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SUMMARY. -

Starting from an exact three-body theory for the nuclear rearran
gement reaction a+(b+c) = b+(a+c), we study a generalized distorted
wave approximation in the momentum-space representation,” Using sui-
table kinematic transformations we recast this representation in a form
coinciding with the one obtained by means of the Feynman diagram sum-
mation method, The generalized potential responsible for the transition
will be written in a compact form involving the resolvent operator for the
a-b subsystem,

1, - INTRODUCTION, -

In recent years an increasing interest has been devoted to the
three-body rearrangement scattering problem in the distorted-wave for
malism, A generalized distorted-wave approximation (GDWA) has been
formally derived from the Faddeev-Lovelace integral equations written
in terms of symmetric transition operators 1, 2). This GDWA involves
the full interactions in both initial and final channels, not only in one
channel as ‘in the conventional DWBA, The occuring generalized transi
tion potential contains the contributions of the basic rearrangement me
chanisms which can be described by a polar and a triangular diagram,

It has been also recognized that the GDWA is equivalent to the
Feynman-diagram summation method (FDSM) based on the above polar
and triangular graphs 2, . However an explicit GDWA momentum-spa
ce representation to be used as starting point for calculational purposes
has never been investigated. The aim of the present paper is to study
this explicit representation,
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In performing this program one is faced by nontrivial difficulties
arising from the complicate three-body kinematics, In order to deal with
manageable formulae we shall use physical momenta and not the norma-
lized ones(4)_ The compact procedure we follow allows to clarify the phy
sical meaning of the GDWA and to perform a direct comparison with the
FDSM,

In Sect, 2 we shall give a general outline of the GDWA in a three-
-body context. Section 3 deals with some kineématic transformations sui-
table for working in the momentum-space, In Sects, 4 and 5 we shall be
concerned with the momentum-space representation of the GDWA and we
shall give a detailed comparison between the GDWA and the FDSM,

2. - GENERAL FORMALISM, -

In a three-body context a nuclear rearrangement reaction A(a, b)B
can be represented schematically as

(2.1) a+(b+c)=>b+(a+c),
where A=b+c, B=a+c and a, b, ¢, are treated as inert entities inter-
acting only via two-body interactions.

Let us introduce the transition operators U a(z) from the initial
channel @ to the final one B, in the symmetric form(5)

- -1
(2. 2a) Uﬁa(z) =6BaGa (z) + Vg + VB G(z) Vg,
(2. 2b) Uﬁa(z) =SBGGB1 (z) + Vg # VB G(z) Vg,

where 0 a= 1 -0gq, Vg (0 =a,8) are the channel interactions, Gg the
resolvents of the channel Hamiltonians and G(z) the resolvent of the to-
tal Hamiltonian, These operators are defined as in ref, (6),

The transition operators (2, 2) satisfy the Faddeev-Lovelace-like
integral equations

(2.82)  Upy(e) =3g,Gl(a) + 3 4(2)Gy(2) U (2),
v#8
e
(2. 3b) Uga( 2) =04G " (2) + Tfa UB'Y(Z) Gylz)t (2),

where G_(z) is the resolvent of the free Hamiltonian, ty(z) is the two-
-body scattering operator for the -+ subsystem acting in the three-body
space,

By iterating eqs, (2, 3) once and omitting the energy parameter z
for the sake of simplicity, one gets



s |
(2. 4a) Uga *0aC * 3 B+ 3 t Got,G Us,,
pa ~ “Ba™g g Y i Y 060 da
d#y
|
(2. 4b) + ¥ t + Gt
Uga B“ g fa UgsYo
oty

The inhomogeneous term of integral equations (2, 4a) or (2, 4b) charac-
terized by a compact kernel, is expressed only in terms of G5~ and of
the two-body scattering operators, As far as the process (2, 1? is con-
cerned, the two simplest terms which appear in the equation for Upy
give, in the channel state representation, the amplitudes for the polar
and triangular diagrams, corresponding to basic rearrangement mecha
nisms(2), By using the relation

(2. 5) G, = Gy + Gt G »

-1
0
The integral equations (2. 3) with compact squared kernel provide
a rigorous mathematical basis for a quantitative formulation of the intui
tive physical picture associated with the distorted-wave representation
of the nuclear rearrangement amplitudes(l: 2),

1

the above terms can be rewritten in the compact form G_~ G G0

Following the procedure of ref, (2)‘, taking account of eq. (2. 5)
and neglecting the coupling terms between elastic and rearrangement
channels in the equations expressing Uy, and Upp in terms of Up,, one
obtains

=1 -1
= +
(2. 6a) U, =G 6, (Go +1. G U ) +t GotbGOUb
(2. 6b) U =t +1,Got,GoUy,
(2. 7a) U =(Gr“1 Gt)GG1+U GtG.t
: ba 0 bb ba 0a Qc’
= +
(2. 7b) Uy, ™5+ U Gt Gt

By analogy with the arguments of ref, (2), one can derive from egs. (2, 6a)
and (2. 7b) or (2. 6b) and (2, 7a) the following compact expression for Upgy
on-the-energy-shell

(2. 8) Uba'-“(1+U G )VG v (1+GaUaa)'

bb

In eq, (2. 8) v, denotes the interaction between B and y (afB#v).
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If the channel resolvent operators G, (a=a,b) are approximated
by their dominant separable part|y,> g, £ ¥,|, which corresponds
to the channel bound state |9, > and appears in their spectral represen
tation, one obtains the generalized distorted-wave approximation

1SYAL Lo, [0 0>

(2.9)
) <p£m{)l(1+ubbgb) <wb|Vchva| > (1% gauaa I ama>

In eq. (2. 9) ]gba) =] 'ﬁa mg > | Yq » are the channel states, Pa (p
the initial (final) channel linear momentum, mg, the z-component of Qhe

spin sg of the particle a. All operators are evaluated for z=E, + is
= E,+ie. The total channel energy E  is given by (f=1)

p2
2.10) By = —2— _§
(- o 2va o 3

where g, is the binding energy of the bound state in the channel a and
¥q is the reduced mass for the system consisting of a and fB+vy (af

FB7 ).

The quantities
(2. 1) Yga ~ <waIUaa|w0‘->

are the optical scattering operators acting on the plane-wave states
)pa > They are constructed as expectation values of the actual scat
tering operators U,, in the subspace of the channel bound states, Then,
the wave-operators 1+g,ugq operating on | Pq ma> give the effective
two-body distorted-wave states 1) In eq. (2. 9) the operator

<1pb|vbG v, | ¥4, acting on channel distorted-wave states, has the
meaning of a generalized transition potential, Its com{)act form explicitly
exhibits the role of the two-body resolvent operator L8 hu

The generalized distorted-wave approximation (2, 9) can be for-
mulated in the language of the nonrelativistic Feynman diagrams, If the
initial and final channel interactions are described by graphs involving
the half-off-energy-shell optical scattering amplitudes

< ?’:'1 mg|ugq| Py ma>'

one obtains the FDSM based on the polar and triangular diagram rearran
gement mechanisms, We shall give a detailed and complete account of
the GDWA-FDSM equivalence, by using complete sets of intermediate
states and by resorting to the Feynman-diagram rules, The equivalence
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of the two methods has been already noticed in ref, (8) for a particular
triangular graph amplitude,

The transition amplitudes T, introduced by us in the distorted-
-wave (Sect. 4) and Feynman diagram formalisms (Sect, 5) are related
to the differential cross sections by the formula

do :

2
s |
(25a+1)(2sA+1) m, mj ba
1

1
B, (21r)4*u v p—b

(2.12) T a Vb

mymg

3. - KINEMATIC CONSIDERATIONS, -

As is well known, the three-body problem involves great compli
cations arising from the number of kinematic variables, Then, it seems
useful to give some kinematic transformations suitable for representing
the GDWA in the momentum-space, Throughout this paper we shall use
physical momenta, not the normalized ones as in ref, (4).

Let us denote by Pa the momentum of particle a in the total
center of mass system and by k, the relative momentum between the
particles B and y. By definition

(3.1) k, =

with M, the mass of particle @ and (a, 8. v) a cyclic permutation of
(a, b, ¢). As is well known, 1n the total center of mass system only two
of the six variables T‘:‘a, f{'b, kc, pa, pb, pC are linearly independent,
Then, one can choose a pair (K, P, ) as independent momenta for cha
racterizing a three-particle state,

In order to pass from any pair (ka 5 Pa ) to any other pair (kd s
pd ) (6 = B,v), one may use eq, (3, 1) and the relation

(4; 2) P, *+P, *B, = 0.
One gets
AN, . i B
T T M, + o - a
B o M, (M, + My)(MB + MT)
(3. 3a) -
e
5’ - ka _ —L B’
B MB + M’Y a



4, - THE MOMENTUM-SPACE REPRESENTATION OF THE GDWA, -

By inserting in eq. (2. 9) intermediate momentum integrations
and magnetic sums over the complete sets of three-particle states

> > > >
n " 1 n m m m
|k;p“m m mc'> and lk'pg'mam m >

a a b b b ¢
one gets
GDWA i (+) 111} m m ll 11} n
Toa " m“'zm" fx‘ﬁi)m{) (Bprmy) Ty (BUp) mprmy)
b
(4.1)
(+) -)ll " 1]} i
x 2z (Bumi)appdpn
B 8
with
rad i 1 - 57 U An
(4.2) TO( b_.pa mbma) '2‘ : jF(kbkamamc mbmc)dkb dka y
m'm
0 i
e T
F(‘l.:'-l'{, m'm'm m ) = fx(-” mim') =
ba ac¢c b c b b a ¢
(4.3) -
1 1
x £ kbpbm m, m! IG | amambmc> f (kmm),
(+) - 3 - 2 -
(4.4) x-'ra a(Pam ) =< Pamal(1+gauaa )lpa myy,
- =
(4.5) fa(kamﬁm_y) —<kamﬁmylvaiwa\/' (Gfﬂi"y).

From the definition of g, it follows

p2 12

. - B a a . -1 >
(4. 6) ga(Ea +1e)|p&ma> _(2”a " e +1ig) lp&m&>_

Then, the channel distorted-wave states can be rewritten, in the momen
tum-space representation, in the explicit form

v &y 0

fdu



'S m'm )
(+) -, . Yaa ‘PaPa™a™Ma
= = +
(4.7) XBGma( oMyl = é(pa pa)d m!m, 3 2
p P
& . .. +ieg
Zva 2V,

Equation (4. 5) gives the usual two-body form factors corresponding to
the channel bound states | wa> . By means of standard angular momen
tum expansions'‘®: 9, 10), one may give an explicit momentum-space re-
presentation of f,, involving spectroscopic factors and single-particle
or single-cluster reduced widths,

In ordér to simplify the expression (4. 2) for Ty, let us consigfr
the relatlons (3. 8) and change the integration variables k! and k in pc
and p , respectively (see eq, (3. 4a) with (a, g,v) = (b,c,a) and eq.
(. 4b) with (@, B,v) = (a,b,c)). Taking account of the property (3. 9)
for the matrix elements of G and performing the integration over pc,
one gets

g ol - =
To (PP, ) 2 f Lbgmml) 2
m'm m_

a b

(4. 8)
Smm' |G te il o -y
x £ qcmambl GC(SC+15)| qcmamb> fa(qam]:’mc)clpc s
where
p2

~ c

(4.9) Sc = By 2w

and q " qb, q stand for the momenta ka, - kb, k' respectively,
evaluated (%or P! = p . Therefore, they are connected to the integration
variables by the relatlons

M M

W, 10a) aa=_m_-ﬁa_—ﬁc ¥ HC=M+?V'I Ec +‘5a H
b C a b
M M

wim  Foegmm R Ltowan R

A

By expressing G _ in terms of ?c and 60 (see eq. (2. 5) in the
hat notation), one gets

g <) 1"}
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- A -
] ] ] G S +1 m m =
< qcmambl c( c 18)' qC a b>

(4,11) (+) . )
.S +
. v (q qcmambmamb’sc ie)
2 3
]
qc ’
5. = 3 +ig
c e
where
(+) <> i wiii . . B > -
v, (qlg mimim m ;S +ig) = 6(qc-qc)am.m -
a a b b
(4.12) o " : A . =
+
{ g m!m! tc(SC 1e)| qcmamb>
qz ‘
S - 2(: +ig
c Fe

is the momentum-space representation of the two-body scattering state
for the a-b subsystem, Recalling the above kinematic transformations
and the procedure followed in deriving eqgs, (4. 8), one may write

(4.13) I Ecgc> i |—qa5a ’ I c l qbpb

Then from (3, 7a) it follows

2 2 p2 q'2 q|2 p'z
(4.14)  8.-5>=F '(EE"J“EE_)’ g * Byl g
c 2 a "2u, 2w c 2p, by 2%,

By inserting in (4, 1) the expressions (4, &) and (4, 11) with a cor
rect number of primes for the intermediate momentum and magnetic
variables, one obtains an explicit momentum-space representation of
the GDWA in terms of two different types of tw? -body scattering waves:
the initial and final channel distorted-waves ;’L’ and the intermediate
scattering wavefunction ’lP( )

From eqgs,(4,1), (4.11), (4.12) and (4, 14) it is immediately seen
that, owing to the presence of the half-off-energy-shell Optlca]. scattermg
amplitudes pg f S i‘ Py '), the GDWA amplitude has in p 2 (or in
pg) two three- part1cle cuts runnmg to the right of the normal three-par

ticle threshold (p{2), = 2 ¥ pEy, (or (pg)0 =2v_¢,).

If only the plane-wave term 6(5(1'3(1 ) dm' - is retained in
the expression (4, 7) for the distorted-waves x;,aeq?(ll, 1) reduces to
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the generalized plane-wave approximation (GPWA)

GPWA .
(4. 15) T =T (plp.m'm ) ,

where now the variables p , p , m, are channel physical varia-
bles,not the intermediate state ones In Phls particular case the three-
-particle cuts disappear and, in virtue of egs. (2, 10), (4,14), one gets

TGPWA 3
>, (+) -.yl-y | 4 -
(4, 186) ]ft*)(qua'mc)tpc (chcma 'rnanﬁ),Scﬂe)fa(qambmc) 5
— P > ' '2 pC
2|.|.b

Taking account of eq, (4, 12) one may split the GPWA amplitude
(4, 16) in the following form

(4. 17) TGPWA } TPWA(o) X TPWA(t)
with o
f (bc'm m )f (xm'm)
A
(4.18) TPW (O)=-Z ;abc ’
m %,
8 g L
b 2,
TPWA(t}
(4,19) f*(qo'm'm )(qc‘m'mblt (5 +i )]qgnr%)f (dmm )
= 2 2 pc
mml ql
b (ab+~é—-b—)(e+, )
B a 2y,
A
The amphtude T P Alg) arises from the plane-wave term of eq, (4. 12),

In eq. (4. 18) k anc_l‘?eb stand for the momenta &'a and ?1{), respectively,
evaluated for d. =q' . They are given in terms of the channel physical
momenta by the relatlons
Mb > - - Ma -
. 1 L - —_————— f - B
“.200 X = Fam PatPor % T aM PoPa
(o] a C

>

From (4, 14) it follows for g, = q_
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2 .2
'xa xb
(4. 21) § H=rm f e
a Zpa b 2pb
A PWA(t : s
Obviously the amplitudes TPW (0) and T (®) can be directly obtained

by starting from the formal expressions <¢>b]G51 | gba> and
<d5b]tc | gba'> , respectively,

It is worthwhile noticing that in the amplitudes (4. 8), (4. 16),
(4,.18) and (4. 19) there are no mass-dependent moltiplicative factors,
because we have used physical momenta and not the normalized ones
(see, on the contrary, formula (3. 19) or ref. (4)),

5, - THE GDWA IN THE FEYNMAN DIAGRAM LANGUAGE, -

The FDSM amplitude, based on the polar and triangular diagrams,
can be written schematically as(3)

FDSM
= + + +
Tba TO TOB. TbO TbOa i

(5.1)
where T is the sum of the basic contributions (the polar and triangular
amplitudes), TOa (Tbo) involves the initial (final) channel interactions,
besides the basic contributions, and T B involves both the initial and

the final channel interactions (see Fig, 2 of ref, (10) with Mfi replaced
b TFDSM)
Y “ba :

In order to derive transition amplitudes which are directly com-
parable with those of Sect, 4, we start from nonrelativistic Feynman-dig
gram rules written in a form slightly different from the usual one(11),
We shall introduce the following factors:

)-1

a) a factor - ZMai(pg -2M, e, -ic 2 for each virtual particle

Mg
characterized by the four-momentum (8, ,e,), (a=a,b,c, A, B);
b) a vertex amplitude T, for each vertex v;
¢) an integration /df)'g deg' for each independent four-momentum (HC y eC );

d) a general moltiplicative factor (-1)n in+1(21'r)-1 where n is the number

of vertices and 1 the number of independent four-momenta,

By using these rules one gets the following expression for TbOa(xK)
4
TbOa. = - w—z MaMbMAMB X
A Maliltall 1] 1] 1[{] m L[] "
k.. @ JSeTRsgmpmgdppdeidpades ¢
h B
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with
A(pgegl ||eﬂmm n) =
(5.3) (p pm m™")T (p"'e'“p"e"m"'m")u (p"p m"m )
b b b b 0°b b b a aa“a’'a a &
) 2 2
m m m i R . o
ZMbe -ie) (p ZMBe 1e)(p 2MAA ig) (p 2Maea ig)
p> p!”
b
(5. 4) e = . e e = _em
A 21}3 a B 2vb b

According to the notation of Sect, 4, we have denoted by Usae Yph and T,
the three four-ray vertex amplitudes appearing in the two-loop graph
described by T, .

The integration over el and ell in (5.2) can be performed in the
complex ej- and el’;'-plane, By writing explicitly the amplitude T, in
terms of polar and triangular amplitudes, one can see that T; has no
singularities in the lower half-plane of variables e; and eff . Then, by
means of the residue method and of some straightforward manipulations

one obtains

T = > X
b0a m" m
(5.5)
m 1 L "' me n n n
u (pbpbmbmb )T (pb pambm )uaa(papamama) g
12 me 2 02 pb Pa
P P P
(——2: . 23 -+-1'e)('-—2 - F +ieg)
b b o

where T (p'"p"ml';'m“) stands for T (pg‘el';'p“e“mg'm") evaluated for

n2 m =
=P /2M_ and e pp /2M

Let us now consider the amplitude TO appearing in (5. 5). By de-
finition it can be written in the form

P = o)y (t) »=
(5. 6) TO(pbpambma) T (pbpambma) s (pbpamb ma)
with

TORE mim ) -

5
(5. 7) f(xmm)f(m'm)
= b b a b
= -.2M_ >
() 2 2 ?
mc pa p"b

- —b. 2 .
(Batpy)” - 2M,(E, - I, "~ 3 ) - ie

|
bid
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()=, .
T “(p P, mbma) =
(5. 8)
= éi b o o - 1 ' -
O i MaMch 2 IfB(pprecpambr%mcmama) dpcdec d
e
1 =
B(p}p e B,m}m, m mim )
i i ] ] ] " +i
) f (q Jmim )tc(chcmambmamb,E 1e)fa(q mbmc)
+p )°. = " A "
[(pb p) ZIVIe 1%](;3 ZMe ig) (pa+pc) 2Mbeb ie
2
Pe
e e 2(Ma+M)’
(5.10) 2 2
) - B
ea=Eb-—2~£——e, e=E-2N{;1 B i
Nlb C b a a C

In eqgs. (5.9) and (5. 7) tC stands for the four-ray vertex amplitude and
£y, fb are the two three-ray vertex functions appgialrmg in the basf
E1agrams The relative momenta.at the vertices ¥ & xé) and q qc,
qi), qé are given in terms of the intermediate momenta pa, p ’ pb by

relations formally identical to (4. 20) and (4. 10), respectively.

By passing from the form (3. 73) to the form (3, 7a) for the total
kinetic energy expressed in terms of %- and p-type variables, one gets

f(xmm)f(xm'm)

(0) = = N b b b
(5. 11} T (pyp,mim. ) = 3 - -
m x P
. - (——i o ) +ie
a Zp.a 2'va

Since for q -q’é the relations (4. 14) coincide, the propagator in (5, 11)
can also be written in the form I:Eb (%! 2/2|.|.b) pb /Zv + 18] o

After suitable kinematic transformations the denominator D in
eq. (5. 9) takes the form

LLO
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2M_(M, + M, )

i E — X
D(p; p P, E) b

e & E 2 oy E- ig)
i R e B :
X (qc -2ch ig) ( SC 1@3)((.1C B ig

with S defined by (4. 9). By changing in eq, (5, 8) the energy integration
varxable from e, to E, we may perform the integration over E in the
upper half- plane by means of the method used in ref, (10), Notice that
the bound state poles of the amplitude to lie on the lower half-plane,
Then, taking account of the kinematic relations (4. 14), we obtain

()=

(p'pm'm ) = b X
e b - m, m m'
b © a
(5.13)
x> a'a m'm! .S +ie)f (@ mm
fb(q{)m;mc)tc(chcmambmamb,sc ie) a(qamb C) -
F, 2 2 pc
2 P, q p
q
E —(—b+-—b)+1s E -(-z-—§-+—2 ) +ie
2 2*’tb qub L Fa a

By snmmmg up the amphtudes (5. 11) and (5, 13) and taklng into account
that g, and §! reduce to %, and xb respectively, for q =7q!, one
gets eq, (4. 8) with (4, 11), (4, 12) and (4. 14),

If the variables pa, pt')_, m,, mk') are interpreted as channels.
physical variables, the propagators appearingin (5, 11) and (5, 13) sim-
plify. In this case egs, (5,11) and (5. 13) reduce to (4, 18) and (4, 19) re
spectively ; they give the polar and triangular amplitudes without chan-
nel interactions. By summing them one gets the first term in (5, 1),

The terms T, and T, _, can be evaluated in a similar way, Per
formin E the sum (5, 9? and taking account of (4, 7), one obtains just the

TCTDW amplitude considered in Sect, 4, Therefore
FDSM _ GDWA
(5, 14) rI‘ba - ba

In conclusion, the results of Sects, 4 and 5 explicitly exhibit the
equivalence between the FDSM based on the polar and triangular diagram
mechanisms and the GDWA momentum-space representation,

The authors are indebted to Prof. C. Villi for helpful discussions
and for his stimulating interest in the subject of this work,
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