
':l 
I I, 

Laboratori Nazionali 
di Legnaro 

Comitato Nazionale per l'Energ ia Nucleare 

ISTITUTO NAZIONAlE DI FISICA NUClEARE 

INFN(B E -72(4 
23 Giugno 1972 

G, Cattapan and V, Vanzani: OFF-SHELL EFFECTS IN 
NUCLEON-EXCHANGE REACTIONS. 

,-~ n t'"1 
oJ iJ • 

Reperto Tipogro[.co 

dei labore /od Neziono li di froscoli 

C"s. Poslole 70 • Frascoli (Romol 



• 

Istituto Nazionale di Fisica Nucleare 
Laboratori Nazionali di Legnaro 

INFN/BE-72/4 

23 Giugno 1972 

G. Cattapan and V. Vanzani: OFF-SHELL EFFECTS IN 
Nl'CLEON-EXCHANGE REACTIONS. 

SUMMARY. -

Nucleon-nucleus rearrangement reactions proceeding via a nu­
cleon-exchange mechanism are investigated in the framework of a 
three-body model. Starting from the Alt, Grassberger and Sandhas 
representation for the transition operators, we derive, by means of 
a suitable operator multiplier technique , an uncoupled integral equ~ 
tion showing in the inhomogeneous term the role of the nucleon-nu­
cleon off-energy-shell t-matrix. The knock-out triangular diagram 
amplitude involving the off -energy-shell t-matrix is compared with 
the corresponding amplitude in the Born approximation for the t-m~ 
trix. Our results show that the knock-out amplitude is rather sensi­
tive to the off-shell behaviour of the two-nucleon interactions. 

1. - INTRODUCTION. -

Since the Faddeev work on the three-body problem(l) a great 
deal of theoretical interest has been devoted to the off -shell aspects 
of the nuclear interactions. Indeed, the off-shell behaviour of the 
two-body scattering amplitudes represents the input information for 
solving problems that involve composite particles. 

Nuclear rearrangement reactions are possible tools to explore 
in detail the role of these off -shell effects. For an exact description, 
the rearrangement scattering problem should be formulated in a N­
-body context (N ?! 3)(2,3). Generally, for N> 3 this treatment aE 
pears to be too complicate for practical purposes. For this reason, 
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one usually limits oneself to processes which can be approximately 
treated inathree -body context. Among them we choose, as testing 
ground for investigating off -shell effects, the nucleon-nucleus rear­
rangement reactions proceeding via a nucleon-exchange mechani s m. 

Our choice is motivated by three main features relative to the 
theoretical description of such a rearrangement problem. First, to 
construct the inhomogeneous term of the uncoupled integral equation 
with compact kern,el for the rearrangement scattering operator, one 
needs only the nucleon-nucleon off -shell t-matrix, which has been 
exte nsively studied in the last years and, therefore, is fairly well 
known. Second, the transition amplitude contains nuc leon-nucleus 
form factors which are simpler, and therefore better known than th e 
nucleus-nucleus ones involved in transfer reactions betwe e n two nu­
clei. Third, from a study of the Feynman diagra ms associ.ated with 
the possible reaction mechanisms(4), it follows that the off -shell b."'. 
haviour would affect predominantly th e cross sections in the forward 
angle region, where they are larger and therefore better known than 
the backward region values . On the contrary, in stripping and pick-up 
reactions s imilar off -shell effects predomi nate at backward angles. 

We have be e n stimulated to study the above off-shell effects al 
so by some suggestions c oming from earlier studies on th e effective 
inter·action in nucleon - nucleus scatte ring problem(5, 6). The r e one 
recognizes that the effective interaction, responsible for the transi­
tion' has the nature of a transition operator. In th e spirit of the usual 
distorted -wave Born approximation (DWBA) only the Born term of th e 
transition operator is retained(7). To get a first insigh t into th e role 
of the t-matrix it was assumed that the off-shell t-matrix had th e sa­
me form as the free on-shell transition m a trix(8). However, it has 
been proved that this on-shell approximation is not generally adequate, 
e , g. for break-up reactions below 150-200 MeV(9, 10, 11). 

The importance of the nucleon-nucleon off -ene rgy-shell effects 
in the nucleon-exchange reactions has been already outlined, from a 
qualitative point of view, within the context of the static limit model 
for the three-body proble m(12). To give a qua ntitative evaluation for 
them, we shall compare calculations involving the two-nucleon off­
-shell t-matrix with calculations involving only its Born approxima­
tion. 

In order to clarify the role of the nucleon-nucleon t-matrix in 
the framework of a three-body a pproach, we shall outline an a lterna­
tive procedure to the usual Faddeev-Lovelace method(l, 13-15) . By 
means of a suitable operator multiplier technique( 16, 17), we obtain 
one uncoupled integral equation with a compact kernel. The inhomo­
geneous term, which corresponds, in the Feynman diagram langua­
ge(18), to the sum of a heavy-particle stripping polar graph and a 
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knock-out triangular graph, will be rewritten in a compact form in­
volving the Green function for the two-nucleon subsystem. 

In a three-body context one can construct a generalized distoE. 
ted-wave model which has the above inhomogeneous term as starting 
point and is completely equivalent to the Feynman diagram summa­
tion method (FDSM)(4, 19-22). Unfortunately, the simultaneous use 
of the off -shell t-matrix and of the distorted-waves requires a prohl 
bitive amount of computing time, because of the high-dimensional n~ 
ture of the integrals involved and of the required transformations in 
the momentum-space between the arguments of the t-matrix and tho­
se of the distorted-waves. 

Therefore, we shall resort to the approximate treatment propo 
sed in a recent work on the off-shell effects in break-up reactions(IT,;c) 
According to this paper, we limit ourselves to evaluate the two-nu­
cleon t-matrix operator between asymptotic channel states in the foE. 
ward scattering angle region and for not too low energies. In these 
cases one expects that the first terms of the Watson-Faddeev multi-
ple scattering series(23) are responsible for the leading behaviour of 
the transition amplitude(24). 

According to earlier calculations concerning different nuclear 
reactions, our results show that the knock-out amplitude for nuc1eon­
-exchange reactions is rather sensitive to the off -energy-shell beha­
viour of the two-nucleon t-matrix in the energetic range usually ex­
plored in experiments. By comparing the off-energy-shell t-matrix 
calculations with the Born ones, we find a relevant difference in the 
absolute magnitude of the cross sections, while the shapes of the an­
gular distributions are almost the same in both cases. 

Section 2 deals with a general three-body formulation of, nucleon­
-exchange reactions in terms of symmetric transition operators. Sec­
tion 3 is devoted to the knock-out triangular diagram amplitude invol'!... 
ing the neutron-proton off-energy-shell t-matrix. A convenient regu­
larization procedure is carried out in order to evaluate numerically 
some Singular integrals. In Section 4 we shall be concerned with the 
comparison between the off -energy-shell t-matrix calculations and the 
corresponding Born ones . 

(x) - Notice that the treatment of nucleon-exchange reactions involves 
full off -shell t-matrix elements, while break-up calculations involve 
only half -off -shell elements. 

t, 0 ' 
.~ -
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2. - GENERAL THREE -BODY APPROAC H IN TERMS OF 
SyMMETRIC TRANSITION OPERATORS.-

2.1. - Formalism. 

Nucleo n -nuc l eus rearrangement proc esses A(a, b)B proceed ing 
via an exc hange between the incid e nt nucleo n a and a nuc l eon b of 
the target can be written sc he m atically as 

(2. 1) a+(b+c) -b+(a +c ), 

where c is the core both of the t a r get nucle us A = b + c a nd of the 
residual nuc l eus B = a + c (a, b = p, n; a t b). 

W e d escribe th e r eact io n (2. 1) by mea ns of a three- bod y model. 
The nu c lear cluste r c is tr eated as an inert co r e . 

We start from t he no ns t andard sym m etric form for the transi­
tion operators ( 0 ~ a = 1 - (\ ~ a ) 

(2.2a) u ~ a ( z ) 
- -1 

= (\~a G a (z ) + V~ + V~ r;(z)Va 

(2. 2b) 

propos ed by Alt, Grassberger and Sandh as (14). Th e indices a and ~ 
denote t he unbound particle (a , ~ = a, b, c ) in the init ial a nd final c ha!:1. 
nel, respective ly, or the asymptotic state with all partic l es fr ee (a, 
~ = 0). T he operato r Va represents the s um of the interactions not 
contained in the channel a, th at i s Va = V - va' where V is th e su m 
of a ll the interactions a nd va the interaction b e tw een ~ a nd l' 
( a f ~ f l' ; v 0 = 0). The r esolvent operators are d efined as usual 

(2. 3) 
-1 

G(z)=(z-H) , 

whe r e Ha and H are the channe l a nd the tota l Hamiltonian, r espec ­
tively. The two-body scattering operators t a , ac ting in the three -par 
ticle space and satisfying the well-known equations 

(2. 4) 

are connected with the above channel resolvents by the relations 

(2. 5) 

The transition operators (2.2 ) coincide on-the-energy-shell with 
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the conventional asymmetrical ones 

(2. 6a) 

(2. 6b) 

Up a (z) = Va + Vp G(z)V a 

+ Upa(z) = V P + Vp G(z)Va 

5. 

and therefore give, in the asymptotic channel state representation, 
the physical transition amplitudes. 

We shall introduc e in Sect. 2. 2 a suitable operator multiplier 
technique, by starting from the Lippmann-Schwinger (LS) equations 
for the symmetric transition operators (2.2) 

(2. 7a) 

(2, 7b) 

Equations (2,7) have the same kernel as the LS equations for the co!;. 
ventional operators (2, 6) 

(2, 8a) 

(2, Ilh) 

ujja (z) = Va 

Up a( z ) = Vp 

+ Vp Gp (z)ujja (z) 

+ 
+ U ~a( z )Ga (z)Va 

but differ from them in th e inhomogeneous term, It is well known 
that , owing to the noncompactness of their kernel, the LS equations 
are not amenable to a solution by usu al calculational scheme s , 

Conventional approaches to nuclear rearrangement processes 
start, usually, from a Born approximation of the eqs. (2, Il) or of so­
me more sophisticated equations (e , g. see eqs, (34, 35) of ref. (25)) ha~ 
ing, like the eqs. (2. 8) a noncompact kernel. For instance, in the 
usual DWBA one assumes that the interaction responsible for th e 
transition is given by the non-optical part of the inhomogeneous 
term of the eq. (2. 8a) or (2. 8b), i, e. by Va -Wa in the pr'ior re­
presentation or by Vp -W~' in the post representation (Wa and Wp 
are the optical potentials in the initial and in the final channel respec 
tively)(26). For the exchange or knock-out processes (2.1) on a hea';y 
target nucleus one approximates Wa by vb and Wp by va' so that 
the interaction causing the transition is assumed to be the potential Vc 
between a and b(7, 12) . 

A rigorous mathematical basis for deriving correct approxim~ 
tions to the exact transition amplitudes is provided by the Faddeev­
-Lovelace equations for the operators (2,2)(14), By iterating them 
once, one obtains integral equations characterized by a compact ke~ 
n el and exhibiting in their inhomogeneous term the two-body t-oper~ 
tors, 
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2.2. - A n Operator-Multiplier Technique. 

Integral equations with inhomogeneous terms involving two-body 
scattering operators can be directly derived from the LS e qu a tions in 
t he general context of the operator multiplier t echniques proposed by 
Blanke nbecler and Sugar(16 ). This alternative procedure to the Fad­
deev-Lovelac e one, appears more suggestive because it l ead s to un­
coupled integr a l equations having at once a compact kernel without 
need of iteration. The multiplier we use for rearrange m e nt processes 
(a r~) is sli ghtly diffe r e nt from that proposed in ref. (17). Further­
mor e , it i s applied to the s ymmetric transition operators and not to 
the conventional ones, as in ref. (17). 

Let us multiply on the left hand side the eq. (2. 7a ) by the op e l''': 
tor(anh, MO) 

(2. 9a) M = (l-v G )-1 (1- vaGo )-l, 
I'a l' 0 

whic h does not introduce spurious bound -sta t e solutions (16, 17). U s i ng 
the relations 

(2 . 10) 

th e new inhomo ge neo us term reads 

(2 .11) 
-1 

G +t 
o l' 

and coincides with th e s um of the two simplest terms appearing i ll the 
iterated Faddeev-Lovelace e quations for r earrangeme nt processes. 
After so me straightforward manipulations on th e ker ne l of the eq. (2 . 7a) 
we obtain the following uncoupled integral e quation wi th compact kernel 

(2.12) 
-1 

U Q a = G +t + (1 +t G ) (1 +t G )( v Gov + V II Got II ) GUll a . 
I-' 0 l' l' 0 a 0 a l' I-' I-' 0 I-' 

To e liminat e the explicit appearance of the potentials in the kernel, the 
properties (2 . 10) should be used in a way similar to what is done in 
ref. (17). Multiplying on the right h and side the eq . (2. 7b) by the ope­
rator 

(2 . 9b) 

one obtains a n equatio n e quiv a l e nt to (2 . 12) with the same inhomoge­
neous term (x). 

(x) - The inhomogeneous term (2. 11) of the eq. (2.12) can a l so be dir ec 
tly obtained in the framework of the Yak ubovski, formalism applied to­
the three-body case(3). 

, 0 ' 
',.;. ;s 

• 
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2.3. - Polar and Triangular Diagram Mechanisms. 

In the channel state representation I ~a) the first term of eq. 
(2.12), which contributes only to rearrangement collisions, coincides 
on-the-energy-shell with the amplitude for the polar diagram descri!!. 
ing the transfer of the particle 'Y (Fig . 1a with -y = cl. As far as the 
process (2. 1) is concerned, one has 

(2.13) 

Q 

Ap = ~bIG~ll~a) = <¢blvbGoVal¢al = <~bIVbl~) = 

= <~bIVal¢a) . 

b A 

c 
B 
= Q 

(a) (b) 

B 

b 

FIG. 1. - Polar (a) and triangular (b) diagrams for the nucleon­
-exchange reaction (2. 1). 

These equalities follow from th e homogeneous integral equation for 
two-body bound states . The second term in (2.12) gives in th e channel 
state representation the amplitude for th e triangular diagram descri!?, 
ing a knock-out mechanism with a - ~ off-shell interactions (Fig. Ib 
with a = a, ~ = band 'Y = c). One has 

(2.14) 

Summing the amplitudes (2.13) and (2.14) and taking into ac­
cou nt the relation (2.5) one obtains the following compact form for the 
inhomogeneous term in (2.12) 

(2. 15) A +A =/r/, IVGv I,,' 
p T " Pb b c a 'f' a I . 

Notice the e xplicit appearance of the resolvent operator Gc for the 
a-b subsystem. 

Obviously, the terms G~l and tc are the zero-order term and 
the first-order one, respectively, of the multiple-rearrangement scat 
tering series(23, ~4) which can be derived from the Faddeev-Lovelace 
equations for symmetric transition operators. They correspond to the 
simplest graphs for single-exchange reactions which can be obtained 
in the framework of the nonrelativistic Feynman-diagram approach to 
direct nuclear reactions( 18). 
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From the well-known expressions of the distance of the Feyn­
man diagram s ingularities from the physical region boundaries, it 
follows that the triangular singul8.rity dominates at forward angles, 
while the polar one contributes mainly in the backward direction. 
Furthermore, for nucleon-exchange on a heavy target nucleus, the 
triangular singularity is much nearer to the forward physical region 
boundary than the polar one to the bac kward boundary. 

Notice that the polar and triangular graphs have the same three­
-ray vertex functions (i. e. the nucleon-nucleus form factors), the la.! 
ter co ntaining, furthermore, a four-ray vertex function (i. e. the two­
-nucleon off-shell t-matrix), which will be treated in Section 3 . 2. 

Higher-order terms in the multiple-scattering series are ex­
pected to give contributions increasingly isotropic. This is boene out 
strongly by some calcu lations relative to a collision peoblem involv­
ing three-nucleons (see ref. (24) 1. Thus, the l eading behaviour of the 
transition amplitude is given by the first terms in eq. (2. 121. 

Starting from the Faddeev-Lovelace equations for the symme­
tric transition operator, neglecting the coupling terms bctwee nelas­
tic and rearrangement channels in the equations for t.he opcrators ~J aa 

and Ubb(22), and taking into account o nly the channel bound slale term 
I Vla > g a < Vlal in the spectral representation for G a (a = a, b), onc 
obtains , on-lhe -energy-shell, t.he generalized distorted -wavc approxi 
malion (GDWA)(4) -

<¢ I UGDWAI'" " = b ba 'I'a / 

(2. 16) 

where Pa (p~) is the initial (final) c hannel momentum, m a the z-col':: 
ponent of the spin of the particle a, I Vl a ) the a -channel bound stalc 

and I ~a > = I Pa m a> I Vl a>. The quantities u aa = -< Vlall;aa l Vla ) 
are the optical scattering operators acti ng on the plane-wave states 
1Pama">. The wave-operators l+gauaa operatingonlPama) 
give the effective two~body distorted-wave states(19). 

The operator vbGc va sandwiched between the inte rnal bound 
states in eq . (2. 16) plays the role of a generali zed transition potential. 
It corresponds to the inhomogeneous term of the eq. (2. 12) (see also 
eq. (2. 11)). If the three-particle intermediate state effects are ne­
glected(x) and the a-b off-shell t-operator i s replaced by its Born 

(x) - This means to assume that the equality GovalVla> = 1 Vl a'> 
holds also off-the-energy-shell. 

'0 " '.I: J 

• 
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approximation, the eq. (2. 16) assumes the usual DWBA form for ex­
change reactions. For s trong interactions it is unlikely that Vc is 
always a good approximation to tc' If the triplet deuteron bound sta­
te and the singlet virtual state are important in the intermediate sta­
te, the Born term is manifestly inadequate. Furthermore, the nor­
malization of the DWBA depe nds on v c and it is, generally, different 
from the normalization based on tc' 

The GDWA (2. 16) involves a nine-dimensional integral(22). For 
the reasons explained in Sect. 1 and according to the ref. (11) we 
shall limit ourselves to evaluate the knock-out triangular diagram 
amplitude (2. 14) with the off-energy-shell te-matrix contributions. 

3. - THE KNOCK-OUT TRIANGULAR DIAGRAM AMPLITUDE. -

3.1. - General Form of the Knock-out Amplitude. 

Let us now give an explicit evaluation of the knock-out triangu­
lar diagram amplitude (2.14) involving the off-shell tc-matrix. Three­
-body states in momentum-spac e depend on the momentum pair P a 
and 'ita (a =a, b, c), where Pa is the momentum of particle a in the 

-+ 
total c enter of mass system, and k a is the relative momentum between 
the particles ~ and 'Y(x). In this representation three-particle states 
with all particles free will be denoted by I ka P a mambmc7 . Omitting 
spin state specification, one has 

(3. 1) 

since they describe the same state. Different apices will be used to 
denote different three-body states. 

Let us now insert in eq. (2. 14) intermediate momentum integra 
tions and magnetic sums over the complete sets of two-body states 

\
-+, , '> 1- . '-kbmamc and kambmc 1', and take into account eq. (3. 1) and the 
following relations between momenta specifying the same three-body 
state 

(3. 2) 
~ 

,M 
-+ M 

~ ~ C 7 ~ a 
k = Pa - Pc k = Pc +Pa ; a Mb+Mc c Ma +Mb 

-+, M 
4, Mb c -+, -+, 4' -+, 

kb = Pb +Pc k = Pc - Pb Ma+Mc c Ma+Mb 
(3. 3) 

-P ~ 

(x) - With the symbols ka' Pa we denote physical momenta and not 
the normalized ones, as in ref. (13). See the kinematic considerations 
developed in ref. (22). 

, 0 '"1 
<,;; I 
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where Ma is the mass of the partic le a. Changing th e int egration va 
riables kb and ka in P~ and P c ' r e spectively. and express ~ng the -
tc -matrix elements in the thr ee -body space in terms of the t c -matrix 
elements in the a-b two-body subspace. namely 

<'k';' m ' mb' m" tc(Z )' k~ m mbm"> = cca c cca c 
(3. 4) u( 2 2 

<. .... , , , \,... Y' Pc \..,. , 
= km . m b t(z-2 ) kmmb'><l(p-p) <l, 

ca c 'lIc ca ccm m, c c 

one obtains 

(3. 5) J 
,....". I ~,.' "\" . )'+ ~ (... ) f (q m m) q m m t (8 +11' q m m f q mbm 

'<' b b a c ca b c c c a a a c d. 
A = "" , P T m m m ,12 ,2 u(2 2 c 

b cay' qb Y' qa 
(E

b
+ 2 ) (Ea+ 2 

flb fl a 

with 

(3. 6) fa(q ma m ) = <C; ma m Iv \1p). 
a~'Y a~'Ya a 

4 ._ . .,., ~I ~ ....,., 

The momenta k • k • kb and kc evaluated for p = p have been deno 
~ -1' a~1 c <~I C c 

ted by qa' qc ' 'ib and 'ic r es pectiv ely. In eqs. (3. 4) and (3.5) fl a 
and va ar e the reduced masses for the ~ -1' s ubsystem and for the 
system consisting of a a nd ~+-Y. respectively. The energy shifting 8c • 
coming from th e prescription (3.4). i s given by 

(3. 7) 8 = E - E 
C a 

= 

where Ea is the binding ener gy of the bound s tate in the c hannel a and 
E = 02p~/2 jJ a is the e ntrance channel e nergy in the total center of mass 
system. 

The nucleon-nucleus form factors fa (<ia m m ) defined by eq. 
(3. 6) mal- be writt en. by means of usual angular~mohentum expan­
sions(7. 7) . i n the form 

(3. 8) 

2 1 u( 2 
f (q m m ) = - HZ ---l"-
a a ~ l' 1T 2fla 

Nl ~. 1 <j sm . m IsNmN) 
a Ja a a l' J a l' 

• 
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with 

(3 . 9) 

In eqs. (3. 8) and (3.9) the symbol N stands for the nucleus (~+'Y), 
while the meaning of sa and of the bound-state quantum numbers j a' 
la' mja' m l a is quite transparent; ul a (r) is the radial part of the 
bound-state wave function 1J!a and NI a its asymptotic normalization 

constant; X ~ is expressed in terms of the binding energy 8 a by 

~2 X ~ = 2J.1 a 8 a . The constants ~jala and NI a are related to the spe£ 
troscopic factors and single-particle reduced widths, respectively, as 
conventionally used in direct nuclear reaction theories. 

For·~the sake of completeness, let us give also the momentum­
-space representation of the amplitude (2.15). Adding to the amplitude 
(3.5) the polar contribution (2.13) one obtains after some kinematic 
variable transformations(22) the following expression 

(3.10) 

where 

(3,11) 

A + A = 
P T 

= I 
::t .. , ,. (+) .. ,.. , , .. 

f
b
. \qbm m ' ) 1J! (q q m mbm mb;S +i'Y)f (q mbm ) 

~ a c c c c a a c a a c dp 
m'-Tn~rn' 1.(2 ,2 c 

[T ·.,.-~~a " qb 
8 b + 

(-B .,.. , , 
1J! (q q 1m m m m 'z) = 

c c cab a b' 

2J.1b 

(-q' m' mb'lt (z)1 q m m
b
) 

c a c c a 
+ 

f,(2 2 
" qc 

z -

,..", .... 
is the two-body scattering state (1 +t G ) I qcm mb"'> for the a-b sub c a a 
system in the momentum-space representation. The polar amplitude 
does not involve two-body off -shell interactions and does not influence 
the behaviour of the transition amplitude in the forward angle region, 
as already mentioned in Sect. 2. For these reasons it will be ignored 
in our specific calculations. 

~09 
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3.2 . - Th e Neutron-Proton off-Energy-Shell t-Matr·ix Elements. 

To eval uate the amplitude (3.5 ) one needs the expression of the 
off-shell t-matrix ele m ents. We start f ro m the wid e ly u sed assump­
tion that the two-nucleon t ransition operator is dominated by the d e u­
teron bound state a nd the Singl et virtual state(13 , 24, 28-30). This 
assumption l eads to the use of a no nlocal separable two -nucleon in­
terac tion 

(3.12) 
........ 

v (k',k) = 
c 

.L 
? 
ufLc n=O,l 

-+ .+ 
f (k')). f (k)P 
n n n n 

wher e P n are projec tion operators onto the deuteron state (n=O) and 
the single t state (n=1). In this a pproxim a tion for .th e pot ential, the 
two - body LS equation for the t-matrix e l e m ents c a n b e easily solved 
to give 

(3 . 13) 

where 

(3.14) 
-1 

t: ( z) 
n 

,,(2 .. -+ 
~2 ~ f (k'):i; (z)f (k)P , 

fLc n =0 1 n n n n , 

-. 
If the nucleon-nucleon form fac torS f (k) a r e chosen, as 

usua l(24, 29, 30), to be of the Yamaguchi f~rm(31) 

(3 . 15) 

one has 

(3. 16) t: (a+i'Y) = ). 
n n 

for a> 0 
(3 .17 ) 

for a <. 0 
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The parameters A n and ~ n are chosen with the prescription of fitting 
the deuteron binding energy, the triplet and singlet scattering lengths 
and the singlet effectiv e range. Using the experimental data of ref. (32) 
for the triplet parameters ahd of ref. (29) for the singlet ones, one 
obtains for the np system(x) 

(3. 18a) ~o = 1.440 fm 

(3.18b) ~1 = 1 153 fm 

-1 , 

-1 
, 

A = 0.407 fm 
-3 

o 
-3 

Al = 0.145 fm 

Since the quantities (3,13) act into total spin-space for the np 
system, the t-matrix element appearing in (3.5) reads as follows 

<:~'m'm"t (S +il')l~ m m> = 
cabcc cab 

(3, 19) 
I I .... , .... 

~ cn(m mbm mb)f (q ) T: (a + 11')f (q ) 
a a ncn nc 

n=O, 1 

The constants c n coming from vector-coupling procedures have 
the following form 

(3, 20a) 

(3.20b) 

, ' 1 ~ c (m mbm m
b

) = - (1+ U , ,(\ hI" 
o a a 2. m m m mb m +m m +m , 

a b a a b' a b 

, , 
cI(m m m m ) 

a b a b 
1 m'+m 

= --(-1) a ad (\ 
2 m' -m' m -m 

a' b b' a 

(x) - Since our three-body model involves a definite pair of nucleons 
(the incident proton a nd the emitted neutron, or viceversa) and the 
inert core c, we do not take an average over the np and nn singlet d~ 
ta to determine the singlet parameters. The average values would be 
slightly different from the values (3, 18b). Furthermore, notice that 
exchange terms arising from antisymmetric properties with respect 
to all the nucleons (included the core ones), cannot be taken into ac­
count in our three-body context. However, their effect on the shape 
of the angular distribution is expected to be small (see refs. (10) and 
(33)). 

l 11 :l: ..I. 
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3.3. - The t-Matrix Amplitudes and the Born Ones. 

By inserting eqs. (3. 8) and (3.19) in eq. (3. 5), one gets an explicit 
expression for the knock-out triangular diagram amplitude. If the func­
tion "n(a) is replaced by the constant An' one has from (3.5) the tri­
angular amplitude in the Born approximation for the two-body tc -matrix 
(see eqs. (3. 13) and (3; 12)). In this approximation the off - energy-shell 
effects due to "n( a +iy) disappear, because ther e is no dependence on 
the two-body energy Sc = t\2 a /2flc for the a-b subsystem. Putting 

(3.21) :::: 1: , 
n 

one c an write 

(3 . 22) 

where 

(3.23) 

(3 . 24) 

and 

A = 
X 

m. ml m mb 
Ja a c 

I m J· m l m 

* ~ NI Nl ~ j I ~ j I 
m. m

l 
m mb a b a a b b 

Ja a c 
I m

J
. m

l 
m 

b b a 

b b a 
C = (j s m m Ism) -( Ism m I j m "'-
jl acjcAA ablbaJ·/ a a a a a 
jblb 

. < jbs m. m I sBmB'> < lbs m l m I I jbm. '> ' c Jb ca b a Jb 



(3.25) 

.,. .... 
with X = T, Band p = p 

c 
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In the following the integrals (3. 24) with X = T, involving off­
-energy-shell t-matrix contributions will be called simply t-matrix 
ampltudes, while the integrals (3.24) with X = B, referring to the 
Born approximation for the t-matrix will be called Born amplitudes. 
We shall write 

(3.26) 

3.4. - Regularization of the singular triplet integrals. 

In order to make the above formulae suitable for numerical cal 
culations, we shall now perform a convenient regularization of the in 

m m -
tegrals To .lallb. The integrand in (3. 24) for n = 0, X = T and E:> €a 

'ab 
has a singular point at p = Po + i-y with 

(3. 27) P = + [2 V c (E _ € + € )] i 
o ~2 a 0 

corresponding to the deuteron pole z = € + i-y for the tc -matrix ele­
ments (3.13), (3. 14)(x). In equation (3.27) 

€ = ~2( ~ _ Q )2/ 2fl o 0 Po C 

is the binding energy of the deuteron. Obviously, the singlet pole does 
not lie on the integration path, being ~ 1 - PI < O. 

ml mlb 
The integrals T a could be calculated for several conti-

O;lalb 
nuously decreasing values of the small positive parameter -y and the 
results should be compared among themselves in order to reach · a 
definite numerical accuracy. However this procedure is unpractical 
in numerical computation, as already discussed in refs. (21, 34). It is 

(x) - Since we exclude too low incident energies (see Sect. 1), we shall 
perform calculations for E > € a' 
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evalu ated. In Figs. 6 a nd 7 we plot the t -matrix amplitudes and the 
Born ones for la =lb =0, R A r::::< RB = 4 fm, in the forward sc attering a!l. 
gle region, for E=20 and 100 MeV, respec tively. Here also we have 
normali zed the a mplitudes to the value of the triplet Born one a t 00 

. 1 I 1 
and 100 MeV, denotIng them by R n, In and Bn. 

By analogy with the zero-range case , Figs . 8 -10 give the a ng!:'. 
l ar dependence, for E=20 and 100 MeV, and the energetic dependence, 
for 9 = 00 , of the quantitie s S~, and S~. T h ey a r e proportional to the 
differ ential cross sections and are given by (4. 8) and (4 . 9), respec­
tive l y, with p, R n, In and Bn replaced by p ' , R~, I~ and B~. The 
normalization factor p ' is defined as in the zero - range case. 

Similar calculations carried out for la=lb=l give r es ults close 
to t h e above ones . An example is shown in Fig. 11 , wher e the ampli ­
tude B II (i. e . B OO

l1 
normalized as in th e above cases) is compared 

n n· II 

with th e corresponding t-matrix amplitudes R;~ and In for E=20 MeV . 

Calculations performed at 50 MeV give, as far as off-energy­
-shell effects are concerned, r es ults i nte rmediate between the 20 and 
100 MeV ones. The behaviour of the transition amplitudes and of th e 
cross sections in the b ac kward angle region is not plotted in the figu­
res, for the reasons explained in the preceding Sections. 

The finite-range results confirm the i mpo rtance of the off­
-energy-shell t-matrix contributions in the range of the incid e nt 
energy usually explored in experiments. In fact, a certain discrepal2.. 
cy betwe en th e t-matrix results and the Born ones remains even at 
100 MeV. 

In comparison with th e zero-range results we observe that fini 
te-range effects cause ah o sc illatory behaviour and a stronger decre~ 
se with angle of the differential c ross sectio n. Owing to th e presence 
of the propagators (3.15) in (3. 13), our t-matrix amplitude is more 
decreaSing with angle than the triangul ar amplitude constructed with 
a constant four-ray vertex function . Such a strong decrease is needed 
in order to reproduce the experimental data(x) . The occurence of the 
deep minim a in Figs. 8 and 9 is due to the absence, in our formalism, 
both of mechanisms Bifferent from the triangular one as well as of 

(x) - For a detailed comparison with experi m ents one must remove 
the above simplifying m ass restrictions and introduce the channel di­
storsions. Thus, rather cumbersome and high-dimensional integrals 
have to be evaluated. In this paper, we are mainly interested in th e 
analysis of the off-energy-shell effects a nd, to perform this program, 
we resort to a calculational model which preserves the gross features 
of the actual transition a mplitud es. 

I .-, " 
.I.~V 

• 
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channel distorsions (the latter ones correspond to a phenomenological 
simulation of the higher-order terms in the multiple-scattering series). 
The polar graph amplitude, which is, in the heavy-core approximation, 
a slowly increasing function of the angl e, and the higher-order t erms 
provide a roughly isotropic background contribution in the forward an 
gle . region. 

We notic e, as a general feature of the results obtained for the 
amplitudes, the predominance of the triplet contributions over the 
singlo:!0nes (see Figs. 2, 3, 6, 7 and 11). This fact justifies, a po­
steriori, the correctness of the separable potential approximation 
(3.12). Furthermore the triplet contributions are enhanced by the 
weight factors which appear in the formulae (4. 8) and (4. 9) and arise 
from th e particular structure of the coefficients (3. 20 ). 

In conclusio n, the most relevant difference between the t-matrix 
predictions a nd the Born ones appears in the absolute magnitude of th e 
cross sections. The shape of the angular distribution is only r o ughly 
the same in both cases, while the energetic dependence seems to be 
rather different at lower energies. 

The above results about the importance of the off-energy-shell 
effects in nucleon-exchange reactions agree with similar results obtai 
ned for different nuclear processes, as break -up(9, 11) a nd heavy-ion­
neutron tunnelling reactions(27). 

We are pleased to thank Professor C. Villi for his continuous 
interest and stimulating suggestions throughout this work. Thanks 
are also due to Prof. G. Pisent for dis c ussions and to Mr. G. Sal­
masso for his assistance during the working out of the numeric a l 
computation. 
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