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1. - INTRODUCTION. 

The study of the many particle Fermi sys tems has received a renewed interest iIi. the frame 
of a variational theory based on Jastrow type (I) trial functions. The accuracy and the details of 
the quantities calculated so far are comparable with the corresponding ones in the case of Bose 
systems and all the computational techniques developed for the last case look very suitable to be 
extended to Fermi systems. 

It is well known that the distribution functions find important applications in relation to the 
many particle systems; the n-body distribution function Q(n) (iI' ..... , 1n) is defined as the 
probability density of finding a set of n particles with coordinates ttl' ..... tn irrespective of 
the configuration of the remaining particles. By definition, it holds the relation 
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where Q denotes the density and 1J1 (1, ... N) is the wave function of the considered N-partic1e 
system. The function g(2) (1,2) is the most widely used, but even the function g(3) (1, 2,3) is of 
relevant interest in many problems so that va rious approximations have been developed in order 
to evaluate there two functions . 

In the case of the ground state of a Bose system described by a Jastrow function one can rea 
dily use the methods developed for the classical systems of many molecules (2). Some of these -
methods have been generalized to the case of Fermi systems by Fantoni and Rosati (3) who have 
derived a set of integral equations (FHNC equations) for calculating the function g(2) (1, 2). The 
derivation requires a careful analysis of the terms which appear in the cluster expansion and a 
rather involved procedure for summing up all these terms in an iterative way. Due to the wide 
use which has been recently made of the FHNC equations, another easy derivation of these equa
tions could be useful which is actually the aim of the present note. 

II) 
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2. - BOSE AND CLASSICAL SYSTEMS. 

In this section we shall briefly recall some results related to the distribution functions for the 
following two cases: 

i)The syste m is an infinite Bose system in its ground state and it is described by a Jastrow function 

N 

'P (I , . ... , N)=i ~i =1 1 (ri/ (2) 

-.vhere the correlation factor £(1' ) goes rapidly to 1 as r increases. 

ii)The system is an une-component classical system th e molecules of which are treated as mass 
points. The relation (1) can still be used after the s ub s titu tion 

N 
1: 

if i= 1 
u (i , i )), ( 3) 

where T i s th e temperature and 11 (i, j) represents the potential ene r gy of the molecules i and j . 

Using the relation (2) eq, (1) can be written as 

N 

N! f ~ ~ [J 
dl' n + l' .. dl' N i < j = 1 

(4) 

For a classical system one ha s to identify r 2
(rij) with exp(- uti, j)/kT ). A commonly used proce

dure for calculating the di stribution functions for infinite systems consist on s ubstitutin g all the 
( 2 (rij ) factors which appear in (4) by 
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then expanding in terms of the function h and finally taking the limit for N --I ro at fixed density () . 
The terms of the cluster expansion can be easily s pecified and classified in a graphical description 
by n-body diagrams. A general n-body diagram is character ized by the following elements: 

a) The coordinates of a particle are represented by a small circle ("poin t"); a solid circle. denot
ed as 1!i nt ernal pOint". involves the integration over the corresponding coordinates and a densi
ty factor e ; an open circle indicates the coordinates of a particle in the set 1 •...• n and is 
called "external point". 

b) The correlation h (l'ij) between the par ticles i and j is represented by a solid line connecting the 
particles i and j. 

c) Two points may be connected by one correlation line at most and each point must be the extre
mity of at least one solid line. 

It can be proved(4) that the cluster expansion of g(n) is irreducible. which tnean s that the al
lowed diagrams with n external pOints are irreducible. (+) 

A number of important properties of t h e N-particle system are directly related to the two-bo 
dy function g(2) (~l' ~2) which reduces to a function g(r12)(the so called radial distribution [unc -
tion) in the case of an infinite system. The exact radial distribution function satisfies an integral 
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equation k nown as the convolution equation, which can be obtained by variou s procedures. For in
stance if one uses t he m ethods of the cluster expansion all the diagrams of the expansion have tobe 
constructed and cal culated by an iterative procedure. The generical k-th step is characterized by 
t he two follow i ng operations (5): 

on the basis or the nodal i-j subcliagrams obtained in the preceding step the most general corri
spondent set a ( k] of i-j subdiagrams which do not contain nodal points is derived; 

the set of all th e nodal i-j subdiagrams which have a[kJ as chain element is obtained and calculat 
ed by means of the relation 

where (a{r
U

) i b(r
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)) denotes the convolution integral 
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where the functio n € (r i ·) represents the contribution due to all the elementary i- j subdiagrams. In 
the limit k ---+ 00 of the ~terative procedure one obtains 
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Then the radial distribution function given by 

( 10) 

satisfies the followi ng exact convolution equation (6) 
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In the approximation s (r) = 0, the precedin g integral equation reduces to the well known hyperne..! 
ted chain (HNC) equation. The relation (6) in the limit k ----4 OJ can !Je written in the form 

( 12) 

which means that the convolution of a 
terms whi ch constitute G having a as 
the case of fermion systems and used 
tion. 

and G reproduces G except ( a / a) , the simplest of the chain 
chain e lement. This property can be easily gen eralized to 
to obtain the FH NC equations as discussed in the next sec-

3. - FERMI SYSTEMS. THE FHNC EQUA TrONS. 

Let us consider the case of a Fermi system described by the wave function 

N 
'PO, .... , N) . (n _l f(r . .) <P 

1 J - 1J 
( 11) 

where ip is the Slater determinant made out of the N single particle functions of th e Fermi sen, 
The n-body distribution function can be calculated by using eq. (1) and the cluster expansion in 
terms of h(1') = f2 (r) - 1. The vari ous contributions at the different orders of the cluster expan 
sion can be associated (7) to n - body diagrams with n exter nal points an d an arbitrary number-

of correlation lines which represent the correlation factors h(r ij ), - ~l (kF r . ,) and - ~12(kFri .); 
2 l/ :P J 

5 is the degree of degeneracy of the singl e particle states, kF = (6 It e/ s) is the Fermi mo 
mentum and l(x) ,= x- 3 (senx-xcosx). 

The invol ved diagrams have n external points and an arbitrary number of internal points; 
two genedcal pOints i and j can be correlated by a dinamical correlation h (r. ,) and by one of the 

1J 
statistical correlations - ~l (kF ri') or' - ~l 2 (kF r i ,), Each n-body diagram satisfies to t he foI-
1 · d' . J J oWlng con lhons: 

(i) Twopoints can be connected by one correlation either dynamical or statistical, the latter 
multiplied or not by a dynamical one. 

(ii) Each internal point is reached by a least one dynamical correlatio n, 

(iii) The statistical correlations - }l (kF r) oc cur only in closed loops and there are no common 
points between two loops; each loop contributes with a factor - 25 . 

(iv) Each statistical factor - j.12 (kF r) has no common points with another statistical correlation, 

It can be proved (7) that only the irreducible diagrams with n external points are involved by 
the cluster expansion; they can be calculated in a similar way to the methods used for classical 
systems. In this section the discussion will be limited to the radial function g(r 12)' i. e. the limit 
of g( 1, 2) for an infinite number of particles. 

Due to the presence of different types of correlations functions, namely the dynamical or the 
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statistical correlations, one can distinguish the three following situations (0) for an external point 
of an i-j subdiagram: 

a) Case s: the point is affected by only dynamical correlations. 

1 2 
b) Case h: the point is either an extremity of one statistical correlation - 51 or a common extre-

mity of two different statistical correlations - 1l. 
c) Case d: th e point is a n extremity of one statistical correlation - ll. 

s 
F or a gener ic i-j s ubdiagram the following possibilities have to be considered: 

(8, s) , (h, h) , (s, h) or (h, s) , (d, d) (14) 

As an example, (5, s) denotes an i-j sub diagram the points i and j of which are both affected by d,r 
namical correlations only; the other classes of subdiagrarns specified in the last equation have CO~ 
r esponding properties in relation to the points i and j . 

Let us now indicate as Gss (r12) the sum of all t he 1-2 nodal diagrams of the type (s , s) and 
as Ghh(r12)' G sh(rI2) " Ghs (r12) and Gd cl(rI2) the sums of all the nodal diagrams specified by the 
corresponding subscripts. Moreover, let us assume that a(r12). p(r 12 ), y(r l 2) and b(r12 )-
- sl(kF r l2 ) represent the sums of all the not nodal 1-2 diagramr of the type {s; s), (h, h) (s, h) 
ana (d , d), re spectively. The reason for subtracting t he term - -1 in the definition of b is rela
ted to the fact that two consecutive - -1 correlations cannot be p~esent in a chain connection of t:'i 
elements, because each internal point~ust be extremity of at least one dynamical cor r elation. The 
functions G can be constructed by means of chain connections of the elements a, p, i' and b; du e 
to the previously specified digrammatic rules, only the following conne ctions are possible: 

a wi th a, p or y ; 
P with a or y (namely Phh y 51'1); 
y wi th a, {J or y; 

b with (} or - 1:..1 . 
s 

G ss can be analogously connected to a, p or y , G
hh 

to a or y, G sh to a, p or r and, finally, 

G
dd 

to (} or - ~l(kFr). It is clear that the convolution integral (a(r
13

) IG
SS

(r
32

)) coincides with 

a part of G S5 (r 12) but a similar property holds for the integrals (y sh (r 13) I G ss (r 32)) and (a (r 13) 

I G
hs

.(r
32

)) as well. The sum of these three convolution integrals reproduces G
sS

(r
12

) a part the 

simplest chain terms having a, p and r as elements . Th e relation which generalizes the equation 
(12) to the case of Fermi system is 

(15 ) 

In a similar way one gets 

( 16) 

(17) 
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If the function Gdd (r 12) is seen asthe function which corresponds to the set of all the 1-2 nodal sub'
diagrams constructed with d and -'!"l. it must be noticed that there can be present more than one 

I . s 
- _ 1 [acto r in a generical chain . However, the value of the integral corresponding to the chain does 

s 
not vary if the order of the chain elements is changed in such way as i t is possibl e to consider two 
- !1 faclors as consecutive ad to use the relation 

s 

(- II (k r.) I -
s F 11 

I 
-1(kFr . .l 
5 'IJ 

(18) 

As a consequence, if one considers all together the chains which have a fixed number of d ele
ments but different numbers of - ..!.l elements, only the chain s composed by <5 el ements only and 
chains with the <5 IS plus one - .!..lselement are left out because of algebraic cancellations. The con-

s 
volution of Gdd and ~ reproduces all the terms of Gdd which have or have not one statiAtical ele-
ment - }l. a part the two simplest tel'rus arising from the convolution of () with () or - ~1. In con
elusion one can write: 

In terms of the functions G the not nodal elements a . {JJ i' and 0: are given by the relations 

cdr .. ) = F (r . .l-G (r) -I, 
I J 1J S s ij 

/I(r ij ) = F(rij) [ Ghh(rij) + Ehh(rij ) + [ GSh(r ij )+ 'Sh( r ij)]2- s [Gdd(rij )+ 'dd(r ij]2 + 

+ 2l(kF r ij ) [ Gdd(r ij ) + 'dd(l'ij) ] - ;12 (kFr ij )] - G hh(r i j ) , 

where 

F (r .. ) 
1J 

f2(r .. ) exp £G (r .. ) + , (r . .l} 
IJ SS IJ 55 IJ 

and Emn indicates the contribution due to all the elementary i - j s ubdiagrams of the type (mn). 

(19) 

(20) 

(21) 

The integral equations (15),(16)' (17) and (19), together with the definitions (20) for a, /I , Y 
and d , constitute the exact convolution equations derived by Fantoni and Rosati for Fermi sy
stems described by state independent Jastl' ow correlated functions. It is easy to write th ese equ~ 
tions in the form given in ref. (3). Firstly eq . ( 16) is written as 
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where D (i.\ 3) is the three-dimensional delta function; the subscripts of r have been omitted since 
Ysh = Y

h 
. If one calculates the convolution of D(~i') -y(r .. ) with both the members of eq. (17) 

and then e~iminates the resulting term (D(r i ,) - y(r i } I G
hh 

(;i .)) by using eq. (22), the equation 
for G Sh (r ]~ ) can be readily written as in ref~ (3). T~le equatio~s for the other GIS are obtained i n 
a quite simIlar manner a nd the FHNC equations can be written as 

(23) 

where 

a(r .. ) + 2y(r .. ) + (a(r ·1)lp(r
1

·)) - (y(r·1) 1 y(r1 )). 
IJ IJ 1 J 1 J 

(24) 

It must be noticed that the relations (23) and (24) can be easily obtaine d from eqns . (15) , (16), (17) 
and ( 19) by expressing the var ious functions in terms of their Fourier transforms. However, the 
previously outlined method is more suitable for writing in different but equivalent forms the FHNC 
equations which can be derived in more complicate situations (finite nuclei , state dependent corre
lation factors) , 

4. - OTHER APPLI CATIONS OF THE CONVOLUTION TECHNIQUE. 

A quantity which has recently received some attention in the study of the ground state of quan
tum fluids (8, 9) is the one particle density matrix defined as 

(25) 

When the wave function '!pO, .. ,' N} is taken to be of the Jastrow form as given in eq. (13). the 
P. S. cluster expansion of the r. h , s. of eq, (25) leads to an expression for n('1

1 
, 1'1) which results 

2 0J 
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factorizable into the product of a strength factor n and a function N (r 1'). If the s trength factor is 
written in the form n = exp (Q). both Q and N(r 1 .), are given as sums of proper irreducible clust
er integrals . In order to calculate Q and N{r1d •. (the full expressions for these two quantities 
can be found in ref. 9). the functions G • a, pC, Y and d given in section 3 are necessary; 

mn 
moreover, one also needs to evaluate other i -j subdiagrarns which obey the diagrammatic rules 
previously specified, but with the exception tha t the external point i is either affected by only dy
nam ical correlations of the type S (r) = f (r) - 1 (represented by wavy lines: case w), or is an ex
tremity of a dashed line supe rimposed or not to a. wavy line (case D). The convolution technique 
outlined in the pr eceding sec tion can readily be applied to derive the expression of the functions 
Gws(rij)' Gwh(qj) and GDd(r i .) corres pond ing to the i-j nodal subdiagrams of the types (ws). (wh) 
and (Da), respectively. As anJexample, it is now clear that the sum of the three convolution inte

grals l awsl rik) I Gsslrkj))' luwslrik) I Ghslrkj)) and IYwhlrik) I Gsslrkj)) gives Gws(rij ) a part 

the two -s ide chain terms having a ws' Ywh and a, p, Y as elements, i. e. 

G Ir . . )· la Ir· k ) + Y hl r' k) I alrk ·) + G Irk')) + 10 Ir· k ) I Yh Irk') + Gh Irk.))' (26) ws 1J ws 1 W 1 J ss J ws 1 S J s J 

In a similar way one obtains 

(27) 

(20) 

The not nodal elements a ws' Ywh and dOd are given by the relations 

wher e 

( 30) 

It is straightforward to see that these equations are equivalent to those given in ref. (9), 
It is wort while to notice that even in the case o f a Jastrow calculation of the Ao binding energy in 
the nuc1eal" matter (10) one i s faced with a set of i-j subdiagrams which obey the same rules spec.!. 
fied in the present section: the dynamical correlation S (1') is then given by f~N(r). where fAN{r) 
is the A o-N co rr elation factor, and the factor f(rij) in eq. (30) must be replacedby r~N(rijl 

20 1 
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5. - CONCLUSIONS. 

The purpose of the present note is to illustrate the ingredients which are significative to deri
ve the FHNC equations; the followed procedure is very simple and does not requ ire a careful and 
lengthy summation of diagrams . The convolution technique has been applied in detail to the case 
of Fermi systems described by state independent Jastrow functions but it is also useful for calcu
lating o ther interesting quantities such as, for example, the one-body density matrix. Moreover 
an analogous procedure can be easily developed to treat more complicate problems such as in the 
case of finite nu clei , or of the infinite nuclear matter described by state dependent Jast row corre 
lation functions. These a r gument s will be the object of a following paper. 
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