUCTIOCl. 

In the last years several calculations( 1-7) have been performed to evaluate the bind ing ener 
gy B 11 of a ;10 particle in infinite nuclear matter. This parameter plays a fundamental role in­
the analysis of the AO-nucleon interaction and can give some information about the features of such 
an inter~ction in higher partial waves(5). 

It is commonly accepted that its phenomenological value, as extrapolated fr om the k nown 
AO-binding energies ill finite hypernuclei, is about 30 MeV with an upper limit of 35 MeV(6). The 
theoretical estimates , given by various authors, for BA are much larger than the empirical va -. 
lue. Attempts have been made to soh'e this overbinding problem by considering A-N forces wich 
involve tensor components(S, 9) or by the inclusion of three -body ANN forces(lO). Yet this prob ­
lem does not appear to be satisfactorily solved. 

Another disturbing feature of the' calculations of BA is the large discrepancy between the re 
action matrix(1l) results(4-7) and the variational results{2) . This disagr'eernent is certainly due­
to the app r oximations which have been made in the reaction matrix calculations, or in the variati,£ 
nal ones, or in both of them . The present paper is mainly devoted to the understanding of this last 
disagreement, by means of an inprovement of the Jastrow( 12) variational calculation. . 

i\Iuellcr and Clark(2) have performed a detailed numerical analysis of Bn in the framework 
of the .Jastro\\· approach wit!1 a state - independent correlation function. In thei r paper the quantity BA 
has been expanded in a cluster series , according to the Iy(13) formalism , and calculated includ­
ing the t\ .... o and the three -body cluster cont r ibutions; some constraint on both the N -A and the N - N 
correlation factors have been imposed to avoid the Eme r y( 14) difficulty . 

In order to ascertain the importance of the many-body cluster contributions , which have been 
disregarded in ref. (2), a FHNC calculation of BA is performed in the present paper. The quantity 
BIt is expanded by means of the PS cluster expansion( 15) . T he expansion is shown to be linked and 
irreducible. 

Furthermore a set of in tegral equations are derived; the solutions of t he se equations permit 
the calculation of the two - body N -A distribution function in the FHNC approximation . 

In Section 2 the expression for BA is derived in terms of the N -A distribution function. 

In Section 3 the N -A distribution function is expanded in a cluster series and a set of integral 
equations is derived by means of the covolution technique . 
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Tn Section 4 the)! -): and N -A potentials and correi:ltion factors, employed in the pre sent 
calcll'iation, are presented. 

Finally Section j is devoted to the analysis and the discussion of the results obtained. 

2. - DESCRIPTIO'! OF TilE ilIETHOD . 

The hamiltonian for the system, constituted by A nucleons and one AD_particle , is taken to 

2 
17 .,. 
A 

A 
L: 

i = 1 
,. I i A ) 

nil 

where the hamiltonian II(A) for the nuclear substratum is given by 

A 
17 ~ + L: V Ii j) 

i < J=l nn 

!\In and MA being the nucleon aqd AOmasses, respe ctively . 

( J ) 

(2) 

Let us denote the ground state wave function of the host medium by tp (A) and that one of t he 
whole system by tp (.A. -I--A ) , The binding energy of the AO particle 'is defined as: 

( 3) 

T he wave functions tp (.A.) and lP (A + A ) are taken of the Jastrow type, that is : 

IA) 
P (1 , ... ,A) = 

A 
IT r Ir .. ) </>, 

i':J=2 nn IJ 
(4) 

IA +A ) IA) 
P (1 ". ,A , A ) = F (J , . . , A, A ) P (1 , .. , A) (5) 

.. \there fnn(r i j) and fn A(ri A) a re the state independent N - N and N -A cor r elat ion facto rs respect..! 
v_ely, and <P is the ground state wave function of a Fermi gas with density Q. 

The N -A potentials are assumed to be central but spin dependent and are written in the form 

(6) 

where POA) denotes the space -ex change operator for particles i and A? and, 

(7) 

with Ps and P t projection operat ors into the singlet and t he triplet states , r espectively. 

The following expression for BA results: 

}
_.Jr 1.2 1- rrnA(r) 2 17

2
rnAlr)] 1\2 

-p dr 1 L4MA ~lfn ll lrT) - -rnll lr)- + 2Mn 

+ vDlr~ Glr) + 01r) GX(r)} + Ll , 

(8) 
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- D X \\l.\..'re \r, are the N -it spin averaged potentials and are given by 

(9) 

.::lnd G( r) and eX(r) are the direct and exchange N -It radial distribution functions and are defined 
as: 

G(r 1/\ ) 

the quantity 

2J 

jdr
2 
... de A (p(A))" F P(lA) F 'P (A) 

jd<A d~11 ~(A+A)P-----

( 10) 

( II) 

( 12) 

\"anishes identically if qJ(A) is an eigenfunction of the hamiltonian I-I(A). In the present calcula ­
tion thic; quantity is assumed to be zero. 

3. - CALCCLATIO;\1 OF G A)lD GX 

The distribution function G can be expanded in terms of an app r opriate series of cluster con 
tributions, which are easily derived by using the PS expansion(15) . The details of the derivation a~e 
given in the Appendix . 

It is useful to associate a diagram to each cluster contribution of the expansion . The diagra­
matic l"epresentation of ref. (15) will be used, that is , the internal and external indices a r e repre­
sented by solid and open circles; both the correlation factors hnn(r) = f~n(r) - 1 and hnA(r) = 

- ? 2 
= f~A (r) - 1 are represented by solid lines, while the statistical linkages - l(krd/ 4 and - 1 (krr)/4 
are represented by dashed lines and by helical lines, respectively. 

The diagrams associated to the cluster contribu~ions satisfy the following rules : 

- a solid circle involves a factor g and a summation over the corresponding coordinates; 
- each inte r nal point is an extremity of at least one solid line; 
- the solid lines can superimposed on dashed and helical lines; 

the dashed lines are arranged in closed polygons and there are no common points between one p~ 
lygon and another; each polygon involves a factor - 8 ; 
each helical line has no common points with another statis ti cal line; 
the particle point A is never an extremity of a statistical linkage . 

In the Appendix it is proved that the diagrams involved by the cluste r expansion are irredu ­
cible; as a conseguence the following expression for G(r1A) holds : 

(13) 
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where X~ll ind icates the cluster 'ontribution associated tC' an allowed irreducible diagram' 'with m 
internal points and the two external points 1 and Ii and Sj is the s,ymmetry number assucc iated 
wiTh the diagram . 

in tllP evaluation of eX(l'l A ) the space -exchange operator P(lf1. ) is considel'ed to adt only 0:1 

tile model wave function cP in analogy with preceding calculations(2) . . ~\s a consequence Hue follo \\'·· 
ing E>xpl'essi on fOl' GX is used 

The PS expansion of the r. h. s. of eq, (14) leads to a series of irreducible cluster cmmtribu ­
tions which can be associated to diagrams obeying the diagramatic rules previously gi\'em "and the 
following ones: 

the two external points 1 and A are always joined either by a dashed line or by a chabn of das ­
hed lines ; 
each diagram has a factor - 4. 

Some examples of irreducible digrams which contribute to G and GX are shown in.1F'igs. 
and 2 respectively . 
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FIG. 1 - Irreducible and topologically distinct diagrams with two external 
points and one internal point associated to terms contributing to G{r 1A ). 
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FIG. 2 - Irreducible and topologically distinct diagrams with two external 
points and one interna1 point associated to terms contributing to eX(r 111). 

,~ 

The var ious cluster terms contributing to the distribution functions G and GX can be sum 
m ed by means of a FH)IC technique . It is useful to distinguish the following three classes oj 

?oJ -A diagrams; 

(sA) the point i is affected only by dynamical correlations; 
(h A ) : the point i is either an extremity of one statistical1inkage - 1/ 4 12(kf 1') or a common ex­

tremity of two different statistical correlations - 1/4 l(kfrl . 

Let us indicate by ZmA(l,A) and a m A(I,A) the sums of all the nodal and non-nodal dia­
grams of the class (rnA) respectively . Moreover, let us indicate by gmn(I , 2) the whole set of 

\ 
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allowed dia ;JTam s of the type mn (55, 5h , hh or dd)( 16) having the external points 1 and 2 both cor 
respond ing to nucleonic coordinates . The corresponding functions g mn (r 12) are given by: 

with 

g Ilr I ?) S 1 _ 

Fnnlr12) - 1 , 

Fnnlr12 i[GS h lrI 2)· E Shlr12 )] ' 

ghh lr 12) " Fnnlr12){- ~12Ikrr12 ) + Ehl1lr12) + Ghl1lr12) + I]<; shlr 12) + 

+ G Sh Ir 128
2 

- 4 J!: dd( r 12) + G ddlr 12 J 2 + 2 Ilkrr 12) [i;;ddlr 12 ) + G dd lr 12~} , 
(l5) 

The functions Gmn (!' 12) and E mn(r 12 ) correspond to the sums of all the 1 - 2 nodal and ele­
mpntary diagrams of t he type mn respectively (see re f. (16)). 

The set of all the nudal diagrams of th e type (s A), 2 s11 0, 11 ), is obtained by making the 
chain connection of gss(l ,2) with a s11(2 ,i1 ), of gsh{1 ,2 ) with a sA (2 , J1 ) and of gss{l,2) with 

"luI12 ,A). 

Corl'espondi ngly the following int egr a l equation holds for the fu nct i on ZsA{r Vl ) : 

where (a(r i l )! b(t'lj)) denotes the covolution integral: 

(a l ril1 I blrjj)) " ejdrj alril)bl rlj) 

In a similar way one obtains : 

The functions a m A(r lA ) which cor r espond to the 'non - nodal diagrams 
in term o f the functions Zml1(r 1A ) by the follow ing relations: 

with 

(16) 

(17) 

(l8 ) 

(19) 
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(20) 

an d whel'e the functions E m J1 (r
1A

) cor r espond to the contributions of the element::lry diat,gr ams of 
th~ ty pe (01 11 ), 

In place of the i ntegral equations (16) and (18) together with the relations (19), or.-eo (C an solve 
the following set of thre:e integl~al equations, only two of which are coupled: 

gs:l(l'IA) + I I 
In? o(g (1'12)+gI I1'12) l g A( r 2A ) - ln 

f- (l~) .55 51 S 
nA 1,1 

ghA Ir IA 1 

gsAl r lJl )+1 

gs il (r 2A 1 gil A I I' 2A 1 

gs Alr2/1 1 + 1 

gs Alr2A1 gh Alr 2A1 

gs Alr2A ) + I 

gd A lr2 .~ ) gSAlr2A 1 

gsAlr2A ) + 1 

gs A(l'21I ) + I 

2 
f nA(1'2 A 1 

+ E (I' I) + 
sJ\ 2A 

(211 

The functions gmJt (rlil) are related fa the functions am A(r ll1. L Zm A(rJ.A) and Em A(r
W

) through 
the following equ ations : 

gs AlrlA ) a s Alr 1A I + Z5 AlrlA I 0 FnAlr lA I - I , 

ghA lr lA ) a hA;r lA I + ZhA1r lJl I 0 F ni\ lr1A{< AIl"IA ) + Eh Alr lJl >J 1221 

The radial distribution functions G an d GX are given by; 

(23) 
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4. - POTE:nIALS AND CORRELATION FACTORS. 

The ')J - )J potentials V nn used in the present cal cu lation are the two hard core central pote~ 
Hals of the Serber type usually denoted as 01\Iy(17) and ry(18) potentials. 

The N - A potentials, con sidered here, are the two bod;, effective central potentials H, E 
and £1 which Herndon and 'Tang(19) obtained by fitting the A-binding energy for light hypernuclei 
and the available Aq,proton scattering data , T hese potentials are of the general form shown in 
eq. (6) and (7) and are suppl ied with a state independent hard core cn A as well as a space - excha~ 

ge component given by VX = X(X - 1) -1 V D (X is fixed to the value O. 2). 

Calculations ha\'e also been performed with another potential , denoted D\V, used by Downs 
and Ware(20) in thei r independent pair model calculation of the AO-binding energy in nuclear mat­
tel'. This potential, provided with a state independent hard core, has the same strength in all 
partial waves. 

The I'adial dipendence of the spin averaged potentials VD , X (see eq. (9)) is of the form: 

(24) 
r :> c

nA 

The values of the parameter )., cnA V~ and v~ are listed in Table I. These potentials have been 
used to calculate the .1~binding energy in nuclear matter by means of the Jastrow variational met 
hod(2) and the reaction matrix methodt6 ) as well. (For a complete discussion on the merits of the­
se potentials see ref. (19) and (2)) . 

TABLE I 

N -11 potential parameters (eq. (24)) (b is the intrins ic range). 

I 
, -~ -.-----~---

b ). - D - X 
Potentials 

c
nA Vo Vo 

(Im) (fm - 1) (fm) (MeV) (MeV) 

H 2 . 1 3.935 0 . 60 548.8 137.2 

E 2 . 0 3.219 O. 45 I 331.6 
i 

82 . 9 , 
i E' 2.0 3 . 219 O. 45 , 319.2 79 . 8 I , 

I 
DW l.5 3.219 O. 40 i 330. 9 O. 0 I 

I 

, I 

For sake of cornparison the corr'elation factors fnn(r12) and fn A (r 1il ), used in the present 
paper, ila\-e been chosen to be the "optimal " correlation functions obtained by Mueller and Clar k 
in the ir variational calculation(2) . The correlation factol' fnn has the form : 

f (r) 
nn - - l) [ l. 

- exp L-a (r - cnnU J l 1 + P exp -a{l' - c nn)] J 
(25) 

where cnn = 0.6 fm is the hard core radius . The values of a and p, for both OMY and IY po:'" 
tentials , are reported in Table II together with the corresponding nuclear matter energies evalua 
ted up to the second and third orders of the cluster expansion . The correlation factor fnA has -
the form: 

<J r~ I"l 
., ., i 

(26) 
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whel'C' en A is the hal'd core of the potential: the values of the parameters i', ,u 
ill Table lIt. 

and 'U :are given 

Optimal \'alues of the :x - X correlat ion factol' pal'ameters (eq. (25)) 
and corresponding \'alues for the t\\"o and three - body contributions 
to the expected nuclear matter en€'l'gy per pa rticle. 
------------,------ ------
I . I a I fJ I E(2)/r\ : E(3) j,-\ I 

P otent Ials . . i I (fm - I ) ; (;\ l eV) : (;\Ie\') i ____________ .:..J ________ , ______ , _ _ -----' 
I ' i 

O:\lY . 2 . 3 1. 39~ 12.49 0 . 02 1 

1'1 _2~0 _ __ ~~_ 6._5_6 ____ ~~~_1 _J 
TABLE III 

Results of the present calculation for the AO-bindin g ener gy in t he FtI:\C appl'oxi m a t ion , obtai 
tied with the cOITelation factor of eq , (26) . Bfl (:'I IC) denotes t he variational results of :\Tu e ll e ;­
and Clal'k(2 ), RA (BR ) indi cat es the reaction matl'ix results of Bodm e r and Rote (6) a t :'I~ :'In = 

- 0 .638 anJ LI n = 81 . "1,. The results marked "'ith (a) correspond to a n odd - state s tre:1g!h 
eq.lal to 0 , 6 of the e\'en - state strength; the results marked with tb ) cOl'l'espond to the same 
strength in all partial waves, 

i " ulcd"b I r Tlil " I--'''--~ (c1~:-;~~1 B~~ICl ~; I' ", '0'" i '" ' :':-;"l~:~~,;' ~: ' ;-~'I 
~ ___ l !~1~~1~_~~__ ~~ __ r_~:~~_,_~rev \ _~\r e\·_) __ t_-~~~2-~-~\'e~~ 

I "O\lV 0 3 5 I..;; I I. 2 4" '0.2 I r,;, . I 45.6 RO . 23 I "" 1;68 I 
I " / 1\' 0 . 90 ' , 60 ( I.,, '; 1; 9 . 3 I ';4. " 70 .07 74. 3 'I 

i C / O"Y 0 10 I '0 1 , . 0 (; 4 66 .; . G2 R .;, 9 " (,' i 10 0 " , 

i "' /o""io)o I,"' io-go; " 05 I ';1 2 17 1 1 ""' I " ' S j j6, O : 

I I)\'. ow 1
10. ' " 1 I " 1 0 " " I - - -- I ---- 1 --- - I ;; I " 1 ----

I I ' I I ' , __ _ _______ ----l ___ ___________ ______________________ _ _ __________ _ 

A variational calculat ion of the It': binding energy, evaluated in the F[I)JC approximation, 
has been performed wi t h tJ le correlation facto r fnA hav ing the form: 

o 
(2, J 

\\ilel'E! a is the unique tdal parameter . This type of correlation factor was first used by Downs 
and Grypeos(21) and later by Whesthaus and Clark(22) and by ;" Iuelle r and Clark(2 ), The A~bind 
ing ene r gy ohtai.ned by these authors using t he correlation fu nction given by eq , (27), is about 1-
MeV less than the value fo r nished by the more flexible cor r e lation factor of eq. (26), 

5. - A:"IALYSIS OF RESULTS AN D CONCLUDIXG REMARKS, 

Table III shows the results obtained in the Flf)lC approximation by llsing the optimal correIa 
tion factor fn A of ref. (2) (eq, (26)), for various potential combinations and for fixed values of the 

\ 
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nuclear substratum parnmeters (kf = 1.366 fm-I). The table shows the results fo,.md by Mueller 
alld Clark(2) with the procedure marked in their paper with (i), together with the corresponding 
opti m al values for the parameters i', !1 and v . The reaction matrix results of Bodmer and Ro 
te(6) are also reported. 

The columns marked with (a) and (b) , in Table III, corresponds to an odd - state strength 
equal to O. 6 of th e even state - streng:h and to the same strength in all partial waves, respectively. 
Two observations may be made from the comp'3.rison of the FHNC results and those of ref. (2) and 
(6) : 

i) In all the cases consideeed the many body cluster contri butions produce modifications of less 
than 7%, so that the constrain t imposed in ref. (2) on the N -11 correlation factor of eq. (26) 
yields quite gO::>d expansion convergence. 

iO The difference between the the::>retical values of BA calculated by the \'ariational method or by 
the reaction mat r ix method is increased by the many boJy cluster contribution s . This differe.!:!. 
ce may hE' further increased by perfo r ming an unconstrained variational calculation . 

It should be noted that the qu,antity .d (see eq. (8) and (12» has been disregarded in the pre­
sent calculation, becallse the third order estimates obtained by Mueller and Cla r k(2) are negligi ­
ble and th e expansion convergence is quite good . Nevet"theless, an evaluation of .d in t h e frame ­
work of the F H)JC approximat ion would be interesting. 

The variat ional results marked \Vith (a) are affected by another approximation related to the 
enlluation of the space -excha!1ge radial distribution function ~'((r lA) (efr . eq. (11) and (14)). Ne ­
vertheless' observation iO can also be shown to follow from the results ma r ked with (b) in Table 
III \Vhich are not affected by this approximation . 

Analogous conclusion can be drawn from the results obtained by use of the correlation factor 
(27), Table IV shows the optimal values for the parameter a and the cor r esponding values of 

TAB L E IV 

Optimal values for the N -11 correlation factor parameter a (eq. (27) and 
corresponding values for the AO-binding energy in the F HNC approximation 
obtained in the present calculation. BA (MCA) denotes the two aIld the 
three - bojy cluster contributions. The label (a) and (b) have the same 
meaning as in Table III . 

____ ~~n~~~~r~-e-~)--- _~Me\~_ , __ (l\I~e_v) _ _ (MeV) 

H! OMY . S.4 ' 65 . 1 63.2 73,7 72.3 

I I 
H / lY 5.5 I 65 . 0 63 . 3 73 . 3 72 . 6 

E / OMY 5.5 62. 4 61. 69 . 4 68 . 2 

E' / OMY 5 . 3 5 7 . 3 5,0, 9 64 . 0 62,8 

DW/ OMY 5 . 3 42,8 41. 5 
~ ____ L -----

BA (F'HNC) togethe r with the results for the A~binding evaluated up to the third order (BA (MCA)). 
The behaviour of BA (FHNC) as a function of a is shown in Fig. 3 . 

The results denoted BA (MeA) a r e in good agreement with the corresponding ava ilable re ­
sults obtained by Mueller and Clark(2 , 10) . The expansion convergence is very good , but the re­
sults, obtained in the FHNC approximation are worst I from the variational poi nt of view I than the 
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cOlTesponding ones found with th e more flexible 
correlation factor (26). 

The re sQ lts of the present pape r confirm 
the well known inadequacy of two - body effective 
central potentials in hypernucleat' matter calcu ­
lations .. -'\s a consecpence potentials containi n g 
tensor and (ol') three -body components seem to 
be necessary to solve the J\ ~o\·erb inding prob ­
l em. 

When a realis t ic 1t -:\ potential is used [2. 
gether with a pUt'ely central :\ - "X potential, it 
is necessary to adopte a Jastro\\' wa\'e function 
\dth a state dependent N - 11 co r relation factor; 
a corresponrling FH:\C ca1culatio:1 of Bil could 
be interesting in order to exp10rate, in a sem ­
plified situat ion, the problems related to the 
development of the Jastl'ow variational method 
\\"ith state dependent correlat i on factors(23) . 

FIG. ~ - Beha\·iour of Bit (FII:\C) - L1 as a func ­
tion of the ?'.J -11 correlation factor parameter a 
(eq. (27)), for the \'ariO~lS potenti a l combinations . 
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APPENDIX . -

In this Appendix the cluster expansion for G(r 1t1) and eXtr lA ) (eq. (10) , (11)) are made and 
are shown to be linked and irreducible. 

A 
L et us consider a Jl-N operator 0:: .I O(iA ), where O(i A ) has no space-exchange compo-

nent. In order to derive the P S expansion i=1 for the mean value 

o 
J Ip lA +A ) )* 0 qJ IA + A ) dr

A 
d<A 

11 p iA +A ) 12 d~ d<A 

the following fun ction must be considered : 

A A 2 
A f dr

A 
d<A <Jj* a(1A) IT f2 Ir", a) IT f Alr'A,P)<Jj 

nn 1J n 1 
i<j=2 i=2 

B la ,p) 
" A A 2 A 2 
( - d< ,"* () ( ) Jdljj '¥ IT f r",a IT fnA riA,p <Jj 

i <.J =2 nn 1J 1= 1 

J; 
n=O 

J; 
n=O 

IA 1) 

(A2) 

Th e generic coefficient o,j, n-j is given by tilt:! !:)urn of the expectation value on the Slater de ­
terminant ([1 of all the possible products of the operator 0 and of n cor relation factors, j of the 
type hnn(rij) and n - j of the type hnA (riA ), Grouping all the products having the same topological 
structure and symmetry number S but m differing particles. one obtains the result : 

a, , 
]. n - J 
b 
0,0 

m 
J; J; ~ 
m (a) 5 

IA3) 

bo 0 is the normalization integral; the summation I is extended over all the possible co mb ina 

tio'ns of j hnn-factors and n-j hnA-factors involdn£a) the indices 1, 2 .. m . The function D(r1. ~ 
.. r m) comes from the integr ation over the variables r m+l' .. r A and is fully expressed in eq. (20) 
of ref. (15). An analogous expl'ession holds for b j n_/bo o ' The power series expansion of 
BI a, P) around a ~ p ~ 0 leads to: " 

whel"e 

the relation 

B la , p) ~ J; Ak(a,p) 
k 

l /k l, r d k 
(at Ot)-I 

Ldtk 'PJt~O 

341 

(M) 

(A5) 

(A6) 
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holds: the coefficients ~\k satisfy tile recurrence relatio;'1(15) 

with a " a 

a 
~ a. . 

j" 1 
J, a - J 

'~k - 2 ... . , 

and 

IA71 

The \-a rious coefficients . .l,h, can be expressed in term of ak,l and bk,l with the result : 

.\ , k 

k k -e 
~ ~ 

1"0 P"O 1

'- ~ 

, k +k +2(k +k +k )+ +m(k +k + .. . k ) 
- 1,0 0,1 0.2 1.1 2,0~' O,m l,m - l m,D 

.i 
~ k . .. 1 

i=O 1, J-1 

k 
I-b I b 1°,1 

0, 1 0, a 
k 

0 , 1 

k 
I-b I b ) 1,0 
__ l-l~~o ____ _ 

kl ' ,0 

k 
I-b t b 1 1, 111 -1 

1,111 - 1 0 , 0 

k 
( - b b ) m,o l 
-~-~_o_---

a 
p,k - l - p 

k 
1, m - l 

k . 
nl , O .J 

b 
0,0 

k 
( - b /b lo,m 

0, m 0 , 0 

k 
o , m 

The foHowing t heorem holds : 

(A81 

in eq.(A(;) all the inregrals coming from the terms of the form aaa . Po b al , PI'" bak . ~k (k >0) 

t:ancell all th e integl~als which are unliked or reducible in the pOint -pa rticle AD and are contained 

in 1.he terms of the type aj , n-j ' 

Let llS cons ide r an integral T corresponding to an unliked diagram or to a diagram which 
is l'educible in the point A, This integral can be factored into two parts: one part is linked and 
in'e du cible in A, and it is produced by one aa Q ; the other part is in general unliked a nd it is 

oeo 
contaillE'd in vadous combinations of the form b al , ~1 b a2 , fJ2 .. , ban , ~n' L et th e combinati on 

C == aa Q b a Q • •. b a - Q contain the integral T multiplied by a factor Z; then also the 
0,1'0 1,Pl n,pn 

combinations C ' " aao+uJ. fJo~fJ.T bal, PI '" baJ _1, PJ - l b ah1 , PJ~I'" ban, Pn (-\fj"I , 2 .. ,nl 

contain T with the same facto r Z. The coefficient of C in eq , (AS) is : 

n 

F 

n 

~ka.Q -': 
i == l l'Pl 

n 

while th e coefficient of each C' in eq. (A8) is: 

n n 

(I ~ k a . p-' - 11 
i == 1 l' 1 

1- ) F' 

IA91 

Ir\ 1 0) 

\ 
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Summing all the F' for all the combination C ' one obtains - F and this fact proves that the 
integral T is not present in the cluster expansion. The theorem then follows from the arbitrariness 
of the product b 0.1 J PI b a2' P 2 . . . ban . P

n
' A s a conseguence of the theorem, the PS expansion is 

linked and irreducible in the particle point ,,0 and one can write: 

o 
a 

:i (~) 
n k b linked and irred . in 1\ . 

• 0,0 

(A II) 

The integr als conta ined in the r . h. s . of eq, (A 11 ) corresponding to reducible diagrams cancel as 
well as i n pure nuclear m atter(15). 

Therefore one can write: 

a . 
o :i (-'2!-L) 

n J' b lrred 
• 0,0 

-m J ... h ,A D(rl ... r) 
nf' m irred. 

m 
:i _Q- :i 
m V 

I 
S. 

J 

(A 12) 

where x~ is associated to an irreducible diagrams with m+l points (m ~l) and symmetry num ­
ber Sj" 

T he expression for the two -body radial distribution function Gir l"') (eq. (10)) can be derived 
fl'om eg, (A 11) by considering an appropriate (} - function as ope r ator O. A 

The evaluation of the mean value of a space -exchange operator OX = ~ X (iA) P (il\) is per-
i : 1 

formed assuming that th e space - exchange operator P (il1) ac t s only on the moael wave function 
This leads to the expression: 

(A.J3) 

The cluster expansion ~f OX can be easily derived by using the preceding p r ocedure, It must 
be noted that the function D(rl • .. '. I'm) which appears in eg, (A3) must be replaced by the function 
D ' (rl '" r m' r,,) given by: 

I A-mJ - - ,. 
D '(rl,· .. r m,rA ) = (A -ruT " V drm+l .. drA </> pOf\ ) </> . (AI4) 

It is usefull to observe t h e corresp ondence between t h e te rms of D ( r ~ ., . . • I'm) and D' (r 1. " 
, .• rm' r" l : each term T , in D , which does not involve the coordina te 1'1 15 replaced, in D ' , by 
the produ ct T' = l(kfr1 l\ ,T : each factor - 12(kfrlj) / 4 in D . is replaced in D'. by the product 
- 1/ 4 1(kr l'lj)!{kr l"j A)' and each product (-8)(-1 / 4 1(krrlj))' " ( - 1/4!{krrli)) by the sum or products 

( - 4)( - 1/4 I (krr 1 j))' . . ( - 1/4 !(krr i " )) + (- 4) (- 1/ 4 1 (krr 1 i)' .. ( - 1/ 4 !(kfr j A))' 

It results that: 
-x o :i 

m 

1 j 
:i --- Y 
j Sj m 

(A I 5) 

whe r e Y~ is associated to an irreducible diagram with m + 1 points (m ~ 1) a nd symmetry number 

The expression for the two -body radial dist r ibution function GX(r 1A ) (eq. (11)) can be derived 
f r om eq. (A15) by cons idering a n approp r iate 6 - function as operator OX , 




