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SUMMARY. -

The £-th partial wave S-matrix element for cut-off potentials
is Taylor expanded in the energy and momentum variable, The expan
sion is based on a suitable finite-interval Green's function, by which
the derivatives are obtained in a recursion form involving only repea
ted integrations of the Green's function itself. The Taylor series can
be analytically continued by resorting to the Padé method; some re-
sults of a numerical experiment are quoted, Inthis paper, however,the
emphasis is put on a rather indirect but rigorous procedure based on
the Hadamard theory, which allows to determine, in principle, all
the poles of the S-matrix starting from its momentum Taylor series,
Numerical results are displayed.

1. - INTRODUCTION. -

The scattering matrix element in a partial wave for a short-
-range central potential is a meromorphic function of the momentum
in a strip along the real axis(3), In principle, it can be expanded in
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a Taylor series about any regular point; the analytic continuation
theory assures then that this series determines completely the S-ma
trix element in the whole analyticity region. As a matter of fact, the
actual pursuing of this statement is not straightforward since it invol
ves the search of practical methods for the evaluation of the S-matrix
momentum derivatives, and the use of suitable procedures in order to
go outside the Taylor series convergence circle,

In the present work we point out some results concerning the
cut-off potential scattering problem, which is of the greates interest
in the nuclear resonance problem; in the concluding remarks a hint
for the generalization of the procedure is given.

The results displayed in the present paper can be summarized
as follows.

For cut-off potentials the S-matrix element can be expressed

" in terms of a suitable Green's function defined in the interaction region
only, and satisfying energy-dependent boundary conditions(4, 5, 6) (in
the following we refer to its as the finite interval Green's function,

or {:jz’function). In the present work such a Green's function is proved

to satisfy a Fredholm-type integral equation relating two different ener
gies; from this equation the momentum derivatives are obtained in a
recursion form which involves only repeated integrations of the Green's
function itself. The S-matrix Taylor series can be easily obtained from
these., Similarities and basic differences with respect to the perturba-
tive expansion are throughly discussed,

Concerning the analytic continuation of the S-matrix Taylor
expansion, various approaches have been used, A possible choice is
to resort to the Padé approximant metl1od(7); although the numerical
results so obtained (part of which are displayed in the present work
and in Ref, (1)) are quite satisfactory, the problem of giving complete
and rigorous theorems on the convergence of the approximants has not
been solved in general,

In the present work, therefore, we prefer to put the emphasis
on a procedure which-although rather indirect - gives a complete and
mathematically rigorous answer to the analytic continuation problem,

The solution we propose is based on the following considerations,

It is well known that for cut-off potentials the only singularities of the
S-matrix in the whole momentum plane are poles., Now, in the Ning Hu
representation the S-matrix is expressed in a factorized form involving
only the position of the poles(3), so that the analytic continuation amounts
to the determination of the pole affixes, In this connection we resor-

ted to a method due to Hadamard(S), devised for the determination of

the polar singularities of a maromorphic function starting from its Ta



ylor expansion about a regular point, More rigorously, the method
allows, in principle, to determine the affixes of all the poles lying
within the meromorphism circle (the largest circle centered in the
expansion point and containing only poles); in the problem we are dea
ling with this circle coincides with the momentum plane,

In Section 2 the essentials of the finite interval Green's function
formalism are recalled in a self-consistent form, which should make
it unnecessary to refer back to the original papers, Section 3 is devo
ted to the introduction of the Fredholm-type integral equation for ener
gy variation of the finite interval Green's function, and to the deduc-
tion of its Taylor series. In Section 4 the analytic continuation methods
we use are briefly discussed; the results of some numerical experi-
ments concerning the fit of a resonance-exhibiting cross section by
the Padé method, and the pole affixes evaluation by the Hadamard theo
ry are displayed as well,

2. - THE FINITE INTERVAL GREEN'S FUNCTION AND THE SCATTE
RING MATRIX, -

It is well known that the solution of any guantum mechanical
problem with a cut-off potential requires the actual solution of the
Schr8dinger equation in the interaction region only. A formulation of
this problem in terms of a Green's function defined in the sole inter-
action region has been given by Bloch(‘l); the analytic continuation of
this algorism in the momentum and energy plane has been considered
by the authors in a previous work concerning the pole expansion of
the S-matrix(6),

This Section is devoted to a self-consistent outline of the C} func
tion formalism in the notation more suitable for the purpose of the pre
sent work,

2.1.- The Finite Interval Green's Function, -

We first consider the scattering of two spinless particles in-
teracting through a non-singular short range central potential, Let
M be the reduced mass and E =2 k2/21\f[ the energy in the c, m, refe-
rence frame, The physical solution 'tpn(*')(k r) in the £ -th partial wave
is defined by the equation

(1) H, ¥, (+)(k,r)=EWé+)(k,r)

together with the boundary conditions
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(2) wg(+)(k,0)=0, ¥ ik, r) —— = [Ie(kr)—Sc(k) 0p (kr)] ;

r—s 0O
the partial wave Hamiltonian operator Hg is defined by the relation

5 [ a  e(e+1)
.

.{,:_ 9
ant dr r

] +V(r) =H§+V(r);

I, (kr) and 0p (kr) are the ingoing and outgoing solutions of the unper
turbed Hamiltonian Hg , characterizeéd by the following asymptotic be
haviour

~i(kr- %) i(lr-f5-)
Iy (kr) —— e . Oz(kr)...__, e
r—y oo r—3 00

Here we quote also the regular solution ¢, (k, r) and the outgoing Jost
solution fp (k,r), which satisfy eq. (1) and the following conditions (¥)

(3a, b) lim r £-1 Pp (k.r)=1, lim fp(k,r)=lim Oe(kr);
n T '~ 00 r— Q0

the Jost function S% (k) is defined as the Wronskian of '@g,(k:r) and fp(k, r)

d d
Fo k) =fp(k,v) 3= @, (k, r)- @, (k,r) 7= f, (k, r)

From the above definitions the following integral representation
for the physical solution can be derived

- ( +
(4) 'Wé )(k,r)=Fe (kr)+ dr'GEZ )(k;r,r')V(r')FL (kr')dr',
o}
where GJ(;)(k;r,r') is the complete outgoing Green's function, defined
by the expression

(x) - The solution f(k, r) differs from the Jost solution f

_ +(k,r) of
Newton(3) for the constant factor e"lfﬁfz, ¢



oM 9 (k,r ), (k,ry )
72 7 (k) ’

(5) Gé+)(k;r,r')=—

and

F, (kr) = [Ie(kr)—og(kr)]

M'._..

is the Riccati-Bessel function. From now onward the symbol € will
be omitted when it is a mere label,

For a cut-off potential (V(r)=0 for r>a) it appears from
eq. (4) that, in order to evaluate ¥(*)(k, r) in the interaction region -
- which determines completely the external behaviour and the S-ma-
trix - it is enough to know G(+)(k;1",r') in the sguare interval 04r,r'< a.

We define now in this interval the kernel(ﬁ)

oM @k, r) 5k, r)

52 &1

Ocr,.r'4a,

g(k,r,r‘) = -

where fK(k,r) is defined by the conditions
k
(6a) (H-E)f (k,r)=0 0crta

(6b) 5k, ) =0 G, E%’ (k. )

where d
dr Oller) ,r'=a

0(ka) g

L(k) =

the function ?k(k) is the Wronskian of @(k,r) and fk(k,r). The kernel
(}(k;r;r'), which is defined in the interaction region only, is there coin
cident with G(*)(k;r, r') since the boundary condition (6b) is the mere
transposition at r=a of the asymptotic condition (3b) for the Jost solu-
tion, The kernel Cdl(k;r, r') can be identified with the kernel of the pro
blem of Kapur and Peierls(4,5),
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2.2.- Analytic Continuation of the %—Function. The
S-Matrix. -

As it is apparent from egs. (6a) and (6b) gé(k;r,r') depends on
the momentum in two different ways: through the energy which appears
in the Schrodinger equation and through the boundary conditions., The
general form of the analytic continuation is therefore

o (kv ) (v )

o
(7) g,ﬁ' (}’v‘.;r',r')=—2f2l —Em 0£Lr, r'4La
A (k)
where i'&l(‘??a,r) is defined by the conditions
&
(H-2)f " (&, r)=0
a1 T ~ T
£ (&, a)=0 (ka) fu fg“ (2, ) =L(P~J)fe‘ (&, a)

and "-}ﬁ??" is the Wronskian

2 Y o
3'12' (N =w [fg ,("::., r), o (&, r)_]

(we use the symbol R to denote any complex momentum - in particular
k can be real-and ¥ to denote its related energy ¥=h2(2 /2M; the sym
bols k and E are reserved for real values of the momentum and ener
gy). If fur=f, one get fk"(?ﬁ_,rkf(fﬁ,r) and 53‘-‘(?1):};'(?3), where f({, r) and
F(%) are the Jost solution and the Jost function previously introduced.
The analytic continuation of W ("')(1«:,1") with continued boundary condi-
tions (2) is clearly obtained through the Green's function

; (R, )k, ry)
®  GlRirrne @i re-BE — g =T 0er rae
.,h '

Although eq. (8) and the considerations from which it is deduced seem
to be quite obvious, we preferred to introduce it as a particularization
of the general form (7), to stress the fact that in any case the boun-
dary conditions are momentum-dependent,

Since tp(f:., r) and f(# r) are entire functions of Q’., it follows that
i(k:r, ') is a meromorphic function whose poles are the zeros of
(R): these poles are coincident with the S-matrix ones(3),

R

Most of the deductions we are going to make in the next Sections
are obtained by considering the C}-function as a direct function of the

1
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energy, In order to render (d-‘-,(’g;r, r') a univocal function of the energy
it will be considered on a single sheet of the energy Riemann surface,

The kernel (& ;r,r') coincides with the analytic continuation
of the outgoing Green's function (5) for 0<r, r'« a, but it is not a
resolvent kernel; in fact, because of the energy-dependence of the
boundary conditions, at each energy the O function is related to a
different inversion of (8-H). This will nol. prevent us from writing
an integral equation relating different energies, and obtaining the
derivatives in a recursion form.

Through the analytic continuation of the ¢ -function various ex
pressions of the analytic continuation of the S-miatrix can be derived(5, 6),
The relation that came out to be the most fruitful for the purposes
of the present work is easily obtained by the matching of the internal
and the external solution ar r=a. One obtains

(9) S(?t)=—(&_;—)+21 ~——0(MT~ z

the finite interval Green's function is now introduced by using the
proportionality relation between w(ﬂ({-&,r) and the regular solution
@ (&, r); one gets

( e Hef G \,a a)
(10) (?M,a) 2 ’Jm = ZM? =
From eqs. (9) and (10) one gets finally(4’ 5,6)
2
_(Vv__) B _._?‘:.'C‘»a ’ta Res

Equation (11) is worth a few comments., We first abserve that the
above procedure leads to a separation of the hard sphere scattering
from the so-called resonant scattering. This separation does not in
troduce any spurious feature in the analytic structure of the S-matrix,
In particular, one can easily verify that S() and the %—function have
the same poles, Furthermore, from eq. (11) it appears that all
1nf0rmat10n about Stfu) is contained in the C& function since Ie\a and

&a) are known functions of the energy; because of this the next Sec
tion is devoted to the study of the% -function,

c
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3.- THE ENERGY AND MOMENTUM TAYLOR EXPANSION FOR
THE FINITE INTERVAL GREEN'S FUNCTION. -

In this Section a Fredholm-type equation is derived, which
relates the finite interval Green's function at two different energies
(Sect, 3.1); this equation enables us to deduce a recursion formula
for its energy and momentum derivatives (Sect. 3.2). In Section 3, 3.
an interpretation of the above results in terms of the regularization pro
cedure is analysed,

3.1.- The Integral Equation,-

In order to stress the mathematical pecularities of our forma
lism and to enlight the differences with respect to problems in which
resolvent kernels are involved, two preliminary examples are discussed,

We consider the well-known general relation which connects
the inverses of two differential operators associated to the same boun
dary conditions

1 11 , , 1
(12) LA o]

where z and z' are complex numbers in the resolvent set of the ope
rators Q and Q',

This relation can be used in order to connect the unperturbed
Green's function G((;)(E;r-, r') and the Green's function G(*)(1;E, r,r')
pertaining to the description of the scattering by a potential A V(r);
one obtains the Fredholm integral equation

o8]

E;r,r')+ 1] G((;)(E;r, r")V(r")G(+)
0]

o) (+),

(A:E;r, 1")=Go

(A:E;r", r')dr".

Solving this equation by the iterative method one gets a power series
in the coupling parameter, i, e,

x n
{A;B 7= £ Q. ABwx,»') 4
n
n=0

(13) G(+)

where the coefficients are given in the recursion form

o0

MEr, o, Qn(E;r,r')=ng”(E;r,r")v(r")Qn_l(E;r",r')dr"

0

Q(E;r, r')=G

Q’!
=1
b



Comparison of eq. (13) with the Taylor series, owing to the independen
ce of Qn(E;r,r') on the coupling parameter, leads to the identification

n
(14) - GH)(l;E;r,r') | =n! Q (Er,r').

di® [A=0

Relation (12) can be applied also to the problem of connecting
the Green's function G(+)(€;r,r') at two different energies in the upper
momentum plane, in which the analytic continuation of the outgoing
Green's function (5) is a true resolvent kernel; one gets

®
(15) G }Er r')= G E r, ! (E—\Qo)f G(+)('80;r, r")GH)(g;r”,r')dr”

0]

Also in this case the iterative series is directly connected to the Tay
lor expansion by a relation similar to eq. (14).

This standard procedure cannot be utilized in the framework
of the finite interval Green's function owing to the energy-dependence
of the boundary conditions; there are however other ways to deduce an
integral equation for energy variation, The most direct is suggested
by the Bloch representation of the g,wfunction, which embodies expli-
citly the boundary conditions in the inverse operator,

By putting
£(8)- ;ﬁ;-[a%-uﬁ)]a (2-8)
————
9(é;r,r')=4rlg(§ r'>=<r| E;ﬁ =]

In this connection formula (12) has been generalized to include inverse
operators related to different boundary conditions(9, 10), In the problem
we are dealing with this procedure leads to the relation

1 e 1
E-FE)H ~ E XE)H

(16)

1 1
= go_i(go)_H —g 2+ 6(1" a){ E) L(E )}] m 3

c:'!
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a somewhat hybrid notation has been used to evidence the fact that
the boundary condition variation originates an energy-dependent sur
face term,

In the coordinate representation the above relation writes
a
1 g 1y e . 1y _ _ . "
§(&ir, ) = § Byire) - (2-2) [ a(gm,m
0

[ +2 * )jaf(‘é)—x(‘éo) 7}] ;
1+ — §(r-a (&l phYden
A R A

In Appendix an alternative derivation of the relation (17), is given
which avoids the introduction of the symbolic boundary condition ope
rators, and is based on standard analysis. We must remark, however,
that eq. (16) is formally valid also for rearrangement collisions, with
a suitable modification of the boundary condition operator(4s 9),

Equation (17) is a Fredholm-type integral equation, which can
be solved by the iterative method; however the iterative series, be-
cause of the energy-dependence contained in the surface term, cannot
be interpreted as an energy-power expansion,

3.2.- The Taylor Series:-

The energy derivatives can still be obtained in a recursion

- form from the integral equations (16) or (17) by the following procedure,
In the operator representation (16) the first derivative (in the regular
point BO) is

¢ g ) = 96E)

B — - = lim — =

ol 7 dZ ié?ﬁ €-¢,

(18)
i 2

H 1
= _f/“(go)|_1+ >ir 9(r-2) 5 )(80)] f(ﬁo)

1 < A
where L( )(‘8.0) is the first energy derivative of L(E). By derivation
of eq. (18) one gets immediately for the second derivative the expression

2
2 1 ; .
62 ) = -24Mg )58 )-24ME ) [—;ﬁﬁ sr-aig )|gee )-

32
-G (&) |~§1\7f a(r-a)L“"’(Eo)] g(&)
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(11)

It can be shown that iteration of the above procedure leads to
the general expression

g(n)(go)z mng(ﬂ—l)(go}g(go)_m | -y
xge ) o " e )] g8

with Q(O)(g )=(3{§O). It is clear from the coordinate representation

of?“g)o

ﬁ (é ;r,r')= -—/ g(n L) r r”)g(ﬁo;r”,r')_

2
A2 50 () (i) g
_ZM i=0 i.(n—l)] L (éo)d t b - 3 ?(Eo,a‘r)

=

that the evaluation of the n-th derivative starting from the n-1 lower
order derivatives requires one actual integration only. It is worth no
ing that also the derivatives of L(E).can be given a recursion form(I1),
so that the n-th order energy derivative evaluation can be reduced to
the knowledge of ﬁ(,’éo)

In a similar way, starting again from eq. (17), the following
general expression for the n-th momentum derivative g‘_(n)(f’eo;r,p') is
obtained (ﬁto is a regular point)

. ,ﬁ2 2
%(1)( O;r,r"):—Mkﬁo _f" ﬁ(f’:o;r,r )%(flo;r ;ehdet =
f2 :
_mL(l)(&O)g(ﬁo;r,a)C(‘I(FaO;a,r ) ;
(20) %(n)()"o;r, ——n—*—& / g Y & i r' )d(f\. 0, P )de” <
Bnd) 2 [0 G e, )
2M /d(nz o T UGAR ) dr
0
'EZ n-1
e .OL(n_l(‘LO(& ~,r a)C:\& :a, r! na 2
j=
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It can be concluded that we have succeeded in giving an operative pre
scription in order to obtain the coefficients of the Taylor series

5’(n)(8 )

e [0} n 3 n n
(21) G(g) = zo ——=(2-B)", gli= 3 —_——(k-R )
= n=

The S-matrix Taylor series could be now obtained from eq. (11)
by the use of the above expansions of the (g—function; in fact it contains,
besides the §-function, only known functions of the momentum. Howe
ver, since the S-matrix and the 'fa‘-function have the same analytic
structure (in particular both are meromorphic functions in the whole
momentum plane and have the same poles; see Section 2, 2), the pro-
perties of S we are interested in can be inferred directly from the
g—function expansion, avoiding the cumbersome complete procedure,

3.3.- Discussion of the Methematical Structure of the
Formalism. -

A noteworth feature of the finite interval Green's function is
that it allows one to treat in a quite symmetrical way all the (regular)
points of the momentum plane, We recall, on the other hand, that in
the upper part of the momentum plane the function G(+) Sr,r')is a
resolvent kernel and that there it satisfies the integral equation (15).
Since G +)(gr r') and G(g;r,r') coincide in the square interval 0<&r,r'£a
(see Sect. 2.2), eq. (15) must coincide with eq. (17) there.

This can be easily proved.

By taking into account representation (5), in the square interval
0<r,r'«a eq, (15) can be put in the form

+)

G(+)(£‘;r,r') a )(’8 ip, pt)= (8 b )/ ‘c‘i ir, r' )G( (Z:;r", r")dr" -

08)

-(E-2 )l_'hz :I ?(%O)ﬂ%‘) ‘/al O(hor )o(kr') dr oar,r'éea,

From the Green's theorem we get {note that O(kr) ——» 0 for Imbky 0}
I'—300

2

(22) (bR )] (% r)O(kr)dr=é"ﬁ0(’k 2)0(ka) [L(e)-L(éo)] ;

C‘—!
Rl
GO
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we have therefore

a
(2 v, r")=-(B-8 )j G
18] O

(0]

) (+)

c Mg, v (8 v, r") x
(23) 5

XG(+)(FJ;I'” , r')dr'-'-?—M [L(E)—L(EO)]G(+)(€O;‘r,a)(}(+)(§;a,r') 0L r,r'4a
which coincides with eq, (17).

+
By a similar procedure the derivatives of G( )(E;r,r') obtained
from the integral equation (15) can be proved to coincide with the
C’j‘('ﬂ;r,r') derivatives. For example, we get for the first derivative

()
(24) G(+)(1)(§O;r,r')=—/ G(+)(E°O;r,r-")G(+)('€ ', ') de" 0&r,r'd oo,

- o}
Yo
If r and r' are in the interaction region one gets
g

(o8]

a1 :I‘,r'):_/‘ e i 2e e e -
o} I 2 4
& ,r) (% ,r" Q0
2
A8 [ oo 04, r'&a;
& ,}(&O) L o :

the last integral can 2e obtained from eq. (22): one gets

a
£° 2
[ o®@r)ar =2 o%(ka) LM iRy
r 2M
0
At this stage the identification of eqs. (24) and (18) for Im&k>0 is imme
diate.

On the converse, equation (15) can be neither deduced in the
unphysical energy sheet (lower part of the momentum plane), since
G(+)('E;r,r') is not a resolvent kernel there, nor directly analytically
continued because the integral is not convergent there,

If, however, we limit our interest to the square interval
O0g r, r'<¢ a, the analytic continuation of eq, (15) can be done on the
ground of the representation (23).



14,

Alternatively the integral equation (15) itself can be continued,
provided a suitable prescription is given on the handling of the non
convergent integral. This can be achieved by the ''regularization' of
the integral, which amounts to define(12)

gee i
(25) ] g(r)dr =1lim e g(r)dr;
0 a—>0 Yo

with this prescription the tail contribution of eq. (15) becomes iden-
tical with the surface contribution of eq. (23) also in the lower part
of the momentum plane. We can assert, therefore, that prescription
(25) realizes the correct analytic continuation of the right hand mem
ber of eq. (15).

All this leads to the following interpretation of the Cj—function:
it can be viewed as a compact formalism by which one can obtain
in the whole momentum plane the results that are obtainable directly
in the framework of the resolvent kernel in the sole upper part of
the plane,

4, - THE ANALYTIC CONTINUATION OF THE S-MATRIX, -

The convergence limitations of the Taylor series render it a
useless tool just in connection with the most interesting features of
the cut-off potential, namely the poles of the S-matrix and the rela-
ted resonant regions., An example of these shortcomings can be found
in ref, (1).

In Section 4.1. the structure of the:S-matrix is briefly analysed,
in order to point out the methods which, in the authors' opinion, are
the most suitable to derive information concerning the S-matrix in
the whole momentum plane starting from its Taylor expansion about
a regular point, In Section 4.2, some results we have obtained in the
framework of the Padé approximation are briefly commented, Sections
4,3, and 4., 4, are devoted to the application of the Hadamard method,
which leads, in principle, to a rigorous and complete solution to the
analytic continuation of the S-matrix; some numerical results obtained
in this framework are displayed.

4,1.- The Analytic Structure of the S-Matrix, -

Specific procedures for the analytic continuation of the scatte
ring matrix are related to the framework in which the S-matrix itself
is considered.
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In a first instance the S-matrix can be considered as a func-
tion of the momentum, without any other specification; in this connec
tion the Padé approximant method has been used,

Alternative descriptions of the S-matrix are given in terms
of a suitable denumerably infinite set of parameters; in this connection
the analytic continuation of the S-matrix amounts to the determination
of these parameters, Some parametrizations can be viewed as the
generalization of the one-level formula, which is a natural represen-
tation of the S-matrix in the neighbouring of a pole f;’.n with residue @,

o
(26) s&):ﬁ-— +o (%),
1

Such a generalization leads, in the cut-off potential problem, to a com
plete expansion of the S-matrix in partial fraction series in which all

the poles and their related residues are involved(3.13) One the con-

verse the generalization of the one pole-one zero formula

?c-ﬁ’;
n

B(k) is a unitary background function\i , leads to the Ning Hu product
representation!3)

in which only the pole positions are involved.

Now, the Hadamard method, which is described in Sections 4.3
and 4.4, allows, in principle, to determine the affixes of all the poles
of a meromorphic function starting from its Taylor expansion about a
regular point, It can be asserted, therefore, that through the Ning Hu
representation, this method determines the S-matrix in the whole mo
mentum plane, As a by-product the residue of the nearest pole is im
mediately obtained; the evaluation of the other residues is much more
involved, Because of this, in the present work formula (26) will be
briefly considered as an introductory example; the complete expan-
sion in partial fractions will be considered in a forthcoming paper.

cn
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4.2.- The Padé Approximaht Method, -

A standard procedure for the analytic continuation of a Taylor
series is given by the Padé approximant method. Although this method
lacks a general mathematical foundation, it has been successfully em
ployed in many fields of theoretical physics(7). We recall here only
the basic definition, The approximant of order [N, M] to a function f(z)
of which we know the Taylor expansion

f(z)= 3 an(z—za)n
n

is defined as the ratio of two polynomials PM(Z—ZO) and QN(Z~ZO) of
degree M and N respectively with the prescription that

[, Mm] PM(Z_ZO) M+N+1
fL (z-2 )E"———*———:f(z)-k(][(z—z ) ] .
° QV(z-z ) °
0
This condition determines the two polynomials apart from an overall
constant

M- N+1 IM-N#2 e M+H1
M .
P (Z-Z )"' aM am+1 aM+N
M M ; M ;
e A L ’ _
| :‘S aJwN(Z Zo) _E aj—N—l(Z Zo) 2 @ -]
! =N J=N-1 j=0
AN -N+1 A M -N+2 AN+1
N
Q (z-z )=
N N-1
(z-z) (z-2 ) 3 1

Several numerical experiments have been carried out in order
to reproduce the 'resonant cross section' { compare formula (11)]

||."“
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Since I(ka) and 0(ka) are known functions of the momentum, the Padé
method has been applied to the Taylor expansion of G(k;a, a); a complete
expansion of the S-matrix would be a useless complication.

In Fig. 1 the results obtained by various diagonal (N=M) approxi
mants are compared with the exact values obtained by a direct nume-
rical solution; a square well characterized by the following parameters

—— Exact
——- [2.7]
— [4.4]

----- [6.6]

E(MeV)

FIG. 1 - Various Padé approximants to the ''re-
sonant cross section' compared with the exact
one. The expansion point k, corresponds to

E=h2 k2 /2M= 40 MeV.

V(r)=-30MeV, D& ria

Vir)=0, r>a

a=4. 10'13 cm

2 " _ _
—ZM =0,25- 10 zs(MeV) } cm > (M= 5 nucleon mass)
H

has been used; the p-wave has been chosen to avoid the peculiarities
and oversimplifications of the s-wave, The four resonances exhibited
by the exact cross section in the considered interval 14 E<L100 MeV

e
cCy
29
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are related to four poles located at energies

E1=8.36-13.11 MeV E2=30.41—16.88 MeV

E3=57.30—i10.61 MeV E4=89.21-il4.40 MeV

As one can see, the fit is very satisfactory; many other examples
where also non diagonal approximations have been used can be found
in refs. (1,11).

We have been stimulated by these good results to search a
complete and rigorous justification of the applicability of the Pade me
thod to our specific problem. For this purpose the authors are con-
sidering Cj(\"{;a,a) both as a meromorphic function {on the line of the
particular case examined by Baker(14)}, and as a solution of the inte
gral equation (15){15), Preliminary results seem to be promising.

4,.3,- The One-Level Formula, -

As an introduction to the Hadamard method(S) we consider in
this Subsection the one-level formula (26).

Let

(27) f(z)= 3 an(z-zo)n
n

be the Taylor expansion of a function about a regular point z,, and
z1 a simple pole of f(z); if any other singularity is more distant from
z,, the function can be usefully separated in the form

Rl

Z-Z

(28) f(z)=— + @, ()

1

where R, is the residue. The point is that the function gvl(z) can be
Taylor expanded about z,

n

(29) 9 (2)= Zal(z-2,)

n

(o}

and this series converges also in z=z;. Comparison between (27) and
(28) gives
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R
(30) W e
m m+1 m’
(z -z )
from this one gets
m+1
' - -
(31) lim _am s 5. -2 ) am(zl zo) Rl S i
m — Q0 am+1 Ll 1 . s, - )m+2 R 1 o
L m+1 1 “o ey

where one has taken into account that

(32) im g1 (7 -2 )m=0

m—-0 m 1 o

because of the convergence of the series (29) at z=zy. Finally one gets
for the pole affix the simple formula

; a
=z + lim m
: Om o a
-
m+1

The residue is easily obtained by rewriting eq. (30) in the form

m+1 m+1
- = e -+ I - .
am(zl Zo) Rl am(zl zo) ’
because of eq. (32) one gets
_ : m+1
(33) Rl—— lim am(zl—zo)
m — QO

We have so succeeded in determining the nearest pole affix and the
related residue starting from the Taylor series of f(z) about z,; the
coefficients of the Taylor expansion of the background function tpl(z)
can be determined from eq. (30).

The above analyticity hypothesis on the function to be expanded
are in general verified for the S-matrix (difficulties are to be expec-
ted only if the expansion point is pure imaginary; this case is discus
sed in connection with the general Hadamard method outlined in the
next Subsection). Starting from the C&-function Taylor series (21) and
formula (11), the above procedure allows one therefore to determine

o
3]
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the parameters of the one-level formula (26). Numerical results obtai
ned by this method can be found in the next Subsection (Table I),

The procedure could now be applied to the function wl(z){which
is explicitly known from eqs. (29) and (30)-} in order to determine the pa
rameters of the two-level approximation formula

R R
f(z)=~~1—+ 2
Z-2; Z-Z

+ @ _(z),
. 2

and so on, The iterative procedure implies, however, that the first
pole has been determined exactly, otherwise 991(2) has still a polar
singularity in z=z,, These difficulties can be avoided by resorting to
the general Hadamard theory, displayed in the next Subsection,

4.4.-The Generdl Hadamard Procedure fo¥ the Deter
mination of the S-Matrix Poles, -

The procedure outlined in the previous Subsection for the de-
termination of the nearest pole to the Taylor series expansion point
z, can be generalized(g: 16) in order to include all the poles lying in
the meromorphism circle (namely the largest circle centered in z
and including polar singularities only). Since to the authors' knowledge
this analytic tool has not been previously used in quantum scattering

theory, the essentials of the method will be sketched here.

First we suppose that the poles occur at increasing distance

from the expansion pcint z,, i.e.

-~
L

(34) |zc—zll<‘.|zo—z2|<...<|zo—zp]

In this case a theorem by Hadamard states that the p-th pole is de-
termined starting from the Taylor (27) by the simple relation

(35) Z =zo+ lim Dm, p-1 Dm+l, p-2

m—» @ Dm+1, sl Dm, p-2

where D, ., are the determinanis
s A

“p ey
3 D = ' '
(36) oA : E

apﬁl dy+2l
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The applicability of formula (35) is based on the assumption that re-
lation (34) has been somehow ascertained. As a matter of fact, the
Hadamard method is more general since it allows, in principle, to
determine all the poles in the meromorphism circle however they
are distributed, The general procedure consists of two different stages
which can be summarized as follows.

In the former the radii r, of the circumferences on which poles
do lie, and the number mg of poles on the general g-th circumference
are determined (more precisely m, stays for the sum of the pole mul
tiplicities). This is achieved through the evaluation of the superior li

mits
£}L= lim ]/ID#,Z.I
(8,16)

and the study of the behaviour of the ratios 21 +1/511 .

When only one pole lies on the g-th circumference (m_=1),
the affixes are again determined by formula (35) where in this case
one must put
R R H 00

p=1’n1+1n L;

+
2 q-1

(the circumference have been ordered according to increasing radii),
When m_#1, the affixes are obtained as the solutions of an equation of
degree m_, whose coefficients are determined through the Taylor se
ries expansion coefficients a . The method allows also to determine
the distance of the closest non-polar singularity, The method is not
suitable for the determination of the poles lying outward the meromor
phism circle,

The actual procedure to be applied in the S-matrix problem
emerges from the following considerations. First the S-matrix for
cut-off potentials is known to be a meromorphic function in the whole
momentum plane; secondaly, the hypothesis (34) is verified, save acci
dentally, for any Fao not pure imaginary. For these reasons formula
(35) can be safely applied and the cumbersome complete procedure avoi
ded,

Formula (35), though formally rigorous, meets with numerical
limitations, As it is apparent from eq. (31), one has that

a
] m
lim ———=2 -z_=const;
a o 1
m-—30 m+l

c:‘
ey
=3
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it follows from this that when u- oo the rows of the determinant (36)
tend to become proportional one to the other, It is evident that in such
a connection the accuracy of the final result is strictly connected with
an accurate knowledge of the coefficients a  ; in our problem this is
ultimately connected with the accuracy of the numerical integration
(20). Inthe present work, whose aim is to point out the feasibility of
our general program, we have just carried out the integration with
the simple trapezoiaél rule with hundred points.

The numerical results we obtained are summarized in Table I,
The experiment has been carried out on the same potential as descri
bed in Section 4. 2, again in the p-wave; in Fig, 2 the exact poles in the

A

1. 2 3 4. 5. Rek

Y

FIG. 2 - Poles of the S-matrix in the momentum
plane in the region -5. 2Re& 45, and -2,54Im%22.5
(units 10-13 em-1),

region -5, 2Re k%5, and -2.5-Im%&:22.5 are displayed; the momentum
k isexpressed in unit 10713 cm~1, As a general rule ten derivatives
are enough to stabilize two poles, the nearest to the expansion point,
to the values quoted in Table I; the third pole, which is obtained with
an acceptable accuracy with a few low order derivatives, becomes
then completely instable., These difficulties get more remarkable when
the nearest pole has a large residue: in these cases only the nearest
pole has been determined, In Table I the S-matrix residue of the first
pole, evaluated by formula (33) is quoted too,

In a less general but more concrete perspective, the poles can
be determined separately by a suitable choice of expansion points F"'OJ
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TABLE I

Poles and residues of the S-Matrix evaluated by the Hadamard mehtod

Expansion Exact Values Values obtained by
point f¢° (unilts 10-13 em=3) the Hadamard method
(units
10-13¢em-1)
I Pole 0. +i1.222 0. +i 1,222
0. +i Residue | 0. -i4,05x103 | 0. i 4,06x103
1I Pole 0. +i 2,100 Unstable
I Pole 0. +i 2,100 0. +i 2,100 .
0. +i2 Residue | 0. -i2.90x106 | o. -i2.91x10
II Pole 0. +i 1,222 Unstable
T Pole 0. -i1.688 0. -i 1.688
i Residue | 0. -i6.82x10°7 | 0. - -i 6.79%10°7
II Pole | 0. -i2,442 0. <f 2,473
I Pole 0. -i 1.688 0. -i 1.688
0. -i2 Residue | 0. -16.82x10°7{ 0. -i 6.83x10°7
1I Pole | -0. . -i 2,442 0. -i 2,441
1 Pole 1.471 -1 0.266 1.471 -i 0.266
1. Residue | -1.65x10-2 -i7.84x10°2 | -1,64x10°2 -i7.82x10°2
II Pole 0. = 1,222 Unstable
=
I Pole 1.471 -i 0,266 1.470 -i 0,265
9. Residue | -1.65x10-2 -i7.84x10-2 1 -1,45%x10"2 i 7,91x10°2
II Pole 2. 773 -i0.312 ' 2,769 =% 0,313
'r —
. |
I Pole | 2.773 -i 0.312 [ 5.712 -i 0. 912
9. Residue ' -4,61x10"2 Si7.12x%1072 7 -4,50%10-2 -i7.11x10°2
II Pole | 3,801 -1 0.349 l 3.800 -i 0.349
‘ {
I Pole ! 3.801 -i 0,349 ! 3.800 -i 0,348
4, Residue | -5.79x10-2 -i7.01x1072 ) -5,78x10"2 i 7,02x1072
II Pole i 4,738 -1 0.380 | 4,735 -i 0,381

by this method all the poles in any finite region are singledoutsolving
the SchBdinger equation in a finite number of points. An example of
this is given by Table I itself,

5, - CONCLUDING REMARKS. -

It has been proved that the solution of the Schodinger equation
in an arbitrary (regular) point &, that is in any case necessary for
the evaluation of S(fv.o), is endowed with much more information, since
it allows to determine the S-matrix in the whole momentum plane, We
believe that this fact is capable of a remarkable practical relevance in

559
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connection with problems for which a compact solution is not availa
ble and approximation schemes are to be used, As an example, the
cumbersome perturbative procedure, which is often necessary for

the evaluation of the S-matrix had to be repeatedly applied for each
value of the energy: the method pointed out in the present work allows
to focus all efforts on an (arbitrary) energy only. In principle, our pro
cedure can be used also in the case of reaggangement collisions, for
which expression (16) is still formally valid (see Sections 3.1 and 3, 2).

Finally we observe that many results obtained in the present
work for the cut-off potential can be extended to potentials for which
the ingoing and outgoing Jost solutions are explicitly known for r>a;
the previous results are directly generalized to this case by substi-
tuting the ingoing and outgoing unperturbed solutions with the Jost so
lutions in r =a,
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APPENDIX, -

In this Appendix we give, in the framework of the standard
analysis methods, an alternative derivation of the integral equation (17)

=
G(&r, r)-G(Eor, r)=-(8-8g) [ G ir,x") x
Nle}
ikl o  L{E)-L(E )
x|+ oar 6 (-a){ g~ §| §(&Er", r)dr"
o J -‘-fo *

relating the finite-interval Green's function at two different energies.
The equality of the two members of equation (A.1) will be proved for
rer'; for ri»r' the procedure is quite analogous.

According to the explicit coordinate representation (8) of (('-}”('E;r,r')
the two members of equation (A.1) represented by I and II respectively),
can be expressed in the form

(A. 2) -_:_.__215\]; —— A ,7727_.“._.9_..,.___;9_______
h FR)F (R )
Q
and
o (&, r)ek ,rf(k a)(& ,a)
= - 20 | L)Lk )| - : .
\:(‘J Y_v
Wt -2 S o , ) ;44
. B ey LG ni, ) (9 Gr) @y, rar" +
Lge & FIRIERG) S Jo
! _ ,a
+@(l, )R L) ) fRr)e®  rde'+eE r)e L) [ f&, rME& e )de"
o} a o} 0 e o}

The value of the integrals appearing in (A.3) can be easily obtained by
resorting to the Green's theorem: we obtain

e R
{ o 5 - , 1 h r |
[ @k ek r')dr' =g S S Wik, r), IR
"'to P )9 "o Jar c:,-‘c.o 2M WL ®r), gi‘f\o,r)_}

(A, 4a)

(b
e
Y
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r' 1 hz _ I‘“=I"

1l 8] 1 i R 1 "

(A. 4b) / f(k,r )tp(?zo, )dr = N W (R, r"), fp(&o,r )] :

A g =
(a 1 HZ " r”=a

; i f‘ A £ 11 " PTWI J -)Q 1" ‘ o
(A. 4c) 4 fh, e (R A = g S W f(R, "), £(® ] .
X (@] : ol o

where we have used the notation W(ul(r),uz(r)) for the Wronskian of
ug(r) and ug(r).

By inserting relations (A.4) in (A. 3), and suitably collecting
the terms, we get

Comparison of expressions (A.2) and (A.5) proves the validity of equa
tion (A.1).

b2
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