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S. Barbarino( ), M. Lattuada, F, Riggi, C. Spitaleri( ).and D. Vinciguerra(*): MOMENTUM
DISTRIBUTIONS OF NUCLEONS AND NUCLEAR CLUSTERS FROM QUASI-FREE REAC-
TIONS: A STUDY IN PWIA(C),

Quasi-free (QF) scattering and reactions have proved to be useful tools in the investigation of
the cluster structure of light nuclei(1-12), Plane wave (PW) or distorted wave (DW) impulee ap-
proximations are commonly used in the analysis of experimental data extracted from QF measu-
rements. In the framework of the impulse approximation the theoretical triple-differential cross-
section can be factorized as follows:
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where 1;)1, : ‘wf wf are the wave functions for the incident and the two outgoing particles, while
xrel describes the relative motion of the two clusters in the nucleus.

Though a DW treatment is able to take into account the presence of absorption and multiple
scattering, PWIA has been widely used because, in spite of its simplicity, it predicts reasonably
wellthe shape of the experimental momentum distribution, in regions away from zeros in e (“13'8)(13)'

When PWIA is used, the factor GZ{P ) in eq. (1) is simply the square of the Fourier transform
of the intercluster wave functions ;{rel:
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By choosing the z-axis coincident with the direction of FS' the partial-wave expansion of the
plane wave becomes
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where the ja 's are the Bessel functions and the P% 's the Legendre polynomials of { -th order.
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The intercluster wave function xrel(r) can be expressed as follows:

xrel(:)=1,£]\;“[ R (e} Y (@0 (5)

where Ry (r) is the radial part and the Yi,m's are the spherical harmonics; the sum is over the L-
-values which, taking into account the angular momentum and parity conservation laws, are allo-
wed for the intercluster motion,

With the same choice of the reference system and by assuming a single value of I. as dominant
in the sum, eq. (5), we obtain
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By substituting the various factors in eq. (3), and using the properties of the spherical harmo-
nics we can write, for § =L:
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Asg it can be seen from eq. (7}, the theoretical momentum distribution Gz(P ) is determined by the
choice of the radial part of the intercluster wave function. The Bessel functions are univocelly de-
termined by the angular momentum value, their expression being:

¢ 1.d ¢ sin K_r

S
§y (Kor) = (== )" y| —
it S I\S r dr Ksr N

In Fig. 1 are reported the Bessel functions for { =0,1and 2.
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FIG. 1 - Bessel functions reported against
K e Kgr.for 4=0,1, 2,

As radial part of the intercluster wave function both Hinkel with cut-off and Eckart functions are
commonly used.
The Hinkel function with cut-off has the following form
o
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where K

wave number related to the binding energy B of the two clusters by the relationship

is the
K=(2 u B)h/:?), 1 being the reduced mass of the system, Rq is a cut-off radius taking into account

the absorption effects.

Table I lists the binding energies and the corresponding K-values of the possible two-cluster

TABLE I -

configurations of the lightest nuclei.

Binding energies and corresponding K values for the two-cluster

Nucleus con(;;;f:l:ion B(MeV) K{fm ') || Nucleus con(;il;;:fion B(MeV) K(fm )

n+°Ld 5.494 0,468 R4 R 8.439  0.603

6, p+He 4.655 0.431 p+ZBe 6.585  0.532

d+a 1.471 0,306 10 G+ he 6.025  0.679

t+ He 15.790 1. 064 t+ Be 18. 666 1. 369

B G BB DL 3He+ZLi 17.787 1,337

7 p+§He 10. 006 0. 640 ‘”Ii‘i i I L

d+°He 9.681 0,813 14208 11.464  0.706

t+g 2,465 0,450 p+'%Be 11,237 0.699

B Ceer o266 11 d+zBe 15.822  1.113

p+8Li 16. 885 0. 847 5 t +8Be 11, 230 1. 083

e d+ZLi 16.693 1.115 H:':?i 2;' :'2 ; Ezi
t +°Li 17.687  1.301 ' :

Yte+%He 21.185 1.424 ¥ e 18.722  0.906

¢ +°He 2,529  0.518 petln 15,958  0..837

12 a+'%8 25.195  1.417

U 27.360 1. 716

3He+"Be 26. 286 1. 682

a +°Be 7,375 0.970

configurations of the lightest nuclei. Fig,

shows the behaviour of the Hinkel function
for various K-values, covering the range
of interest.

FIG. 2 - Hinkel functions reported
against r, for K=0. 5,1, 2.
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The Iickart functions, whose general expression is
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are solutions of the Schr8dinger equation with a potential
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The parameter b is connected to the root mean square intercluter distance /< r > by
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where Nn is the normalization constant, given by:
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and K has the same meaning as above.

Fig. 3 and 4 show the shape of the Eckart functions with n=0 and n=1, for different values of b
and K.
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FIG. 3 - Eckart functions with n=0
plotted vs r, with K=0. 5 (3a) and
K=1.(3b), for different b-values.

FIG, 4 - Eckart functions with n=1
plotted vs r, with K=0. 5 (4a) and
K=1, (4b) for different b-values.

The main difference between Eckart functionfwith n=0 and n 21, lies in their shape at small in
tercluster distance, the Eckart functions with n > 1 being similar each other.

Their advantage, with respect to the Hinkel function, is that the asymptotic part, proportional
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-Kr . :
to e /r is connected with continuity to the internal part.

The parameter b is not arbitrary, being connected to a meaningful physical quantity as the RMS
distance, which in furn can be related, by classical considerations, to the RMS radius of the target
nucleus, This connection can be clearly seen from Fig. 5, where the intercluster distance ']<;r2> is
plotted against b, for the E, and E functions.

In the present work we have calculated the theoretical momentum distributions Gz{Ps), by nu-
merically integrating eq. (6), using both the Hlnkel function with cut-off and the Eckart function
with n=1, for different values of £ (from 0 to 4) and K(0. 5-1, 0-1. 5 fm-1). Some typical results
are reported in Fig. 6; we remark that the various curves, though in arbitrary units are normali-
zed to each other.
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FIG. 5 - The RMS intercluster distance plotted -}
against b, for the Eckart functions with n=0 and

n=1(b), for different K-values. 5 T 105
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FIG. 6 - Typical momentum distributions
as a function of Pg(MeV'c) for € =0, 1, 2.
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The FWHM values of the G2(PS) with

L =0 are also reported in Fig. 7 for the

s 1 ! Hinkel and Eckart functions, against Re
0o - 10 20 6(m"0 5 10 Reltm)  ond b respectively. Figg. 8-11 show the
position of the first maximum in the G2
(Pg) with £ =1 to 4 as a function of the
same parameters,

The maximum height of Gz(Ps) is re
ported in Fig. 12 as a function of K and
for different § -values, both for Eckart function (with b=1. 5) and Hinkel function (with Rc=0)' For
f, =0 the curves refer to G2(PS=0) while'for non-zero £ values the height of first maximum is drawn.

L

FIG. 7 - Behaviour of the G2(Pg)FWHM, calcu
lated for { =0 both with the Eckart (a) and the
Hénkel (b) functions reported against b and R,
respectively.
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FIG. 8 - First Maximum Positions (FMP) of momentum
distributions calculated for =1, both with the Eckart (a)
and the Hinkel (b) functions, reported against b and R,

respectively.
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FIG. 12 - First maximum height of GZ(P ) plotted as a
function of K fordifferent {-values, both for the Eckart
function with b=1. 5 (a) and the Hinkel function with

Rc::O (b).
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