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1. - INTRODUCTION.

The study of the many particle Fermi systems has received a renewed interest in the frame
of a variational theory based on Jastrow type(l) trial functions. The accuracy and the details of
the quantities calculated so far are comparable with the corresponding ones in the case of Bose
systems and all the computational techniques developed for the last case look very suitable to be
extended to Fermi systems.

It is well known that the distribution functions find important applications in relation to the
many particle systems; the n-body distribution funection (“) (rl, ..... § ? ) is defined as the
probability density of finding a set of n particles with coordlnates B f’ irrespective of
the configuration of the remaining particles. By definition, it holds the r'elatlon

-
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where @ denotes the density and 1 (1, ...N) is the wave function of the considered N-particle

system. The function g{z) (1,2) is the most widely used, but even the function g(3 (1432, 3) 1= of
relevant interest in many problems so that various approximations have been developed in order
to evaluate these two functions,

In the case of the ground state of a Bose system described by a Jastrow function one can rea
dily use the methods developed for the classical systems of many molecules (2), Some of these
methods have been generalized to the case of Fermi systems by Fantoni and Rcsatl 3) Who have
derived a set of integral equations (FHNC equations) for calculating the function g (1, 2). The
derivation requires a careful analysis of the terms which appear in the cluster expansion and a
rather involved procedure for summing up all these terms in an iterative way. Due to the wide
use which has been recently made of the FHNC equations, another easy derivation of these equa-
tions could be useful which is actually the aim of the present note.
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2. - BOSE AND CLASSICAL SYSTEMS.

In this section we shall briefly recall some results related to the distribution functions for the
following two cases:

i)The system is an infinite Bose system in its ground state and it is described by a Jastrow function

N
= II 2
(1, ...., N) i(j=1”rij)’ (2)
where the correlation factor f(r) goes rapidly to 1 as r increases.

ii)The system is an one-component classical system the molecules of which are treated as mass
points. The relation (1) can still be used after the substitution

: -
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where T is the temperature and u(i, j) represents the potential energy of the molecules i and j.

Using the relation (2) eq. (1) can be written as

N
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g (rl. ...,rn}- - N (4)
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For a classical system one has to identify fz{r .) with exp (- u(i, j)/kT). A commonly used proce-
dure for calculating the distribution functions for infinite systems consist on substituting all the
£2 (ry ) factors which appear in (4) by

()1 +hir,) , (5)
ij ij

then expanding in terms of the function h and finally taking the limit for N — o at fixed density 0 .
The terms of the cluster expansion can be easily specified and classified in a graphical description
by n-body diagrams. A general n-body diagram is characterized by the following elements:

a) The coordinates of a particle are represented by a small circle ("'point"); a solid circle, denot-
ed as "internal point", involves the integration over the corresponding coordinates and a densi-
ty factor © ; an open circle indicates the coordinates of a particle in the set 1, ..., n and is
called "external point'".

b) The correlation h(r;:) between the particles i and j is represented hy a solid line connecting the

ij
particles i and j.

¢) Two points may be connected by one correlation line at most and each point must be the extre-
mity of at least one solid line,.

It can be provedM) that the cluster expansion of g(“) is irreducible, which means that the al-
lowed diagrams with n external points are irreducible, (+)

A number of 1mportant properties of the N- partlcle system are directly related to the two-ho
dy function g(z) (rl r2) which reduces to a function g(rqg) the so called radial distribution func=
tion) in the case of an infinite system. The exact radial distribution function satisfies an integral
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equation known as the convolution equation, which can be obtained by various procedures. TFor in-
stance if one uses the methods of the cluster expansion allthe diagrams of the expansion have tobe
constructed and calculated b%/ an iterative procedure. The generical k-th step is characterized by
the two following operations 5),

- on the basis of the nodal i-j subdiagrams obtained in the preceding step the most general corri-
spondent set a [kJ of i-j subdiagrams which do not contain nodal points is derived;

- the set of all the nodal i-j subdiagrams which have a[k] as chain element is obtained and calculat
ed by means of the relation

G[kJ (I‘ij) =gIa[k](rﬂ) a[k] (rlj) dl-"’l + ,sza [k] (r‘il) a[kJ (rlm) a[kj (rmj) dr-"l df“’m toe. =

=aja[‘ﬂ (v ) {e ] (e)) + o[k](rlj)}d;'l - (o] (ril)1a[k](r )+ a(d (x)) (6)
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where (a(r

b(r,,)) denotes the convolution integral

il 1j

-+
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(a(r,,) |b(rlj)) QJa(r‘ﬂ)b (rlj) dr) (7)
In terms of G [k] {ri]_) one has
k 2 [k] [k]
ol BT R G J+ e(r, )¢ -G =1 4
! (y;) = 7 (r, ) exp (r,) ry) 3 (ry,) (8)
where the function & (ri.) represents the contribution due to all the elementary i-j subdiagrams. In
the limit k — o of the iterative procedure one obtains

2
alr, ) =1 (rlz) exp{G{rlz} 1 5 (r12)g - G(rlz) 1,

12
(9)
Glr )= (a(r13)|a(r32)+c(r32))
Then the radial distribution function given by
- o 42
glr ) =1+a (r J+Glr ) =f"(r Jexp {Gir J+e(r )] , (10)

satisfies the following exact convolution equation (6)
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In the approximation e(r) = 0, the preceding integral equation reduces to the well known hypernet
ted chain (HNC) equation. The relation (6) in the limit k —— oo can be written in the form

7 (5 T ) I, (12)

(a(r 32

) G(r32))=G(r ) = (i 2ns)
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which means that the convolution of @ and G reproduces G except (a| a), the simplest of the chain
terms which constitute G having a as chain element. This property can be easily generalized to
the case of fermion systems and used to obtain the FHNC equations as discussed in the next sec-
tion,

3. - FERMI SYSTEMS, THE FHNC EQUATIONS,

Let us consider the case of a Fermi system described by the wave function

N

= H
v, M= H e e . (13)

where @ is the Slater determinant made out of the N single particle funclions of the I'ermi sea,
The n-body distribution function can be calculated by using eq. (1) and the cluster expansion in
terms of h(r) = f2(r) - 1. The various contributions at the different orders of the cluster expan
sion can be associated (7) to n-body diagrams with n external points and an arbitrary number

1 1.2
of correlation lines which represent the correlation factors h{r'ij), - El (kF r.j) and - 1 (kFri.);

2 1 ) ;
s is the degree of degeneracy of the single particle states, kp = (6 7 0/s) is the Fermi mo
mentum and 1(x) = x~ % (senx-xcosx),

The involved diagrams have n external points and an arbitrary number of internal points;
two generical points i and j can be correlated by a dinamical correlation h (rij} and by one of the

) or - %1 4 (kF ri.). FEach n-body diagram satisfies to the fol-

_— . 1
statistical correlations - El (kFr' j

i
lowing conditions: !

(i) Twopoints can be connected by one correlation either dynamical or statistical, the latter
multiplied or not by a dynamical one.
(ii) Fach internal point is reached by a least one dynamical correlation,

(iii) The statistical correlations - é—l (ki r) occur only in closed loops and there are no common
points between two loops; each loop contributes with a factor - 2s.

(iv) Each statistical factor - %12(kFr) has no common points with another statistical correlation.

It can be proved”) that only the irreducible diagrams with n external points are involved by
the cluster expansion; they can be calculated in a similar way to the methods used for classical
systems, In this section the discussion will be limited to the radial function g(rlz), i. e. the limit
of g(1, 2) for an infinite number of particles,

Due to the presence of different types of correlations functions, namely the dynamical or the
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statistical correlations, one can distinguish the three following situations () for an external point
of an i-j subdiagram:

a) Case s: the point is affected by only dynamical correlations.

b) Case h: the point is either an extremity of one statistical correlation - él2 or a common extre-
mity of two different statistical correlations - ?15_1.

c¢) Case d: the point is an extremity of one statistical correlation - él.

For a generic i-j subdiagram the following possibilities have to be considered:

() (K, By (s, h) or {h, 8), (d, d) i (14)

As an example, (s, s) denotes an i-j subdiagram the points i and j of which are both affected by dy
namical correlations only; the other classes of subdiagrams specified in the last equation have cor
responding properties in relation to the points i and j.

Let us now indicate as Ggglrqys) the sum of all the 1-2 nodal diagrams of the type (s, s) and
as Gpplryg), Ggplryg) = Guglryg) and Gyq(ryy) the sums of all the nodal diagrams specified by the
corresponding subscripts, Moreover, let us assume that a(rlz), Blr 2), y(r 2) and 6(r12) -

- El(kFFIZ) represent the sums of all the not nodal 1-2 diagramsg of the type z’s; s), (h, h) (s, h)
and (d, d), respectively, The reason for subiracting the term - =1 in the definition of d is rela-
ted to the fact that two consecutive - =1 correlations cannot be pls‘esent in a chain connection of @
elements, because each internal point must be extremity of atleast one dynamical correlation, The
functions G can be constructed by means of chain connections of the elements @, B, 7 and d; due
to the previously specified digrammatic rules, only the following connections are possible:

- awith a, g or y ;
- pwith aor y (namely B, Ygnh
y with «a, ﬂ or ¥ ;
§with 6 or - é_l-

GSS can be analogously connected to «a, gor vy, G togor y,G_ to a, f ory and, finally,

hh sh
Gdd to d or - él(kFr) It is clear that the convolution integral ( a ( 'G 32}) coincides with
a part of G (rlz) but a similar property holds for the integrals (y h(r ) | G 32)) and (a(rl’i)
G‘h (r 32)) as well. The sum of these three convolution integrals reproduces G S(1“12) a part the

simplest chain terms having a, § and y as elements. The relation which generalizes the equation
(12) to the case of Fermi system is

Gss(rlz) = (a(I‘IB) + }’(1‘1 3) ‘ Gss(rBZ) + a(l"32)) + (a(l"lg) l Ghs(r.’iz) + yhs(FBZ)) (15)
In a similar way one gets

G tr gl = Ehy  1r )} Cpn(Fgg) T (rggh + (¥, (ry5) +5(‘"13)| Gon(Tag) + 1o (rag))s (18)
SRR L STV ‘ sh (T3a) * 7y (1)) * (alr, )l hnTgp) * B(rg, amn

b.l-b.
<
co



If the function Gd (rlz) is seen agthe function which corresponds to the set of all the 1-2 nodal sub-
diagrams constructed with § and -=1, it must be noticed that there can be present more than one

- 11 factor in a generical chain. However, the value of the integral corresponding to the chain does
not vary if the order of the chain elements is changed in such way as it is possible to consider two
- El factors as consecutive ad to use the relation

1 1 i)
(- gl(k}rrﬂ) _El(kFrlj))_ Sl(kFr'ij) ; (18)

As a consequence, if one considers all together the chains which have a fixed number of ¢ ele-
ments but different numbers of - L1 elements, only the chains composed by ¢ elements only and
chains with the § 's plus one - 11%lement are left out because of algebraic cancellations. The con-
volution of G44 and 0 reproduces all the terms of G44 which have or have not one statistical ele-
ment - él, a part the two simplest terms arising from the convolution of § with d or —é_l. In con-
clusion one can write:

. 1
)-(rb(r'.L )G (r32)+6(r32)- Sl(kFr W 5 (19)

Gya'Tr2 3’| Yda 32

In terms of the functions G the not nodal elements @, #,y and ¢ are given by the relations
alr ) =Fle J-6G_ (¢ )1 ,
1) 1

55 ij

- . 2 2 ‘
ﬁ(r‘ijl = F‘(rij){(}hh(rij) +€hh{rij) + [Gsh(rij) + Esh(rij)] -5 ['dd(rij) + Edd(rij)] i3

1.8 (20)
il 21(kFriJ) [Gdd(riJ.H Edd(r.lj)] - E‘l (kFrij)} - th(rij) i
?(r-ij) = F(rij) [Gsh (rij) + Esh(rij) ]- Gsh (rij) i
- 1 1
6(rij) = F‘(rij) [C-dd(rij) + Edd(rij} - Sl(kFrij):]wL sl(kFrij) - Gdd(rij) ;
where
F(r) =t ) exp §G__(r )+ & (r )} (21)
ij ij ss  ij ss  ij 4

and Ehn indicates the contribution due to all the elementary i-j subdiagrams of the type (mn).

The integral equations (15),(16), (17) and (19), together with the definitions (20) for «, B,y
and § , constitute the exact convolution equations derived by Fantoni and Rosati for Fermi sy-
stems described by state independent Jastrow correlated functions. It is easy to write these equa
tions in the form given in ref, (3), Firstly eq. (16) is written as

fourh
- e
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(D (F,,) -7(r ;) |G = (Y(r13) + f‘-?(r13

G (ra, )+ (7 (r13)|r(r32) + 4 (22)

hh(r32)) sh

where D(? ) is the three-dimensional delta functlon the subscripts of ¥y have been omitted since
B If orie calculates the convolution of D{r-”) -y(r..) with both the members of eq. (17)

and then eilmmates the resulting term (D(r;:) - y(r;.) IG i) by using eq. (22), the equation

for Gsh(r ) can be readily written as in ref {3). T?xe equatlons for the other G's are obtained in

a quite s1mllar' manner and the FHNC equations can be written as

GeglF1g) = (alryg) “ O lryg) [Plegy))

.l
Colrg) = [rle ) # 6 clr, ) lP(raz))+(a(r13)|,8(r‘32))—(}'(113)| rirg,))

sh" 12 sh
(23)
Gy (ry) = (Blr )+ G, (r ) ‘ Pir,,)) - (alr ) },ﬂ(rﬂzi} +(pie,,) ’ r(rg,)
1
Gya(T1g) = (lr ) - gllkpryg) + Gy (e ) |8(rg,))
where
P(f‘ij} = G(I‘ij) + ZY(FiJ.) + (G(r‘il) B(rlj)) - (?(I‘ﬂ) }’(r‘lj)) : (24)

It must be noticed that the relations (23) and (24) can be easily obtained from eans, (15), (16), (17)
and (19) by expressing the various functions in terms of their Fourier transforms, However, the
previously outlined method is more suitable for writing in different but equivalent forms the FHNC
equations which can be derived in more complicate situations (finite nuclei, state dependent corre-
lation factors).

4. - OTHER APPLICATIONS OF THE CONVOLUTION TECHNIQUE.

A quantity which has recently received some attention in the study of the ground state of quan-
tum fluids (8. 9) is the one particle density matrix defined as

- + i
- o Jdf v dhy ¥ (L 2..., Nl 2, ..., N)
n(r,, r'l) = N 3 ’ (25)
-~ -
Jd? dR (v, L N)
When the wave function (1, ..., N)is taken to he of the Jastrow form as given in eq. (13), the

P.S. cluster expansion of the r. h. s. of eq. (25) leads to an expression for n(¥, , Y""l) which results

o9
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factorizable into the product of a strength factor n and a function N(r ), If the strength factor is
written in the form n = exp (Q), both Q and N(r 1,), are given as sums of proper irreducible clust-
er integrals. In order to calculate @ and N(rlf)* (the full expressions for these two quantities
can be found in ref. 9), the functions Gmn' o Bi ¥ and § given in section 3 are necessary;
moreover, one also needs to evaluate other i-j subdiagrams which obey the diagrammatic rules
previously specified, but with the exception that the external point i is either affected by only dy-
namical correlations of the type & (r) =f(r) - 1 (represented by wavy lines: case w), or is an ex-
tremity of a dashed line superimposed or not to a wavy line (case D). The convolution technique
outlined in the preceding section can readily be applied to derive the expression of the functions
Gwh r'lJ ) and GDd(r .) corresponding to the i-j nodal subdiagrams of the types (ws), (wh)
and (D&) respectively. As an"example, it is now clear that the sum of the three convolution inte-
grals (aws(rlk} l Gss (rkl) ; (aws 1k) l Ghs(rkj)) and (?wh{rik) I Gss(rkj)) gives Gws(rij) a part

the two-side chain terms having « and aq, 3 y as elements, i.e,

ws’ Twh

Cualfyy) = (OyglPyd +1yyPyd | 0lnyy) + B leg i+ (a ey \ e il + Cylighh (28}
In a similar way one obtains
Ganlryg) = (Bl * Yonlvied | YantPig! * Gty #1800 ) l Bry) + Gpplryy)) » (27)
1

Gpalfiy) = @paltyd | 08ry) = 1T ) + G glr ) - ted)
The not nodal elements @, ywh and dDd are given by the relations
aws(rij) o Fg (rij) 3 Gws(rij) %4
Y Wy = F;g ey (G (Pygd ¥ 8 (0300 = G lig) (28
éDd(rij} = F§ (rij) (GDd{rij) + st(rij) - l(k r, )) - GD (r‘ ) + = I(kFrij) i
where

FE (rij) - f(rij) exp EGWS(F”) + sws(rij}} . (30)

It is straightforward to see that these equations are equivalent to those given in ref, (9).

It is wortwhile to notice that even in the case of a Jastrow calculation of the AO hinding energy in

the nuclear matter (10) one is faced with a set of i-j subdiagrams which obey the same rules speci
fied in the present section: the dynamical correlation g(r) is then given by f N(r), where fAN(r')
is the A,-N correlation factor, and the factor f(r 13) in eq. (30) must be replacedby fAN(r”)



5. - CONCLUSIONS.

The purpose of the present note is to illustrate the ingredients which are significative to deri-
ve the FHNC equations; the followed procedure is very simple and does not require a careful and
lengthy summation of diagrams. The convolution technique has been applied in detail to the case
of Fermi systems described by state independent Jastrow functions but it is also useful for calcu-
lating other interesting quantities such as, for example, the one-body density matrix. Moreover
an analogous procedure can be easily developed to treat more complicate problems such as in the
case of finite nuclei, or of the infinite nucleair matter described by state dependent Jastrow corre-
lation functions. These arguments will be the object of a following paper.
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