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SUMMARY. -

Nucleon-nucleus rearrangement reactions proceeding via a nu-
cleon-exchange mechanism are investigated in the framework of a
three-body model, Starting from the Alt, Grassberger and Sandhas
representation for the transition operators, we derive, by means of
a suitable operator multiplier technique, an uncoupled integral equa
tion showing in the inhomogeneous term the role of the nucleon-nu-
cleon off-energy-shell t-matrix, The knock-out triangular diagram
amplitude involving the off-energy-shell t-matrix is compared with
the corresponding amplitude in the Born approximation for the t-ma
trix, Our results show that the knock-out amplitude is rather sensi-
tive to the off-shell behaviour of the two-nucleon interactions,

1, - INTRODUCTION, -

Since the Faddeev work on the three-body problem(l) a great
deal of theoretical interest has been devoted to the off-shell aspects
of the nuclear interactions, Indeed, the off-shell behaviour of the
two-body scattering amplitudes represents the input information for
solving problems that involve composite particles,

Nuclear rearrangement reactions are possible tools to explore
in detail the role of these off-shell effects, For an exact description,
the rearrangement scattering problem should be formulated in a N-
-body context (N = 3) 2, 3), Generally, for N >3 this treatment ap
pears to be too complicate for practical purposes. For this reason,
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one usual%ty limits oneself to processes which can be approximately
treated in three-body context, Among them we choose, as testing
ground for investigating off-shell effects, the nucleon-nucleus rear-
rangement reactions proceeding via a nucleon-exchange mechanism,

Our choice is motivated by three main features relative to the
theoretical description of such a rearrangement problem, First, to
construct the inhomogeneous term of the uncoupled integral equation
with compact kernel for the rearrangement scattering operator, one
needs only the nucleon-nucleon off-shell t-matrix, which has been
extensively studied in the last years and, therefore, is fairly well
known, Second, the transition amplitude contains nucleon-nucleus
form factors which are simpler, and therefore better known than the
nucleus-nucleus ones involved in transfer reactions between two nu-
clei, Third, from a study of the Feynman diagrams associated with
the possible reaction mechanisms(4), it follows that the off-shell be
haviour would affect predominantly the cross sections in the forward
angle region, where they are larger and therefore better known than
the backward region values, On the contrary, in stripping and pick-up
reactions similar off-shell effects predominate at backward angles,

We have been stimulated to study the above off-shell effects al
so by some suggestions coming from earlier studies on the effective
interaction in nucleon-nucleus scattering problem(5: 6). There one
recognizes that the effective interaction, responsible for the transi-
tion, has the nature of a transition operator, In the spirit of the usual
distorted-wave Born approximation (DWBA) only the Born term of the
transition operator is retained''’/, To get a first insight intothe role
of the t-maitrix it was assumed that the off-shell t-matrix had the sa-
me form as the free on-shell transition matrix(s). However, it has
been proved that this on-shell approximation is not generally adequate,
e.g. for break-up reactions below 150-200 Mev (9, 10, 11),

The importance of the nucleon-nucleon off-energy-shell effects
in the nucleon-exchange reactions has been already outlined, from a
qualitative point of view, within the context of the static limit model
for the three-body problem(lz)_ To give a quantitative evaluation for
them, we shall compare calculations involving the two-nucleon off-
-shell t-matrix with calculations involving only its Born approxima-
tion,

In order to clarify the role of the nucleon-nucleon t-matrix in
the framework of a three-body approach, we shall outline an alterna-
tive procedure to the usual Faddeev-Lovelace method“' 13'15)_ By
means of a suitable operator multiplier technique(ls: 17), we obtain
one uncoupled integral equation with a compact kernel, The inhomo-
geneous term, which corresponds, in the Feynman diagram langua-
ge(ls), to the sum of a heavy-particle stripping polar graph and a
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knock-out triangular graph, will be rewritten in a compact form in-
volving the Green function for the two-nucleon subsystem,

In a three-body context one can construct a generalized distor
ted-wave model which has the above inhomogenecus term as starting
point and is completely equivalent to the Feynman diagram summa-
tion method (FDSM)(4' 19'22). Unfortunately, the simultaneous use
of the off=shell t-matrix and of the distorted-waves requires a prohi
bitive amount of computing time, because of the high-dimensional na
ture of the integrals involved and of the required transformations in
the momentum-space between the arguments of the t-matrix and tho-
se of the distorted-waves,

Therefore, we shall resort to the approximate treatment propo
sed in a recent work on the off-shell effects in break-up reactions(lT’ ?‘)
According to this paper, we limit ourselves to evaluate the two-nu-
cleon t-matrix operator between asymptotic channel states in the for
ward scattering angle region and for not too low energies, In these .
cases one expects that the first terms of the Watson-Faddeev multi-
ple scattering series(23) are responsible for the leading behaviour of
the transition amplitude(24),

According to earlier calculations concerning different nuclear
reactions, our results show that the knock-out amplitude for nucleon-
-exchange reactions is rather sensitive to the off-energy-shell beha-
viour of the two-nucleon t-matrix in the energetic range usually ex-
plored in experiments, By comparing the off-energy-shell t-matrix
calculations with the Born ones, we find a relevant difference in the
absolute magnitude of the cross sections, while the shapes of the an-
gular distributions are almost the same in both cases,

Section 2 deals with a general three-body formulation of nucleon-
-exchange reactions in terms of symmetric transition operators, Sec-
tion 3 is devoted to the knock-out triangular fliagram amplitude involv
ing the neutron-proton off-energy-shell t-matrix, A convenient regu-—
larization procedure is carried out in order to evaluate numerically
some singular integrals, In Section 4 we shall be concerned with the
comparison between the off-energy-shell t-matrix calculations and the
corresponding Born ones,

(x) - Notice that the treatment of nucleon-exchange reactions involves
full off-shell t-matrix elements, while break-up calculations involve
only half-off-shell elements,
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2. - GENERAL THREE-BODY APPROACH IN TERMS OF
SYMMETRIC TRANSITION OPERATORS, -
2.1, - Formalism,

Nucleon-nucleus rearrangement processes A(a, b)B proceeding
via an exchange between the incident nucleon a and a nucleon b of
the target can be written schematically as

(2.1) a+(b+c) —b+(a+c),
where c¢ is the core both of the target nucleus A =b +c and of the
residual nucleus B =a+c (a,b =p,n;a#b).

We describe the reaction (2, 1) by means of a three-body model.
The nuclear cluster c is treated as an inert core,

We start from the nonstandard symmetric form for the transi-
tion operators ( ¢ ga == dﬁa )

- 7

(2, 2a) Uﬁa (z) = dﬁaGa (z) + VB + VR G(z)V, ,
. - -1 PR
(2. 2b) LrBa (z) = dBaGB (2) + ¥y \.ﬁ (';(Z)Va 3

proposed by Alt, Grassberger and Sandhas(14), The indices @ and B
denote the unbound particle (a, 8 = a, b, c) in the initial and final chan
nel, respectively, or the asymptotic state with all particles free (a,
B = 0). The operator V, represents the sum of the interactions not
contained in the channel a, that is Vg =V - vy, whereV is the sum
of all the interactions and v, the interaction between f and y

(a# B#vy: v, = 0). The resolvent operators are defined as usual

(2.3) Gylz) = (z -Hg)' ,  Gla)=(z-H)",

where H, and H are the channel and the total Hamiltonian, respec-
tively. The two-body scattering operators ty, acting in the three-par
ticle space and satisfying the well-known equations

(2, 4) tglz) = va+vaGo(z)ta(z) = va+ta(z)(}o(z)va ,

are connected with the above channel resolvents by the relations

(2.5) Gqlz) = G(z) + G (2)tg(2)G,(2) .

(0]

The transition operators (2, 2) coincide on-the-energy-shell with



the conventional asymmetrical ones

(2, 6a) Lﬁa(z) = Vo Vﬂ G(z)V,
+ 3

(2, 6b) Uﬂa(z) = Vﬁ i Vﬁ G(z)Vq .

and therefore give, in the asymptotic channel state representation,
the physical transition amplitudes,

We shall introduce in Sect, 2, 2 a suitable operator multiplier
technique, by starting from the Lippmann-Schwinger (LS) equations
for the symmetric transition operators (2, 2)

(2.73)  Ugglz) = F,G ;1 Bava+VBGB(z)LBa z),
(2. 7b) UBa(z) = dBa ﬁ (z)+ éBaVB Ba z)G (2)Vg

Equations (2. 7) have the same kernel as the LS equations for the con
ventional operators (2. 6)

(2. 8a) Uga(z) = Vg + Vg Gg (z)Uéa(z) ;
(2. 8b) [rEa(z) = Vg + UEa(z)Ga(z)Va ;

but differ from them in the inhomogeneous term, It is well known
that, owing to the noncompactness of their kernel, the LS equations
are not amenable to a solution by usual calculational schemes,

Conventional approaches to nuclear rearrangement processes
start, usually, from a Born approximation of the egs, (2. 8) or of so-
me more sophisticated equations (e, g see eqs. (34, 35) of ref, (25)) hav
ing, like the egs. (2. 8) a noncompact kernel, For instance, in the
usual DWBA one assumes that the interaction responsible for the
transition is given by the non-optical part of the inhomogeneous
term of the eq. (2. 8a) or (2, 8b), i.e. by Vg -Wg in the prior re-
presentation or by Vg —Wﬁ in the post representation (Wg and W
are the optlcal potentials in the initial and in the final channel respec
tlvely)( ). For the exchange or knock-out processes (2, 1) on a heavy
target nucleus one approximates Wy by vp and Wp by vy, so that
the interaction causing the transition is assumed to be the potential v,
between a and b

A rigorous mathematical basis for deriving correct approxima
tions to the exact transition amplitudes is prov1ded by the Faddeev-
-Lovelace equations for the operators (2, 2)( 4), By iterating them
once, one obtains integral equations characterized by a compact ker
nel and exhibiting in their inhomogeneous term the two-body t—opergﬂ
tors.



2. 2. - An Operator-Multiplier Technique,

Integral equations with inhomogeneous terms involving two-body
scattering operators can be directly derived from the LS equations in
the general context of the oéperator multiplier techniques proposed by
Blankenbecler and Sugar(1 ), This alternative procedure to the Fad-
deev-Lovelace one, appears more suggestive because it leads to un-
coupled integral equations having at once a compact kernel without
need of iteration, The multiplier we use for rearrangement processes
(a#B) is slightly different from that proposed in ref, (17), Further-
more, it is applied to the symmetric transition operators and not to
the conventional ones, as in ref, (17),

Let us multiply on the left hand side the eq. (2. 7a) by the opera

tor (¢ #B#y, B70)

L -1 i1
(2. 9a) M= (1-v,G) 7 (1= g Go) ™

which does not introduce spurious bound-state solutions(m’ 17), Using

the relations

(2.10) (1+t,G)(1-v,G,) =1, e Gt

)
the new inhomogeneous term reads

= SR | -1 -1
(2, 11) MyaGa =G, GTGO = G0 +t7

and coincides with the sum of the two simplest terms appearing in the
iterated Faddeev-Lovelace equations for rearrangement processes,
After some straightforward manipulations on the kernel of the eq, (2.7a)
we obtain the following uncoupled integral equation with compact kernel

=1
(2.12) = Go +t—y+(1+t'yG0)(1+taGo)(VGGOV7+V Got )G

Uga 8 oVga -
To eliminate the explicit appearance of the potentials in the kernel, the
properties (2, 10) should be used in a way similar to what is done in
ref, (17)., Multiplying on the right hand side the eq. (2. 7b) by the ope-
rator

(2. 9b) LB? =(1~GOVB)-1(1-GOV'Y)-1’

one obtains an equation equivalent to (2, 12) with the same inhomoge-
neous term(x)_

(x) - The inhomogeneous term (2. 11) of the eq, (2, 12) can also be direc
tly obtained in the framework of the Yakubovskil formalism applied to
the three-body case(3),



2.3. - Polar and Triangular Diagram Mechanisms,

In the channel state representation | 4> the first term of eq.
(2.12), which contributes only to rearrangement collisions, coincides
on-the-energy-shell with the amplitude for the polar diagram describ
ing the transfer of the particle y (Fig, la with y=c). As far as the
process (2. 1) is concerned, one has

o= Blasls.y = <o lvoovloy = Kol oy -
s <gﬁb|\’ra!¢a>

(2.13)

2=

FIG. 1 - Polar (a) and triangular (b) diagrams for the nucleon-
-exchange reaction (2, 1),

These equalities follow from the homogeneous integral equation for
two-body bound states, The second term in (2, 12) gives in the channel
state representation the amplitude for the triangular diagram describ
ing a knock-out mechanism with a - § off-shell interactions (I'ig. 1b
with a=a, B=band y=c). One has

a> i

- Summing the amplitudes (2, 13) and (2, 14) and taking into ac-
count the relation (2, 5) one obtains the following compact form for the
inhomogeneous term in (2, 12)

(2.15) A, + A (Qj |
P

Notice the explicit appearance of the resolvent operator G, for the

a-b subsystem,

thG

8. ) bocoa

bca

Obviously, the terms G(;l and t_  are the zero-order term and
the first-order one, respectively, of the multiple-rearrangement scat
tering series(23, 4) which can be derived from the Faddeev-Lovelace
equations for symmetric transition operators, They correspond to the
simplest graphs for single-exchange reactions which can be obtained
in the framework of the nonrelativistic Feynman-diagram approach to
direct nuclear reactions(18),
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From the well-known expressions of the distance of the Feyn-
man diagram singularities from the physical region boundaries, it
follows that the triangular singularity dominates at forward angles,
while the polar one contributes mainly in the backward direction,
Furthermore, for nucleon-exchange on a heavy target nucleus, the
triangular singularity is much nearer to the forward physical region
boundary than the polar one to the backward boundary,

Notice that the polar and triangular graphs have the same three-
-ray vertex functions (i. e, the nucleon-nucleus form factors), the lat
ter containing, furthermore, a four-ray vertex function (i, e. the two-
-nucleon off-shell t-matrix), which will be treated in Section 3, 2,

Higher-order terms in the multiple-scattering series are ex-
pected to give contributions increasingly isotropic, This is borne out
strongly by some calculations relative to a collision problem involv-
ing three-nucleons (see ref, (24)). Thus, the leading behaviour of the
transition amplitude is given by the first terms in eq, (2, 12),

Starting from the Faddeev-IL.ovelace equations for the symme-
tric transition operator, neglecting the coupling terms between elas-
tic and rearrangement channels in the equations for the operators U,,
and Ijbb(zz), and taking into account only the channel bound state term
| wa > g, < Wql in the spectral representation for G4 (a = a,b), one
obtains, on-the-energy-shell, the generalized distorted-wave approxi
mation (GDWA)(4) £

<¢b {IGDWA|¢3‘> :

“ba

(2.186)

2

Gimloeudnhised
Lpymy | (tuy g )| <Y |v G v |92 (g u, ) a

c a
where 3;1 (3') is the initial (final) channel momentum, m, the z-com
ponent of the spin of the particle a, I‘wa) the a-channel bound state
and | ¢a> =} j:?ama> | ¥4> . The quantities Uy = < wall;aal wa‘}s
are the optical scattering operators acting on the plane-wave states
lgama> . The wave-operators 1+ g ug, operating) on | Ea ma>
give the effective two—'body distorted-wave states(l _

The operator VchV sandwiched between the internal bound
states in eq, (2. 16) plays the role of a generalized transition potential,
It corresponds to the inhomogeneous term of the eq, (2, 12) (see also
eq, (2,11)), If the three-particle intermediate state effects are ne-
glected(X) and the a-b off-shell t-operator is replaced by its Born

(x) - This means to assume that the equality G v,|%g> = Iwa>
holds also off-the-energy-shell,
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approximation, the eq, (2, 16) assumes the usual DWBA form for ex-
change reactions., For strong interactions it is unlikely that v, is
always a good approximation to t,. If the triplet deuteron bound sta-
te and the singlet virtual state are important in the intermediate sta-
te, the Born term is manifestly inadequate, Furthermore, the nor-
malization of the DWBA depends on v, and it is, generally, different
from the normalization based on tc.

The GDWA (2. 16) involves a nine-dimensional integral(zz). For
the reasons explained in Sect. 1 and according to the ref, (11) we
shall limit ourselves to evaluate the knock-out triangular diagram
amplitude (2, 14) with the off-energy-shell t;-matrix contributions,

3. - THE KNOCK-OUT TRIANGULAR DIAGRAM AMPLITUDE, -

3. 1. - General Form of the Knock-out Amplitude,

Let us now give an explicit evaluation of the knock-out triangu-
lar diagram amplitude (2, 14) involving the off-shell te-matrix, Three-
-body states in momentum- space depend on the momentum pair pa
and ka (a =a,b,c), where pa is the momentum of particle @ in the
total center of mass system, and kg is the relative momentum between
the particles g and ¥ )_ In this representatlon three-particle states
with all particles free will be denoted by \k mym . Omitting
spin state specification, one has

aPg™Ma

(3.1) €8> =1&p> =l%

since they describe the same state, Different apices will be used to
denote different three-body states,

Let us now insert in eq, (2, 14) intermediate momentum integra
’E_lbons and magnetic sums over the complete sets of two-body states
lkb > andl k mbm 5 and take into account eq, (3. 1) and the
f0110w1ng relations between momenta specifying the same three-body
state

! Pl el g T S

1 a’ "M M Pa~F c M _+M Pc"Pas
o = a b

TR . e SR Y N

’ b Mp+M, Pb Pe’ c T M+M, Pe”Pb -

-
(x) - With the symbols k,, p, we denote physical momenta and not
the normalized ones, as in ref, (13). See the kinematic considerations
developed in ref, (22),

L3 {.} l':-;
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10.

where Ma is the, mass of the part1c1e a, Changing the integration va
riables kb and k in pC and pC, respectively, and expressing the
to-matrix elements in the three-body space in terms of the t -matrix
elements in the a-b two-body subspace, namely

- - -
/\k(':p::m;ml'jm(':‘ tC(Z) l kcpcmr:tn’lbmc> -

ﬁ22
WK m m>6(pL-p)o v
C ¢ C

(3. 4)

2 o S 47 4T S A
= < kcmamb\ tc(z
one obtains

f (qb )(q g blt (S +1'y)|q m II"l> f (q mb c) I

(3- 5) ir = E P ; dp
¢ i rnbmcmal V‘quz M qa c
(sb+ 2I~Lb ) (ea+ 2}13 )
with
(3.6) fo(@gmgm ) = Cagmpm Ivolwoy. (38 ).

il AR o = g .
The mo_r;lenia ka' 'kc, kb,, and k. evaluated for D™ Py have been deno
ted by dq, d.> 4, and a:: respectively, In egs.(3.4) and (3.5) p,
and v, are the reduced masses for the -y subsystem and for the
system consisting of @ and B+y, respectively, The energy shifting S,

coming from the prescription (3. 4), is given by

2 2 2 42 2.2
Kp, H'p, A p
= E- - E ' R =v=—F. 5%
(3.7) Sc fa 2w 2 b 2v i
o b c

where sa is the binding energy of the bound state in the channel a and
E = yizpa/Zﬂu is the entrance channel energy in the total center of mass
system,

The nucleon-nucleus form factors fa(‘?a Bm ) defined by eq,
(3. 6) mag be written, by means of usual angular'momentum expan-

s1ons , in the form
1 .2
s ﬁ :
= _(2)2
fa(qamﬁm ) (ﬂ) 2 .Z Ny BJ 1a<3asymjam7|stN
(3. 8) 2l
o la
}.a Fal
\lasf,m1 mBIJ m.a> Yla (qa)]&“1 (qa)’



11,

with

(3.9) F1 (qa) laNll( 2+x )le (qar)u (r)r dr ,

In egs. (3. 8) and (3, 9) the symbol N stands for the nucleus (g +7v),
while the meaning of s, and of the bound-state quantum numbers j,,
Las my o, My, is quite transparent; uj A (r) is the radial part of the
bound-state wave function ¥, and Ny, its asymptotic normalization
constant ; ).’2 is expressed in terms of the binding energy ¢, by

MZ 13 = 2p, 8, . The constants ﬁJalaand N;, are related to the spec
troscopic factors and single-particle reduced widths, respectively, as
conventionally used in direct nuclear reaction theories,

Forithe sake of completeness, let us give also the momentum-
-space representation of the amplitude (2, 15), Adding to the amplitude
(3. 5) the polar contribution (2, 13) one obtains after some kinematic
variable transformations(22) the following expression

Ap # AT =
*( ) =
(3.10) f q,] m' m )w (q q m' rnbm mb,S +Hiy)f (q Jom )
=. 3 dE
mymymy W2y c
b
Eb+ 3
")
where
(ﬁ( ‘mmmm j%) ® d(‘.'--.)d ' +
qq a b? qc qc m m am'm
a a b
(3.11) 85 il %
" < qcmamb' tc(z)' qcmamb>
1’12 2
7 - qc
2pc

is the two-body scattering state (1 +"Ecao)|-c?cmamb> for the a-b sub
system in the momentum-space representation, The polar amplitude
does not involve two-body off-shell interactions and does not influence
the behaviour of the transition amplitude in the forward angle region,
as already mentioned in Sect, 2, For these reasons it will be ignored
in our specific calculations.

509



12,

3. 2. - The Neutron-Proton off-Energy-Shell t-Matrix El ements,

To evaluate the amplitude (3, 5) one needs the expression of the
off-ghell t-matrix elements, We start from the widely used assump-
tion that the two-nucleon transition operator is dominated by the deu-
teron bound state and the singlet virtual state(13: 24, 28'30), This
assumption leads to the use of a nonlocal separable two-nucleon in-
teraction

2
3.12) v@W=--A 3 @ @de
e G n=0, 1 n nn n

where P are projection operators onto the deuteron state (n=0) and
the singlet state (n=1), In this approximation for the potential, the
two-body LS equation for the t-matrix elements can be easily solved
to give

2
(3.13) @Rz s - 2 3 @ () P,
G 2p. w0, 1 n n n n
where
= 12
-1 -1 Vlz)‘n Ifn(Q)I ->
(3.14) T (z) = A 1+ dq
n n ZATH 2 2
, A
2|..tC

e d
If the nucleon-nucleon form factorsf (k) are chosen, as

1(24, 29, 30) n

usua , to be of the Yamaguchi form 31)

- 2 2
(3. 15) f k)= 1/(k"+ B ),

I:Bn-i(ﬂﬂv) 1/2]2
i [ﬁn' i(o +i'y)1/2]2 . gfl

with o= 2u S_/#%, ¢2=2,7%/p and the prescription

one has

(3.16) 'rn(0+i'y) = 2

A 13
1/2 -1lo/l+~/ for 6> 0
(3.17) -i( 0o +iy) =

1
I(—U)/zl-i'y for 0< 0



13.

The parameters ﬂ'n and B, are chosen with the prescription of fitting
the deuteron binding energy, the triplet and singlet scattering lengths
and the singlet effective range, Using the experimental data of ref. (32)
for the triplet parameters and of ref, (29) for the singlet ones, one
obtains for the np system(x)

1,440 fm'1 J A
(o]
1

1.153 fm ™~ , A

3

s

3

(3. 18a) BO 0.407 fm"

0,145 fm~

(3. 18b) 8, K

Since the quantities (8, 13) act into total spin-space for the np
system, the t-matrix element appearing in (3. 5) reads as follows

o r 1% e -
<qcmamb\ tc(sc+ i) | q¢.:mr:>1mb>

(3.19) 5
= - —2%.0— nfo " cn(m'am]:)mamb)f (@ )z (o +iy)f (q )

The constants Ch coming from vector-coupling procedures have
the following form

1 1
(3. 20a) c (mMmmm, )==(1+d 1+ ¢ )d..» '
2 +
o a b ab 2 rnarnb mamb m_ mb, rna_+mb 5
11 . X m'+m
(3. 20b) cl(mambmamb) = _2(..1) a ag

m', -m' dm . "
a b b’ a

(x) - Since our three-body model involves a definite pair of nucleons
(the incident proton and the emitted neutron, or viceversa) and the
inert core ¢, we do not take an average over the np and nn singlet da
ta to determine the singlet parameters, The average values would be
slightly different from the values (3, 18b)., Furthermore, notice that
exchange terms arising from antisymmetric properties with respect
to all the nucleons (included the core ones), cannot be taken into ac-
count in our three-body context, However, their effect on the shape
of the angular distribution is expected to be small (see refs, (10) and

(33)).

vt
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14,

3. 3. - The t-Matrix Amplitudes and the Born Ones,

By inserting eqgs. (3, 8) and (3, 19) in eq. (3. 5), one gets an explicit
expression for the knock-out triangular diagram amplitude, If the func-
tion 7,(0) is replaced by the constant A, one has from (3,5) the tri-
angular amplitude in the Born approximation for the two-body t. -matrix
(see eqgs, (3.13) and (3.12)). In this approximation the off-energy-shell
effects due to 7,( ¢ +iy) disappear, because there is no dependence on
the two-body energy S, = Vlzo/ZP.C for the a-b subsystem, Putting

(3.21) an(T) - Tn % an(B) i A’n g
one can write
3
Ty > > N, N 8., B
X m 1 " L*11 Fj1
j., 1. m. m mm a b vYaa “bb
aa " J, 13 ¢b
Jbb m.m, m'
] lb a
(3.22)
m. m, m m
- R ¢ b
m. m, m m, m
Jb 1 a 1t a lb
i1 2 oMM K (x)
by
where
m mlamcmb
Ib 1b a
C. =<j ><lsmm'3m
Tals ac ] a>
Jolp
{3.23)
. L] ! -
< Jbscmjbmcl SBmB> <1bsamlbmal ™
a b . g+ a b
(3. 24) Kn;l 1 (X) /an(X)( +1~/)h n1,1 () dp
ab ab
and

F 4 &)

@ 3
i L
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mltb mla -~

Al 1

o Ko W Y, (@ )Fy (a )Yy, (4 )F (q,)
a qb b qc Bn qc ﬂn qa a

> >
with X=T,B and P=Pp,-

In the following the integrals (3, 24) with X =T, involving off-
-energy-shell t-matrix contributions will be called simply t-matrix
ampltudes, while the integrals (3, 24) with X =B, referring to the
Born approximation for the t-matrix will be called Born amplitudes,
We shall write

mlamlb i mlamlb mlamlb | mlamlb

(3.26) K . =T ; K =B_
mL LT}  “ml 1 n;l L (B)  Tml L

3. 4. - Regularization of the singular triplet integrals,

In order to make the above formulae suitable for numerical cal
culations, we shall now perform a convenient regularization of the in

tegrals T _ :a ‘b, The integrand in (3, 24) for n=0, X=T and E> e

'0;-1a1b
has a singular point at p = p +iy with
1
2 Vo 3
= + E - +
(3.27) P, }&2 ( g, 50) g

corresponding to the deuteron pole z = ¢ +iy for the t -matrix ele-
ments (3. 13), (3.14)(X), 1n equation (3. 2

2 2
€ = -
o = W -p) /2m,
is the binding energy of the deuteron, Obviously, the singlet pole does
not lie on the integration path, being Cl - B4 0.

The integrals T could be calculated for several conti-

a
nuously decreasing values of the small positive parameter 4 and the
results should be compared among themselves in order to reach: a
definite numerical accuracy. However this procedure is unpractical

in numerical computation, as already discussed in refs, (21, 34), It is

(x) - Since we exclude too low incident energies (see Sect, 1), we shall
perform calculations for E> ¢,
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FIG. 2 - Angular depend®nce of the real and
imaginary parts R, I, of the t-matrix ampli
tudes and of the Born ones B, at 20 MeV, The
upper part of the figure gives the triplet am-
plitudes (n=0) and the lower one gives the
singlet amplitudes (n=1),
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FIG. 3 - Angular dependence of the amplitudes

R and B, at 100 MeV,
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FIG. 5 - Comparison between the energetic
dependence of Sy and Sy at @ = 0°,

FIG, 4 - Comparison between the angular de-

pendence of S (full curve) and Sg (dashed
curve) for a) E=20 MeV and b) E=100 MeV,
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evaluated, In Figs, 6 and 7 we plot the t-matrix amplitudes and the
Born ones for 1,=1,=0, Ra™ RB =4 fm, in the forward scattering an
gle region, for E=20 and 100 MeV, respectively, Here also we have
normalized the amplitudes to the value of the triplet Born one at 0°
and 100 MeV, denoting them by Ry, I, and By,

By analogy with the zero-range case, Figs, 8-10 give the angu
lar dependence, for E=20 and 100 MeV, and the energetic dependence,
for 0 = 09, of the quantities S"I‘ and Si%- They are proportional to the
differential cross sections and are given by (4. 8) and (4. 9), respec-
tively, with p, Rn’ I, and By replaced by p', R;v I;] and B;]. The
normalization factor p' is defined as in the zero-range case,

Similar calculations carried out for 1,=1;,=1 give results close
to the above ones. An example is shown in Fig, 11, where the ampli-
tude B; (i, e, 'ROQ normalized as in the above cases) is compared

with the corresponding t-matrix amplitudes R:l and II',: for E=20 MeV,

Calculations performed at 50 MeV give, as far as off-energy-
-shell effects are concerned, results intermediate between the 20 and
100 MeV ones, The behaviour of the transition amplitudes and of the
cross sections in the backward angle region is not plotted in the figu-
res, for the reasons explained in the preceding Sections,

The finite-range resulls confirm the importance of the off -
-energy-shell t-matrix contributions in the range of the incident
energy usually explored in experiments, In fact, a certain discrepan
cy between the t-matrix results and the Born ones remains even at
100 MeV,

In comparison with the zero-range results we observe that fini
te-range effects cause ah oscillatory behaviour and a stronger decrea
se with angle of the differential cross section, Owing to the presence
of the propagators (3. 15) in (3. 13), our t-matrix amplitude is more
decreasing with angle than the triangular amplitude constructed with
a constant four-ray vertex function, Such a strong decrease is needed
in order to reproduce the experimental data(X), The occurence of the
deep minima in Iigs, 8 and 9 is due to the absence, in our formalism,
both of mechanisms different from the triangular one as well as of

(x) - For a detailed comparison with experiments one must remove
the above simplifying mass restrictions and introduce the channel di-
storsions. Thus, rather cumbersome and high-dimensional integrals
have to be evaluated, In this paper, we are mainly interested in the
analysis of the off-energy-shell effects and, to perform this program,
we resort to a calculational model which preserves the gross features
of the actual transition amplitudes.
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FIG. 6 - Angular dependence of the real and ima

ginary parts Rn, I of the t-matrix amplitudes and
of the Born ones Bn at 20 MeV., The upper part of
the figure gives the triplet amplitudes (vertical
right scale) and the lower one gives the singlet
amplitudes (vertical left scale),
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channel distorsions (the latter ones correspond to a phenomenological
simulation of the higher-order terms in the multiple-scattering series),
The polar graph amplitude, which is, in the heavy-core approximation,
a slowly increasing function of the angle, and the higher-order terms
provide a roughly isotropic background contribution in the forward an
gle region,

We notice, as a general feature of the results obtained for the
amplitudes, the predominance of the triplet contributions over the
single_ﬂones (see Figs, 2, 3, 6, 7 and 11), This fact justifies, a po-
steriori, the correctness of the separable potential approximation
(3.12). Furthermore the triplet contributions are enhanced by the
weight factors which appear in the formulae (4. 8) and (4, 9) and arise
from the particular structure of the coefficients (3. 20).

In conclusion, the most relevant difference between the t-matrix
predictions and the Born ones appears in the absolute magnitude of the
cross sections, The shape of the angular distribution is only roughly
the same in both cases, while the energetic dependence seems to be
rather different at lower energies,

The above results about the importance of the off-energy-shell
effects in nucleon-exchange reactions agree with similar results obtai
ned for different nuclear processes, as break-up(g’ 11) and heavy—-ion_
neutron tunnelling reactions(27),

We are pleased to thank Professor C, Villi for his continuous
interest and stimulating suggestions throughout this work. Thanks
are also due to Prof, G, Pisent for discussions and to Mr. G. Sal-
masso for his assistance during the working out of the numerical
computation,
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