P. D'Agostino, V.D'Amico, G. Fazio and F. Mezzanares:

KINEMATIC OF THE $\mathrm{P}+\mathrm{T} \rightarrow \mathrm{A}_{\mathrm{i}}+\mathrm{A}_{\mathrm{j}-\mathrm{k}} \rightarrow \mathrm{A}_{1}+\mathrm{A}_{2}+\mathrm{A}_{3}$
TYPE REACTIONS IN THE RCS.
P. D'Agostino ${ }^{(+)}$, V. D'Amico ${ }^{(*)}$, G. Fazio ${ }^{(*)}$ and F. Mezzanares ${ }^{(*)}:$ KINEMATIC OF THE $\mathrm{P}+\mathrm{T} \longrightarrow \mathrm{A}_{\mathrm{i}}+\mathrm{A}_{\mathrm{j}-\mathrm{k}} \longrightarrow \mathrm{A}_{1}+\mathrm{A}_{2}+\mathrm{A}_{3}$ TYPE REACTIONS IN THE RCS (o).

1. - INTRODUCTION.

In this paper we show a kinematic study of the reactions with three bodies in the final state

$$
\begin{equation*}
\mathrm{P}+\mathrm{T} \longrightarrow \mathrm{~A}_{1}+\mathrm{A}_{2}+\mathrm{A}_{3} \tag{1}
\end{equation*}
$$

useful for the determination of the best experimental conditions. First, we apply the classical mechanics $(1,2,3)$ in the laboratory system (LS), then we transform the expressions in the system of the relative coordinates (RCS); in the latter system obtained results are to be read.

2. - THE KINEMA TIC CURVE IN THE (LS).

If one applies the conservation principles

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{p}}+\mathrm{Q}=\mathrm{E}_{1}+\mathrm{E}_{2}+\mathrm{E}_{3} \\
& \overrightarrow{\mathrm{p}}=\overrightarrow{\mathrm{p}}_{1}+\overrightarrow{\mathrm{p}}_{2}+\overrightarrow{\mathrm{p}}_{3}
\end{aligned}
$$

to the (1) one obtains

$$
\begin{equation*}
a_{1} E_{1}+a_{2} E_{2}+2 c_{12} E_{1}^{1 / 2} E_{2}^{1 / 2}-2 c_{1} E_{1}^{1 / 2}-2 c_{2} E_{2}^{1 / 2}-b=0 \tag{2}
\end{equation*}
$$

where the quantities concerning the undetected particle 3 are written as a function of the other two (1 and 2), and
$E_{p}, m_{p}, \vec{p}, m_{t} \quad$ are referred to the projectile and to the target respectively
$E_{i}, m_{i}, \vec{p}_{i}$ $(i=1,2)$ are referred to the $i-t h$ emitted particle
$a_{i}=m_{i}+m_{3}$
$c_{i}=\left(m_{i} m_{p} E_{p}\right)^{1 / 2} \cos \theta_{i}$
$c_{12}=\left(m_{1} \mathrm{~m}_{2}\right)^{1 / 2} \cos \theta_{12}$
$\overline{(+)}$ Istituto di Fisica dell'Università di Messina
(*) Istituto di Fisica dell'Università di Messina and INFN, Sezione di Catania, Gruppo di Messina.
(o) This work was supported in part by INFN and CRRN/ SM.
$\cos \theta_{12}=\cos \theta_{1} \cos \theta_{2}+\operatorname{sen} \theta_{1} \operatorname{sen} \theta_{2} \cos \left(\theta_{1}-\theta_{2}\right)$
$\mathrm{b}=\mathrm{m}_{3} \mathrm{Q}+\left(\mathrm{m}_{3}-\mathrm{m}_{\mathrm{p}}\right) \mathrm{E}_{\mathrm{p}}$
$M=m_{p}+m_{t} \cong m_{1}+m_{2}+m_{3}$
Equation (2) represents an ellipse in the $\mathrm{E}_{1}^{1 / 2} \mathrm{E}_{2}^{1 / 2}$ plane because

$$
a_{1} a_{2}-c_{12}^{2}=m_{3} M+m_{1} m_{2} \operatorname{sen}^{2} \theta_{12}>0
$$

The physical part is restricted to the part of the ellipse where both $\mathrm{E}_{1}^{1 / 2}$ and $\mathrm{E}_{2}^{1 / 2}$ are positive (they are in fact proportional to the momenta abs. val. $\left.\mathrm{E}_{\mathrm{i}}^{1 / 2}=\left(2 \mathrm{~m}_{\mathrm{i}}\right)^{-1 / 2} \mathrm{p}_{\mathrm{i}}\right)$. The physical solutions of (2) can be obtained from

$$
\begin{equation*}
E_{j}^{1 / 2}=-\frac{a_{j i} \pm\left(a_{j i}^{2}+a_{j} b_{i}\right)^{1 / 2}}{a_{j}} \tag{3}
\end{equation*}
$$

where
$a_{j i}=c_{j}-c_{12} E_{i}^{1 / 2} \quad ; \quad b_{i}=b+2 c_{i} E_{i}^{1 / 2}-a_{i} E_{i}$
for each physical value of $E_{i}^{1 / 2}$

2. 1. - The sequential decay.

Let (1) proceed by sequential decay with formation of an intermediate system

$$
\left.\begin{array}{rl}
P+T & \longrightarrow A_{1}+A_{2,3} \tag{4a}\\
& \longrightarrow A_{2}+A_{1,3} \\
& A_{3}+A_{1,2}
\end{array}\right\} \longrightarrow A_{1}+A_{2}+A_{3}
$$

In case (4a)for a definite internal energy $E_{2,3}$ of the bound state, one can obtain only two allowed values

$$
\begin{aligned}
& E_{1 S}^{1 / 2}=\frac{c_{1} \pm\left(c_{1}^{2}+M b_{2,3}\right)^{1 / 2}}{M} \\
& \text { Where } b_{2,3}=m_{2,3} Q_{1,23}+\left(m_{2,3}-m_{p}\right) E_{p} \\
& m_{2,3}=\text { mass of the intermediate system } \\
& Q_{1,23}=Q \text { of (4a) }
\end{aligned}
$$

For the two allowed values $\mathrm{E}_{1 \mathrm{~S}}^{1 / 2}>0$ one can draw two straight lines at the most. They are parallel to the E_{2} axis and their intersections with (2) give the points all around which the coincidences A_{1}, A_{2} will accumulate.

Obviously, if the level with internal energy E_{2-3} has a finite width Γ, one must consider the intersections of a family of parallel straight lines and the coincidences will accumulate on a strip around the kinematic curve. Similarly for (4b), one can obtain, at the most, four points of intersection related to $E_{1-3}=$ const sequential decay.
$\mathrm{E}_{1-2}=$ const hypothesis (4c) leads to the conic

$$
\begin{equation*}
\left(m_{1,2}-m_{1}\right) E_{1}+\left(m_{1,2}-m_{2}\right) E_{2}-2 c_{12} E_{1}^{1 / 2} E_{2}^{1 / 2}-b{ }_{1,2}=0 \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathrm{b}_{1,2}=\mathrm{m}_{1,2} \mathrm{Q}_{1,2} \quad ; \quad \mathrm{Q}_{1,2}=\mathrm{Q} \text { of the } \mathrm{A}_{1,2} \longrightarrow \mathrm{~A}_{1}+\mathrm{A}_{2} \tag{6}
\end{equation*}
$$

equation (5) is an allipse because

$$
\left(m_{1,2}-m_{1}\right)\left(m_{1,2}-m_{2}\right)-m_{1} m_{2} \cos ^{2} \theta_{12}=m_{1,2} Q_{1,2}+m_{1} m_{2} \operatorname{sen}^{2} \theta_{1,2}>0
$$

being $\mathrm{Q}_{1,2}>0$ if the decay (6) takes place.
The coincidences of the A_{1}, A_{2} sequential decay will accumulate around the points of the intersection of the ellipse (2) with (5).

2. 2. - The kinematic curve in the $\mathrm{E}_{1}, \mathrm{E}_{2}$ plane.

Generally, from (2) one obtains in the E_{1}, E_{2} plane a quartic, whose points can be directly obtained by squaring the positive values of (3), taking into account the limits of E_{1} for various ellipse positions. The quartic physical part (Fig. 1) obviously coincides with the analogous part of the ellipse.

FIG. 1 - Kinematic curves of the reactions of the $\mathrm{P}+\mathrm{T} \rightarrow \mathrm{A}_{1}+\mathrm{A}_{2}+\mathrm{A}_{3}$ type.

The coincidences in the E_{1}, E_{2} plane, on account of the finiteness of angular and energetic resolution, will accumulate in a strip around the kinematic curve $\left(\theta_{1}, \theta_{2}\right)$ and can be attributed to this cur ve by a special method ${ }^{(1)}$.

Therefore, from a bidimensional spectrum $N\left(E_{1}, E_{2}\right)$ we go to one $N(s)$ as a function of the curvilinear abscissa

$$
\begin{equation*}
s=\int_{E_{1_{0}}}^{E_{i}}\left[1+\left(\frac{d E_{j}}{d E_{i}}\right)^{2}\right]^{1 / 2} d E_{i}=\int_{E_{i_{0}}}^{E_{i}}\left(1+\frac{E_{j} \Delta{ }_{j}}{E_{i} \Delta{ }_{i}}\right)^{1 / 2} d E_{i} \tag{7}
\end{equation*}
$$

with

$$
\Delta_{i}=a_{j i}^{2}+a_{j} b_{i}
$$

Since the integrand of (7) diverges, in the inversion points, one must choose on the kinematic curve, a point C beyond which the integration will be inverted:

$$
s=\int_{E_{j_{0}}}^{E_{j}}\left[1+\left(\frac{d E_{i}}{d E_{j}}\right)^{2}\right]^{1 / 2} d E_{j}
$$

3. - THE RELATIVE SYSTEM.

The usefulness has been pointed out ${ }^{(1,2)}$ of the study of the reaction (1) in the relative system and the importance of their choice as far as sequential decay to be studied is concerned.

Having defined a reference system, we give the explicit expression of the involved quantity (Fig. 2)

$$
p_{i-j k}=\mu_{i-j k}\left[\frac{\vec{p}_{i}}{m_{i}}-\frac{1}{m_{i}+m_{k}}\left(\vec{p}_{j}+\vec{p}_{k}\right)\right]=\vec{p}_{i}-\frac{m_{i}}{M} \vec{p}
$$

being the momentum of the " i " particle in CMS is

$$
\left\{\begin{array}{l}
p_{i-j k}^{2}=\frac{2 m_{i}}{M^{2}}\left[M^{2} E_{i}+m_{i} m_{p} E_{p}-2 M_{i} E_{i}^{1 / 2}\right] \\
E_{i-j k}=\frac{p_{i-j k}^{2}}{2 \mu_{i-j k}} \\
\mu_{i-j k}=\frac{m_{i}\left(m_{j}+m_{k}\right)}{M} \\
\phi_{i-j k}=\phi_{i} \\
\operatorname{tang} \theta_{i-j k}=\frac{p_{i} \operatorname{sen} \theta_{i}}{p_{i} \cos \theta_{i}-\left(m_{i} / M\right) p}
\end{array}\right.
$$

FIG. $2-p_{i-j k} ; \theta_{i-j k} ; \phi_{i-j k}$ in the S system.

while

$$
\vec{p}_{j-k}=\mu_{j-k}\left[\frac{\vec{p}_{j}}{m_{j}}-\frac{\vec{p}_{k}}{m_{k}}\right]=\vec{p}_{j}+\frac{m_{j}}{m_{j}+m_{k}}\left[\overrightarrow{p_{i}}-\vec{p}\right]
$$

being the momentum of the " j " particle in the $j-k C M S$ and E_{j-k} the internal energy of the $j-k$ system, we have

$$
E_{j-k}=\frac{m_{t}}{M} E_{p}+Q-E_{i-j k} \quad ; \quad p_{j-k}=\left(2 \mu_{j-k} E_{j-k}\right)^{1 / 2} \quad ; \quad \quad \mu_{j-k}=\frac{m_{j} m_{k}}{m_{j}+m_{k}}
$$

$\operatorname{tang} \phi_{j-k}=\frac{p_{j} \operatorname{sen} \theta_{j} \operatorname{sen} \phi_{j}+d_{i} p_{i} \operatorname{sen} \theta_{i} \operatorname{sen} \phi_{i}}{p_{j} \operatorname{sen} \theta_{j} \cos \phi_{j}+d_{i} p_{i} \operatorname{sen} \theta_{i} \operatorname{sen} \phi_{i}}$
$\operatorname{tang} \theta_{j-k}=\frac{\left[p_{j}^{2} \operatorname{sen}^{2} \theta_{j}+d_{i}^{2} p_{i}^{2} \operatorname{sen}^{2} \theta_{i}+2 d_{i} p_{i} p_{j} \operatorname{sen} \theta_{i} \operatorname{sen} \theta_{j} \cos \left(\phi_{j}-\phi_{i}\right)\right] 1 / 2}{p_{j}+d_{i}\left(p_{i} \cos \theta_{i}-p\right)}$
$d_{i}=\frac{m_{j}}{m_{j}+m_{k}}$

The comparison between the sings of tang $\phi_{\mathrm{j}-\mathrm{k}}$ and of the numerator (or denominator) gives the sign of sen ϕ_{j-k} (or $\cos \phi_{j-k}$) and enables us to define $\phi_{j-k}(0 \div 2 \pi)$.

4. - THE RELATIVE ANGLES.

It seems suitable to refer the angular correlations of the products of the $j-k$ complex decay, to a S' system (Fig. 3) rotated with respect to the S system, assuming as a polar axis

$$
\vec{z}=\vec{p}_{j k-i}=-\vec{p}_{i-j k}
$$

and assuming for the azimuthal angles the reference semiplane containing

$$
\overrightarrow{\mathrm{p}}_{\mathrm{jk}-\mathrm{i}} \quad \text { and } \quad \overrightarrow{\mathrm{p}}
$$

$\xrightarrow{\text { FIG. } 3}-\mathrm{ACS}$ for $P+\mathrm{T} \rightarrow \mathrm{A}_{\mathrm{i}}+\mathrm{A}_{\mathrm{j}-\mathrm{k}} \longrightarrow$ $A_{1}+A_{2}+A_{3}$ reactions.

Since, obviously,

$$
\theta_{j k-i}=\pi-\theta_{i-j k} \quad ; \quad \theta_{j k-i}=\pi+\theta_{i-j k}
$$

is the S^{\prime} system and with respect to the already defined angles we have

$$
\begin{aligned}
& \cos \theta_{r}=-\left[\cos \theta_{j-k} \cos \theta_{i-j k}+\operatorname{sen} \theta_{j-k} \operatorname{sen} \theta_{i-j k} \cos \left(\phi_{j-k}-\theta_{i-j k}\right)\right] \\
& \operatorname{tang} \phi_{r}=\frac{\operatorname{sen} \theta_{j-k} \operatorname{sen}\left(\theta_{j-k}-\phi_{i-j k}\right)}{\cos \theta_{j-k} \operatorname{sen} \theta_{i-j k}-\operatorname{sen} \theta_{j-k} \cos \theta_{i-j k} \cos \left(\theta_{j-k}-\phi_{i-j k}\right)}
\end{aligned}
$$

it is enough to define $\phi_{r}(0 \div 2 \pi)$ to make the same consideration as for ϕ_{j-k}

5. - THE JACOBIAN OF THE TRANSFORMATION.

The density $\mathrm{N}(\mathrm{s})$ obtained as a function of the curvilinear abscissa along the kinematic curve, will be referred to RCS by the suitable Jacobian of transformation. Obviously
then

$$
\begin{aligned}
& \mathrm{N}\left(\mathrm{E}_{\mathrm{i}}, \Omega_{\mathrm{i}}, \Omega_{\mathrm{j}}\right) \mathrm{dE} \mathrm{E}_{\mathrm{i}} \mathrm{~d} \Omega_{i} \mathrm{~d} \Omega_{j}=\mathrm{N}(\mathrm{~s}) \frac{\mathrm{ds}}{\mathrm{dE}} \mathrm{E}_{\mathrm{i}} \mathrm{dE}_{\mathrm{i}} \mathrm{~d} \Omega_{\mathrm{i}} \mathrm{~d} \Omega_{j}= \\
& =\mathrm{N}\left(E_{i-j k}, \Omega_{i-j k}, \Omega_{j-k}\right) \mathrm{dE} E_{i-j k} \mathrm{~d} \Omega_{i-j k} \mathrm{~d} \Omega_{j-k} \\
& \mathrm{~N}\left(E_{i-j k}, \Omega_{i-j k}, \Omega_{j-k}\right)=J_{i-j k} N(s)
\end{aligned}
$$

with

$$
J_{i-j k}=\frac{\partial\left(E_{i}, \Omega_{i}, \Omega_{j}\right)}{\partial\left(E_{i-j k}, \Omega_{i-j k}, \Omega_{j-k}\right)}\left|\frac{\delta s}{\partial E_{i}}\right|
$$

Since it is possible

$$
\frac{\delta\left(\vec{p}_{i-j k}, \overrightarrow{\mathrm{p}}_{\mathrm{j}-\mathrm{k}}\right)}{\delta\left(\overrightarrow{\mathrm{p}}_{\mathrm{i}}, \overrightarrow{\mathrm{p}}_{\mathrm{j}}\right)}=1
$$

it will be

$$
p_{i-j k}^{2} d p_{i-j k} p_{j-k}^{2} d p_{j-k} d \Omega_{i-j k} d \Omega_{j-k}=p_{i}^{2} d p_{i} p_{j}^{2} d p_{j} d \Omega_{i} d \Omega_{j}
$$

and then

$$
\begin{aligned}
J_{i-j k} & =\frac{\mu_{i-j k} p_{i-j k} p_{j-k}^{2} d p_{j-k}}{m_{i} p_{i}^{2} p_{j}^{2} d p_{j}}\left|\frac{\partial s\left(E_{i}, E_{j}\right)}{\partial E_{i}}\right|= \\
& =\left(\frac{m_{k}}{M^{3}}\right)^{1 / 2} \frac{\left(E_{i-j k} E_{j-k}\right)^{1 / 2}}{E_{i} E_{j}}\left(E_{i} \Delta_{i}+E_{j} \Delta \Delta^{1 / 2}\right.
\end{aligned}
$$

If " i " and " j " are the detected particles and " i " the first emitted one. In(Fig. 4) we show the Jacobians vs. the curvilinear abscissa for some reactions of the $\mathrm{P}+\mathrm{T} \longrightarrow \mathrm{A}_{1}+\mathrm{A}_{2}+\mathrm{A}_{3}$ type.

FIG. 4 - Jacobians of the transformation vs. curvilinear abscissa.

ACKNOWLEDGEMENTS.

Thanks are given to Prof. S. Jannelli for useful discussions.

REFERENCES

(1) V. D'Amico, S. Jannelli, F. Mezzanares and R. Potenza, Nuovo Cimento 15A, 723 (1973).
(2) G. G. Olhsen, Nuclear Instr. and Meth. 37, 240 (1965).
(3) A. M. Baldin, V. I. Goldanskii and I. L. Rozental, Kinematics of Nuclear Reactions (Oxford University Press, 1961).

