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1. INTRODUCTION.

Quasi-free (QF) scattering and reactions are often used as a tool
of investigation of the cluster structure(178), Fig. 1 shows a schema-

FIG. 1 - Diagram for the quasi-free
N(0, 12)S reaction; the particles Sis
considered spectator of the process,
while the incident particle Ointeracts
with cluster T,
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tic diagram for the N(0, 12)S reaction. The target nucleus N is assu-
med decomposed, in the lower vertex, in the clusters S+T, where S
is considered spectator of the T(0, 1)2 virtual reaction.

The conservation laws require that:
Eg+Q=E; + E5 + Eg
(1)

- -

- -
p0=p1+p2+ps

Coincidence detection of particles 1 and 2 usually gives a bidimen
sional El—E spectrum, in which the events fall along a kinematical
locus defineﬁ by (1). The spread of these events around the theoreti-
cal curve depends on different resolution effects (finite detector geo-
metry, target thickness, beam size,... ).

When QF data are interpreted in the framework of the plane wave
impulse approximation (PWIA), the differential cross-section canbe
expressed as follows(9).

3
do do ,CM 2
dQ a2 dE_ ®F) (5@ or * G (Pg) (2
; ; : do ,CM ,
where (KF) is a kinematical factor, (E'Q)OT is the off-energy shell

cross-section of the virtual reaction T(0, 1)2 and Gz(ps) is the mo-
mentum distribution of the two clusters, that can be deduced from
experimental data and compared with the theoretical momentum di- -
stribution computed by means of the assumed wave function of the
target nucleus.

It is very important in many cases to know whether the measured
momentum distribution has been distorted by the experimental reso-
lution effects, and how large these distortion are, in order to compa
re the theoretical model with the experimental data. A Monte Carlo
simulation of the experiment allows a direct comparison between theo
ry and experiment, as well as among different experimental situations.
Such comparison is very useful not only in the analysis of data already
extracted from a particular experiment but also in the evaluation of
the necessary conditions to'which the experimental set-up must sati-
sfy to get a selected precision,

In this paper we describe a simulation technique including the ener-
gy losses of the beam and of the outgoing particles in the target and
those effects due to the finite geometry of the two detectors in coinci-
dence.



Basically the following procedure has been used: a random value,
according to the chosen G2(P,), is extracted for the momentum 'ﬁs of
the spectator particle. Then a direction (6, p) is selected, random di
stributed within the limits of the detectors. By choosing also the in -
teraction depth along the target and the corresponding value for the
reaction energy, one is able to determine completely, from kinema-
tic considerations, the final state of the three body system. If the di-
rections of the two momenta T)‘l, 32 give rise to a detectable event for
the coincidence, the event is stored, otherwise not; the entire process
is then repeated until a sufficiently good statistics is achieved.

2. - DETAILS OF THE METHOD.

2. 1. - Starting momentum distribution,

When PWIA is used in the analysis of QF data, the factor G2(pg) is
simply proportional to the square of the Fourier transform of the in-
tercluster wave function % ,(10);

rel
- -
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By expanding the plane wave in terms of the Bessel functions and
the Legendre polynomials, and expressing the intercluster wave func-
tion Xpe] by means of its radial part and the spherical harmonics, it
can be shown that, under suitable conditions, the following relation
holds: '

fies 9
Gy (pg) e j : Rir)* §, (pgr) * dr (4)

where R(r) is the radial part of Z,.) and jg is the Bessel function of

£-th order, where U is the assumed value for the relative motion of the
two cluster in the target nucleus,

The Bessel functions are univocally determined by the €-value, their
expression being

5y Binp.Tr
iy (pgr) =(-—r—)e(§j—r>‘”’(———§s—) (5)
s 8
The momentum distribution is then determined by the choice of the
radial part of the intercluster wave function, R(r). Various different



expressions have been cansidered for light nuclei: for instance:
i) Hinkel function with cyt-off

0 P Rc
R(r) = (6)
-Kr
e ' /r r> R,
: : 1§30
where R, is the cut-off radius and K=(2uB) ' "/} is the wave number

related to the binding energy B of the system, whose reduced mass is u.
ii) Eckart functions of order n.

Their general expression is given by:

+
n+l1 _Kr

R(r) = [l-exp(-br)] e [r (7)

where b is a parameter connected to the FWHM value of the result-
ing momentum distribution andK has the same meaning as before. The
main difference between Eckart function with n=0 and n>1, lies in their
shape at small intercluster distance, the Eckart function with n_.zl being
similar each other,

The program integrates eq. (4) from rmin to rpya¢ by means of the
Romberg's method 11)| with an accuracy that can be selected by the u-
ser.

2. 2. - Interaction energy.

To simulate the effect of the (solid) target thickness on the experimen
tal results, the following form has been chosen for the interaction proba-
bility as a function of the thickness 4x:

f(Ax) =exp (-m- Ax) (8)
where 7 is a parameter that can be fixed according to the nature of the
process. For each event the interaction energy E( is determined by com

puting the energy loss of the incident particle in traversing a thickness
Ax (see sect. 2, 4),
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2. 3. - Kinematics,

I"he_lfinal state of the system is determined by the nine quantities
P1; Pgs Ps- The conservation laws reduce to five these variables; then .
if we fix five of the nine variables, we areable to determine comple-
tely the state.

Once ;S has been extracted according to the theoretical momentum
distribution G2('f)s), and a direction (Gi, ﬂi) is uniformly chosen within
the limits of detector i, the program determines p; from the second
order equation:

2
+ 4 Q=
Ap, +Bp +C

where
it
A = 5 1/I’1’1 + l/m )
B =[pS sen OS cos ﬁ)s sen Gi(cos ﬂi-q-sen 0) =
- 0«
Pg COS QS cos 0,-p_ cos Oi] /mj
C=l g (1/m, +1/m + 5 Py (1/m 1/m
2 S j
-Q-p p,cos @ /m, f=1 2
S
0 S i=2.1

Then the vector Bj is determined, from the following relations:

1/2
P, ~ [2 mj(Eo'Ei'Es+Q)]

= - Q.- 0 - -
cos Oj (po p, cos 0,-p  cos )/ ( p, sen Qi cos ﬂi Py sen 0 _ cos ﬂs)

S S

cos P, =p, /(p, sen 8,)
F)J .]X/ J J
If the event is acceptable, i, e, if the direction of ;,lies within the

limits of detector j, the energy losses can be computéd and the result-
ing variables will define the final state.
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2. 4. - Energy losses.

In our case the energy losses of the beam as well as of particle 1
and 2 after the reaction are determined by means of Bethe formula
(see ref. (12)), with no correction for energy losses by bremsstrah-
lung, Cerenkov radiation, polarization effects and charge exchange,

Under these approximations the stopping power is given by(lz)
2
Z 2,52
L . &
%:const- _lz__ﬁf lg ( S 2)—;32-Ck/2]
B K, Z(1- §°)

where Z;, Z are the atomic numbers of the incident particle and of
the target respectively, W the atomic weight of target, v is the speed
of the incident particle ( § =v/c), m the electron mass, K; the mean
ionization potential, The quantity Ck/Z is the correction factor for k
electron shell. Although C;/Z is usually computed from the theoreti-
cal results of Walske, a modified formula, more suitable for use on
electronic computers, is used in the subroutine computing the energy
losses.

2. 5, - Storage of the events.

The quantities 31,32,33 define completely the final state of the sy-
stem and constitute a single event, These variables, together with the
reaction energy E,, the relative angle 012 between the two detected
particles and the time difference Atlz in the arrival of the particles
at the detectors can be stored on unidimensional or bidimensional spec
tra to give the distributions of the variables of interest.

3. - TEST RUN,

To check the program a test run of 5000 events from the reaction
9Be(3‘He, aa )*He has been studied. Obviously it should be pointed out
that all Monte Carlo programs do not produce identical results for the
simulated spectra when running on different computers. The compari-
son with the test run is then possible only if based on the overall result
of the calculations, by taking into account that these are affected by the
usual statistical uncertainties.

The experimental conditions have been selected in order to reprodu-
ce the gituation of the measurement reported in ref, (4), namely a 50



ug/ crn2 target thickness of IBe with a 40

ug/ cm? 12¢ backing and a

circular geometry with radius 2 mm. for the two delectors placed at

65 mm. from the target.

A theoretical momentum digtribution has been computed starting
from an Hinkel function with a cut-off radius of 1. 2 fm. Figg. 2-3
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FIG. 2 - Projection of the simulated bidimensional

spectrum on the E; axis.
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mulated data according to
eq. (2); the continuous cur-
ve is the theoretical start-
ing distribution,



show the obtained results.

In Fig. 2 the projection of the bidimensional spectrum on the E;
axis is shown, while Fig, 3 shows the momentum distribution Gz(ps),
extracted according to eq. (2). The coniinuous curve in Fig. 3 is the
theoretical disfribution, whose FWHM is 120 'L\Te\";'"c-. as it can be
seen from the figure the simulsated distribution has been increased
by about 15 MeV/c due to the experimental resolution effects.
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