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SUMMARY. -

The £-th partial wave S-matrix element for cut-off potentials 
is Taylor expanded in the energy and momentum variable. The expa!:l. 
s ion is based on a suitable finite-interval Green's function, by which 
the derivatives are obtained in a recursion form involving only repe~ 
ted integrations of the Green's function itself. Thp Taylor series can 
be analytically continued by resorting to the Pade method; some re
sults of a nu merical e:{periment are quoted. In this paper, however. the 
emphasis is put on a rather indirect but rigorous procedure based on 
the Hadamard theory, which allows to determine, in principle, all 
the poles of the S-matrix starting from its momentum Taylor series. 
Numerical results are displayed. 

l. - INTRODUCTION. -

The scattering matrix element in a partial wave for a short
-range central potential is a meromorphic function of the momentum 
in a strip along the real axis(3). In principle, it can be expanded in 
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a Taylor series about any regular point; the analytic continuation 
t heory assures then that this series determines completely the S-m~ 
trix element in t he whole analyticity region. As a matter of fact, the 
actual pursuing of this statement is not straightforward since it invo~ 
ves the search of practical methods for the evaluation of t h e S-matrix 
m omentum der ivatives, and the use of suitable proc edures in order to 
go outside the Taylor series convergence circle. 

In the present work we point out Some results concerning the 
cut-off potential scattering problem, which is of the greates interest 
in the nuclear resonance problem; in the concluding remarks a hint 
for the generalization of the procedure is given . 

The results displayed in the present paper can be summarized 
as follows. 

For cut-off potentials t he S-matrix element can be expre s sed 
in terms of a suitable Green's function defined in the interaction region 
only, and satisfying energy-dependent boundary conditions(4, 5, 6) (in 
the following we refer to its as the finite interval Green's function, 
or (r-function) . In the present work such a Green's function is proved 
to satisfy a Fredholm-type integral equation relating two different ene~ 

gies; from this equation the momentum derivatives are obtained in a 
rec ursion form which involves only repeated integrations of the Green's 
function itself. The S .. matrix Taylor series can be easily obtained from 
thes e . Similarities and basic differenc es with respect to the pet'tut'ba
tive expansion are throu ghly discussed. 

Concerning the analytic continuation of the S-matrix Taylor 
expansion, various arproaches have been used. A possible c hoic e is 
to resort to the Pade approximant method(7); although the numerical 
results so obtained (part of which are displayed in the present work 
and in Ref. (1) ) are quite satisfactory, t h e problem of giving complete 
and rigorous t h eorems on the convergence of the approximants has not 
been solved in general. 

In the present work, ther efore, we prefer to put the emphasis 
on a procedure which-although rather indirect - gives a complete and 
mathematically rigorous answer to the analytic continuation problem. 

The solution we propose is based on the following considerations. 
It is well known that for cut-off potentials the only singularities of the 
S-matrix in the whole momentum plane are poles. Now, in the Ning Hu 
representation the S-matrix is expressed in a factorized form involving 
only the position of the poles(3), so that the analytic continuati on amounts 
to the determination of the pole affixes. In this connection we resor-
ted to a method due to Hadamard(8), devised for the determination of 
the polar singularities of a maromorphic function starting from its Ta 
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ylor expansion about a regular point. More rigorously, the method 
allows, in principle, to determine the affixes of all the poles lying 
within t he meromorphism circle (the largest circle c en tered in the 
expansion point and containing onl y poles); in the problem we are dea 
ling with this circle coincides with the momentum plane . 

In Section 2 the essentials of the finite interval Green's function 
formalism are recalled in a self-consistent form, which should make 
it unnecessary to refer back to the original papers. Section 3 is dev£. 
ted to the introduction of the Fredholm-type integral equation for ene!:. 
gy variation of the finite interval Green ' s function, and to the deduc
tion of its Taylor series . In Section 4 the analytic continuation methods 
we use are briefly discussed; the results of some numerical experi
ments concerning the fit of a resonance-exhibiting cross section by 
th e Fade method, and the pole affixes evaluation by the Hadamard thea 
ry are displayed as well. 

2. - THE FINITE INTERVAL GREEN'S FUNCTION AND THE SCATTE 
RING MATRIX.-

It is well known that the solution of any quantum mechanical 
problem with a cut-off potential requires the actual solution of the 
Schr8dinger equation in the interaction region only. A formulation of 
this problem in terms of a Green's function defined in the sale inter
action region has been given by Bloch(4); the analytic continuation of 
this algorism in the momentum and energy plane has been considered 
by the authors in a previous work concerning the pole expansion of 
the S-matrix(6). 

This Section i,; devoted to a s elf-cons istent outline of the g-fun~ 
tion formalism in the notation more suitable for the purpose of the pr~ 
sent work. 

2.1.- The Finite Interval Green's Function.-

We first c,onsider the scattering of two sp(nless particles in
teracting through a non-Singular short range central potential. Let 
M be the reduced mass and E =-112 k2 !2M the energy in the c. m. refe
rence frame. The physical solution 'lJle (+) (k, r) in the .e -th partial wave 
is defined by the equation 

(1) 
(+) (+) 

He'lJle (k, r) = E 'lJl.e. (k, r) 

together with the boundary conditions 
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(2 ) 
(+ ) 

1J!e (k.O)=O, (+) i [ J 1J!e (k, r) -) 2 Ie (kr)-Se (k) 0e (kr) 
r ...... ()) 

the partial wave Hamiltonian operator He. is defined by the relation 

112 [d
2 

e(e+l) J 0 
H i =-2M - 2- - 2 +V(r)= He-+V(r); 

dr r 

It (kr) and 0e- (kr) are the ingoing and outgoing solutions of the unpe~ 
t urbed Hamiltonian He ' characterize d by th e followir,g asymptotic b~ 
haviour 

-i(kr- ~ ~) 
I t (kr) -) e 

r~ ()) 

i(kr-l~ ) 
e 

Here we q uote also t h e regula r solution 'P~ (k, r) a n d the outgoing Jost 
solution fe (k, r ), which satisfy eq. (1) and the follow ing conditions(x) 

(3a, b) 
-e-1 

limr 'P.e(k,rl=l, lim fe.(k,r)=lim 0e(kr); 
r->O r-> ()) 

the Jost funCtion:ie (k) is defined as the Wronskian of ''P e (k, r) and f-2 (k, r) 

d d .t".t (k) = fe (k, r) dr 'Pe (k, r) - 'Pe (k, r) dr fe (k, r) 

From the above definitions the following integral representation 
for the physical soluhon can be derived 

(+) r (+) (4) 1J!e. (k,r)=Fe(kr)+ dr'Ge (k;r,r')V(r')FL(kr')dr', 
o 

where G~+)(k;r, r') is the complete outgoing Green' s function , defined 
by the expression 

(x) - The solution f(k, r) differs from the Jost solution fe +(k, r) of 
Newton(3) for the constant factor e- ien / 2 . 



(5) 
(+) 2M 

Gt (k;r,r')=- -2 
-n 

and 

rp (k, I' ..( )fe (I<, I' ~ ) e· 
Ye (k) 

5. 

is the Riccati-Bessel function. From now onward the symbol e will 
be omitted when it is a mere label. 

For a cut-off potential (V(r)=O for r~a) it appears from 
eq. (4) that, in order to evaluate 1p(+)(I<, 1') in the interaction region-
- which determines completely the external behaviour and the S-ma
trix - it is enough to know G(+)(I<;r,r') in the square interval Of,r, r'~ a. 

We define now in this interval the kernel (6) 

G 2M 
"J(I< I' 1")=---o \ ~ , 2 

11 

3'(k, 1') fk(k, rt 
:l(k) 

where fl«l<, r) is defined by the conditions 

(6a) 
I< 

(H-E)f (1<,1') = 0 

(6b) 
k 

f (I<, a) = 0 (ka), 

where 

L(k) = 

d I< I k dr f (k,r) r=a = L(k) f (k, a), 

:r O(kr) Ir=a 

O(ka) 

the function JI«k) is the Wronskian of rp (k, r) and fk(k, 1'). The kernel 
1(k;r;r'), which is defined in the interaction region only, is there coi~ 
cident with G(+)(k;r, r') since the boundary condition (6b) is the mere 
transposition at r=a of the asymptotic condition (3b) for the Jost solu
tion. The kernel v-(k;r, 1") can be identified with the kernel of the pr~ 
blem of Kapur and Peierls(4, 5). 
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2.2.- Analytic Conti n uation of the y-Function. The 
S-Matrix.-

As it is apparent from eqs. (6a) and (6b) if(k;r, r') depends on 
the momentum in two different ways: through the energy which appears 
in the Schrl:ldinger 8CjU XOI1 and t hrough the boundary co.-,dHions. The 
general form of the analytic continuation is therefor e 

(7) 

where f B" (\'<, r) is defined by the conditions 

~, , 
f' (k, a) = 0 (b) 

d \'::" 
- f (~, r) dr "', 

r=a 

",/l' and.:r is the Wronskian 

~\V D~ [ ~,J J 0-; 
J ("-) = W f (\z, r), 'P (.~, r) J 

(we use the symbol f~ to denote any complex momentum - in particular 
f:. can be real - and 't': to denote its r elated energy r;;= 112\~2 12M; the sym 
bois k and E are reserved for real values of the momentum and ener 

u 0 .~" ;>" r" 0 0 ,-gy). If IG' =\c, one get i ~ (I., r) =f( ~, r) and 2f - (lc)=F(R), where f((~, r) and 
;]'Cf,.) are the Jost solution and the Jost fun~ti"n previously intl'oduced. 
The analytic continua1ion of 1Jl (+)(k, 1') with continued boundary c ondi 
tions (2) is clearly obtained through the Green ' s function 

'P (f~, IL. ) f (I'?, r;.- ) 
(8 ) 

Although eq, (8) and the considerations from which it is deduc ed seem 
to be quite obvious , we preferred to introduce it as a particularization 
of the general form (7), to stress the fact that in any case the boun
dary conditions are momentum-dependent. 

Sine e 'P (fc, r) and f(~, r) are entire functions of 1\ it follows that 
tJ(A;r, r') is a meromorphic function whose pvles are the zeros of 
:J(ft); these poles are c oinci dent with the S -matrix ones (3). 

Most of the deductions we are going to make in the next Sections 
are obtained by considering the 9-function as a direct function of the 

J 
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energy. In order to render g(€;r, r') a univocal function of the energy 
it will be considered on a single sheet of the energy Riemann surface. 

The kernel ~(t:, ;r, r') coincides with the analytic continuation 
of the outgoing Gree n's function (5) for Of:. r, r':.'o a, but it is not a 
resolvent kernel; in fact, because of the energy- dependence of the 
boundary conditions, at each energy the g-function is related to a 
different inversion of (r.-H). This will nol prevent us from writing 
an integral equation relating different energies, and obtaining the 
derivatives in a recursion form. 

Through the analytic continuation of the ~-function various e~ 
pressions of the analytic continuation of the S-rlJatrix can be derived(5,6). 
The relation that came out to be the most fruitful for the purposes 
of the present work is easily obtained by the matching of the internal 
and the external solution ar r=a. One obtains 

(9 ) 

the finite interval Green's function is now introduced by using the 
proportionality relation between 'tJ! (+)(C<, r) and the regular solution 
gJ d1., r); one gets 

(10) 

From eqs. (9) and (10) one gets finally(4, 5, 6) 

(11 ) 

Equation (11) is worth a few comments. We first abserve that the 
above proc edure leads to a separation of the hard s phere scattering 
from the so-called resonant scattering. This separation does not i':!. 
troduce any spurious feature in the analytic structure of the S-matrix. 
In particular, one can easily verify that S(~<) and the ~- function have 
the same poles. Furthermore, from eq. (11) it appears that all 
information about S (f,,) is contained in the q-function since I(ka) and 
O (I'1.a) are known functions of the energy; because of this the next Sec 
tion is devoted to the study of the ~ -function . 
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3 . - THE ENERGY AND MOMENTUM TAYLOR EXPANSION FOR 
THE FINITE INTERVAL GREEN'S FUNCTION . -

In this Section a Fredholm -type equation is derived, which 
relates the finite interval Green's function at t wo different energies 
(Sec t. 3.1); this equation enable s US to deduce a recursion formula 
for its energy and momentum derivatives (Sect. 3 . 2) . In Section 3.3. 
a n interpretation of the above results i n terms of the regularization pr9. 
c edure is analysed . 

3.1.-The Integral Eq uati o n. -

In or der to stress the mathematical peculariti es of our form~ 
lism and t o enlight the differences with respect to problems in which 
resolvent kernels are involved, two preliminary examples are discussed. 

We consider th e well-known general relation which connects 
th e inver ses of two differential o perators associat ed to the same boun 
dary conditions 

(12) 
1 

z- !L 
1 1 

z ' - Q ' z '-Q' [ (z '-z)-(Q'- Q)] 
z- .Q 

1 

where z and z' are complex numbers in th e resolve nt set of the op~ 
rators .Q and .Q '. 

This relation ean be used in order to connect the unper turbed 
Green ' s function G(+)(E;r, r') and the Green's function G(+)(). ;E , r, r') 

o 
pertaining to the description of the scattering by a pot e ntial ). V(r); 
one obtains the Fredholm integral equation 

co 
G(+)(). ;E;r, r')=G(+)(E;r, r')+).1 G(+)(E;r, r")V(r")G(+)(). ;E;r", r ')dr". 

o 0 
o 

Sol ving this equatiol'l by the iterative method one gets a power series 
in the coupling parameter, i. e. 

co 
(13) 

(+ ) 
G ().;E,r,r')= 

n l: Q (E;r,r')). 
n 

n=O 

where the coefficients are given in the recursion form 

(+ ) 
Q (E'r r') = G (E ' r r') 

0 ' 1 0 " J 

co 

Qn(E;r, r') = j G~+)(E;r, r ll )V(r ll )Qn_l(E;r ll
, r')dr" 

o 

I 

I 

I 

I 
I 
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Comparison of eq. (13) with the Taylor series, owing to the independe!! 
ce of Qn(E;r, r') on the coupling parameter, leads to the identification 

(14 ) 
d

n 
(+) 

-- G (A;E;r,r') 
dAn 

I =n!Q (E;r,r') 
n 

I A =0 

Relation (12) can be applied also to the problem of connecting 
the Green's function G(+)(~;r, r') at two different energies in the upper 
momentum plane, in which the analytic continuation of the outgoing 
Green's function (5) is a true resolvent kernel; one gets 

Q) 

(+) .\- (+) .,., 'r<> ¥" 1 (+) ..." ,,(+) '!O" " (15) G (.l:".;r,r')=G (0 ;r,r')-(G.-c:.) G (e.. ;r,r)G (c.;r ,r')dr 
000 

o 

Also in this case the iterative series is directly connected to the Tal 
lor expansion by a relation similar to eq. (14). 

This standard proc edure cannot be utilized in the framework 
of the finite interval Green's function oiNing to the energy-dependence 
of the boundary conditions; there are however other ways to deduce an 
integral equation for energy variation. The most direct is suggested 
by the Bloch representation of the ~-function, which embodies expli
citly the boundary conditions in the inverse operator. 

By putting 

(4 9) 
one ge t s ' 

In this connection formula (12) has been generalized to include inverse 
operators related to different boundary conditions (9, 10). In the problem 
we are dealing with this proc edure leads to the relation 

1 1 
= 

t-t({;)-H 't -£(t )-H o 0 

(16) 

= 
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a somewhat hybrid notation has been used to evidence the fact that 
the boundary condition variation originates an energy-dependent su.!: 
face term. 

(17) 

In the coordinate representation the above relation writes 

a 

fj C€ ;r, r') = 9 (~o;r, r') - (£ -co) j G( fo;r, r") 

o 

~(t;rll,r')drll . 

In Appendix an alternative derivation.of the relation (17), is given 
which avoids the introduction of the symbolic boundary condition op~ 
rators, and is based on standard analysis . We must remark, however, 
that eq. (16) is formally valid a l so for rearrangement collisions, with 
a suitable modification of the boundary condition operator(4, 9). 

Equation (17) is a Fredholm-type integral equation, which can 
be solved by the ',terative method; how ever the iterative series, be
cause of the energy-dependence contained in the surface term, cannot 
be interpreted as an energy- power expansion. 

3.2.-The Taylor Series;-

Th e energy derivatives can still be obtained in a recursion 
. form from the int ·cgral equations (16) or ( 17) by the following procedure. 

In the operator representation (16) the first derivative (in the regular 
point ~o) is 

(18 ) 

dGct) 
de c. = t: 

= lim 

o 

G(C}-G(c ) 
o 

= t-t, 
o 

- 2 J 
= - j (to) II + ; M 0 (r - a) L( 1) ( l: 0) J (~, 0) 

where L(I)(c, ) is the first energy derivative of L(~). By derivation 
of eq. (18) on~ gets immediately for th e second derivative the expression 

c;.(2)(t) = _2tt(1)(~ )CjC{ )_2ti:(1)(C.) [ '\12 
o(r-a)L(l)(c )~q('e)-

(/ 0 () 0 (J 0 If 0 2M 0 ( 0 - . 

-9 (to) [;~ O(r-a)L(2)(C
o

)] ff (go) 

r • " iJ (~ v 

I 
I 

I 
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(11 ) 
It can be shown that iteration of the above procedure leads to 
the general expression 

2 
a(n)(~ )= _nC(n -l)('~ )C(c )_L 
if 0 rJ 0 (f 0 2M 

n=l 
2 n,! 

i!(n-i)' 
i=O 

x 

wl'th (l(O)(B )="(~ ). It ' 1 f th d' t t t' 1:1 G (f - IS C ear rom e coor ma e represen a Ion 
of ~ (Il)(t!;o ) 0 0 

a 
C(n)(", . ' )- . r a(n-l) ("'. ") '" ('" ." ') () ·c.o,r, r --n

jo 
d r:...o,r, r d c:..o,r ,r -

(19 ) 2 n-l L - n' (n-i) "<'3 (i) >'! . . >". 1 
- 2M 2: ., ( _')' L (0)0 (c:. ,r,a)C«c:. ,a, r ) 

. 0 1. n 1 . 0 Q 0 if 0 
1= 

that the evaluation of the n-th derivative starting from the n-l lower 
order derivatives requires one actual integration only. It is worth no 
ing that also the derivatives of L(~). can be given a recursion form(D), 
so that the n-th order energy derivative evaluation Can be reduced to 
the knowledge of 'fj(t!,o)' 

In a similar wclY, starting again from eq. (17), the following 
general expression fo:~ the n-th momentum derivative ~(n)(~o;r, r') is 
obtained (~o is a regu:.ar point) 

(20 ) 

a 
n(n-l) ,2 ( ,.., (p ") P_" " 

- 2M fl )0 'il(n-2) i'o;r, r 'J(r'o;r , r')dr 

n-l 
1: L( ')(~ )C}(. )(h ;r, a)q(~ ;a, r') n-l 0 0 1 0 0 0 
i=O 

n~2 

54 7 
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It can be concluded that we have succeeded in giving an operative pr~ 
scription in order to obtain the coefficients of the Taylor series 

(21 ) 
00 9- (v..) 

q{~) ~ 2: (n) 0 _ {k-~ )n 
(J nl 0 • 

n~O 

The S"matrix Taylor series could be now obtained from eq. (ll) 
by the use of the above expansions of the ct-function; in fact it contains, 
besides the ~ - function, only known functions of the momentum. How~ 
ver, since the S-matrix and the '1,l - f unction have the same analytic 
s tructure (in particular both are meromorphic functions in the whole 
momentum plane and have the same poles; see Section 2.2), the pro 
perties of S we are interested in can be inferred directly from the 
~ -function expansion, avoiding the cumbersome complete procedure. 

3.3.-Discussion of the Methematical Structure of the 
Formalism. -

A noteworth feature of the finite interval Green's function is 
that it allows one to treat in a quite symmetrical way all the (regular) 
points of the momentum plane. We recall, on the other hand, that in 
the upper part of the momentum plane the function G{+)C'C:;r, r') i s a 
resolvent kernel and t hat there it satisfies the integral equation (15). 
Since G{+)(l:;;r, r') and 9(t:;r, r') coincide in t he square interval O~r, r'~a 
(see Sect. 2.2), eq. (15) must coincide with eq. (17) there. 

This can be easily proved. 

By taking into ~ccount r epresentation (5), in the square interval 
O~r, r'~ a eq. (15) can be put in the form 

a 
G{+)(e. ') G(+)("'· ') - (~ "')1 (+)("'. ") (+)("". II ')d II c....,r,r - G .r,r -- c.-G G c. ,r,r G 6,r,r r -

o 0 0 
o 

06:r/rl.~a. 

From the Green's theorem we get {note that O(~r) --~ 0 for lmk> 0 } 
r-Joo 

(22 ) 

r • () 
OJ '" (} 

• 

I 

I 
I 
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we have therefore 

a 
(+)("" ) (+)( .... ('" "')1 (+)("" " G .0;r,r'-G z::;.;r,r'):;;:- ,G-tj G c::.;r,r}x 

a a a 
(23) 2 a 

(+)(""" )" 11 [("") (l"")] (+)e ) (+) e xG G;r, r' dr- 2M L <;- -L .00 G «Jo;,r,a G (,-.;a,r') 0": r r'.&. a - ' -

which coincides with eq. (17). 

Bya similar procedure the derivatives of G(+)(t';;r, r') obtained 
from the integral equation (15) can be proved to coincide with the 
~(t:;r, r') derivatives. For example, we get for the first derivative 

<Xl 

(24) G(+){I)(~ ;r, r')=-! G(+)(~ ;r, r")G(+)(iC ;r", r') dr" 
o , 0 0 

a 
Obr, r '::' <Xl. 

If rand r' are in the interaction region one gets 

<Xl 

G(+)(l)(~ ;r,r')=- i G(+)(~ ;r,r")G(+)("t'; ;r",r')dr" -
a a a , a 

the last integral can Je obtained from eq. (22): one gets 

, 
At this stage the identification of eqs. (24) and (18) for Im'k::. 0 is imme 
diate. 

On the converse, equation (15) can be neither deduced in the 
unphysical energy sheet (lower part of the momentum plane}, since 
G(+)(E;r, r') is not a resolvent kernel there, nor directly analytically 
continued because the integral is not convergent there. 

If, however, we limit our interest to the square interval 
Of r, r'f-a, the analytic continuation of eq. (15) can be done on the 
ground of the representation (23). 
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Alternatively the integral equation (15) itself can be continued, 
provided a suitable prescription is given on the handling of the non 
convergent integral. This can be achieved by the "regularization" of 
the integral, which amounts to define(12) 

(25) L
co 

[ _ar2 g(r) dr = lim e 
o a->O 0 

g(r) dr ; 

with this presc ription the tail contribution of eq. (15) becomes iden
tical with the surface contribution of eq. (23) also in the lower part 
of the momentum plane. We can assert, therefore, that prescription 
(25) realizes the correct analytic continuation of the right hand me~ 
ber of eq. (15). 

All this leads to the following interpretation of the ~-function: 
it can be viewed as a compact formalism by which one can obtain 
in the whole momentum plane the results that are obtainable directly 
in the framework of the resolvent kernel in the sole upper part of 
the plane. 

4. - THE ANALYTIC CONTINUATION OF THE S-MATRIX.-

The convergenc e limitations of the Taylor series render it a 
useless tool just in connection with the most interesting features of 
the cut-off potential, namely the poles of the S-matrix and the rela
ted resonant regions. An example of these shortcomings can be found 
in ref. (1). 

In Section 4.1. the structure of the : S-matrix is briefly analysed, 
in order to point out the methods which, in the authors' opinion, are 
the most suitable to derive information concerning the S-matrix in 
the whole momentum plane starting from its Taylor expansion about 
a regular point. In Section 4.2. some results we have obtained in the 
framework of the Pade approximation are briefly commented. Sections 
4.3. and 4.4. are devoted to the application of the Hadamard method, 
which leads, in principle, to a rigorous and complete solution to the 
analytic continuation of the S-matrix; some numerical results obtained 

. in this framework are displayed. 

4.1.-The Analytic Structure of the S-Matrix.-

Specific procedures for the analytic continuation of the scatt~ 
ring matrix are related to the framework in which the S-matrix itself 
is considered. 

.. 

I 

I 
I 
I 

I 
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In a first instance the S-matrix can be considered as a func
tion of the momentum, without any other specification; in this connec 
tion the Pade approximant method has been used. 

Alternative descriptions of the S-matrix are given in terms 
of a suitable denumerably infinite set of parameters; in th is connection 
the analytic continuation of the S-matrix amounts to the determination 
of these parameters. Some parametrizations can be viewed as the 
generalization of the one-level formula, which is a natural represen
tation of the S-matrix in the neighbouring of a pole ~n with residue Q n 

(26) + cp (\,.). 
n 

Such a generalization leads, in the cut-off potential problem. to a co~ 
plete expansion of the S-matrix in partial fraction series in which all 
the poles and their related residues are involved(3, 13). One the con
verse the generalization of the one pole-one zero formula 

! B(v,,) is a unitary background function 1, .leads to the Ning Hu product 
representation (3) 

R-I'<." 
S(h) = e -2i~a n --~ 

k- ~'-
n n 

in which only the pole positions are involved. 

Now, the Hadamard method, which is described in Sections 4.3 
and 4.4, allows, in principle, to determine the affixes of all the poles 
of a meromorphic fun:;tion starting from its Taylor expansion about a 
regular point. It can be asserted, therefore, that through the Ning Hu 
representation, this method determines the S-matrix in the whole m9.. 
mentum plane. As a by-product the residue of the nearest pole is i~ 
mediately obtained; the evaluation of the other residues is much more 
involved. Because of this, in the present work formula (26) will be 
briefly considered as an introductory example; the complete expan
sion in partial fractions will be considered in a forthcoming paper. 
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, 
4.2.- The Pade Approximaht Method.-

A standard proc edure for the analyt ic continuation of a Taylor 
series is given by the Pade approximant method. Although this method 
lacks a general mathematical fo undation, it has been successfully em 
ployed in many field s of th eoretical physics(7). We recall here only -
the basic definition. The approximaht of order [N, MJ to a function f(z) 
of which we know the Taylor expan s i on 

f(z) = 
n 

2:a (z-z) 
n 0 

n 

is defined a s the ratio of two polynomials pM(z_z ) and QN(z_2: ) of 
o 0 

degree M and N r es pectively with the prescription that 

pM(z_z ) 
[ N, MJ - 0 [M+N+IJ f (z - z ): = f( z ) + 0 (z - z ) o N 0 

Q (z-z ) 
o 

This condition determines the two polynomials apart from an overall 
constant 

M 
p (z-z )= 

0 

N . 
Q (z-z ) = 

o 

a McN+1 

aM 

M 
~ a. N(z-z )j - J- 0 j=N 

(z -z )N 
o 

aM _N+2 

a 
M+l 

M 
a

j
_

N
_

1 
(z-zo)j 2: 

j =N-l 

a 
M-N+2 

N-l 
(z-z ) 

o 

a 
M+l 

1 

a M+ 1 

a M+N 

M 
2: a .(z-z )j 

j=O J 0 

Several numerical experiments have been carried out in order 
to reproduce the "resonant cross section" {compare formula (11)1 

. , ') 
~ \ ~, t 
.... u~ 

• 

I 

• 

I 
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k 2 Res(k)= l-R SRes(k) = I Lr kG(k;a, a)] 
a e m I(ka)O(ka) . 

Since I(ka) and O(ka) are known functio ns of the momentum, the Pade 
method has been applied to the Taylor expansion of G(k;a, a); a complete 
expansion of the S-matrix would be a useless complication. 

In Fig. 1 the results obtained by various diagonal (N=M) approxi 
mants are compared with the exact values obtained by a direct nume
rical solution; a square well characterized by the following parameters 

1 

'0 

-- £xact 
[2.2] 
[~.~J 
[6.6J 

£ (MeV) 

,.0-'-'_'-,-,-,-,-, 

50 70 

FIG. 1 - Various Pade. approximants to the "re
sonant cross section" compared with the exact 
one. The expansion point ko corresponds to 

E=112 k2 /2M= 40 MeV. 
o 

V(r) =-30MeV, 

V(r) =0, 

a=4· 10- 13 cm 

O( r~a 

r> a 

90 

2M -26 -1-2 
-2- = 0.25· 10 (MeV) em (M~ 5 nucleon mass) 
-li 

has been used; the p-wave has been chosen to avoid the peculiarities 
and oversimplifications of the s-wave. The four resonances exhibited 
by the exact cross section in the considered interval 1 ~ E <:'1 00 MeV 
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are related to four poles located at energies 

MeV 

E3 = 57. 30-i10. 61 MeV 

E2 = 30. 41-i6. 88 MeV 

E
4

=89.21-il4.40 MeV 

As one can see, the fit is very satisfactory; many oth er examples 
where also non diagonal approximations have been used can be found 
in refs. (1,11). 

We have been stimulated by these good results to searc h a 
complete and r igorous justification of th e applic ability of the Pade m!:. 
thad to our specific problem. For this purpos e the authors are con
sidering CJ(it;a. a) both as a meromorphic function { on the line of the 
particular case examined by Baker(14)1, and as a solution of the in~ 
gral equation (15 )(15). Preliminary resultS seem to be promising. 

4.3.- The One-Level Formula.-

As an introduction to the Hadamard method (8) we consider in 
this Subsection the one-level formula (26). 

Let 

(27) 
n 

f(z) = 2,' a (z -z ) 
n 0 

n 

be the Taylor expansion of a function about a regular point ZOo and 
z l a simple pole of f(:~); if any other singularity is more distant from 
zoo the function can be usefully separated in the form 

(28 ) 
R1 

f(z) = -- + 'P
1

(z) 
z-z 

1 

where R1 is the residue. The point is that the function 'PI (z ) can be 
Taylor expanded about zO' 

(29 ) 
n 2: a' (z-z ) 

n 0 
n 

and this series converges also in z=zl' Comparison between (27) and 
(28) gives 

• 

• 
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(30 ) 
R1 

a - - --- -"---+a' 
m ( )m+1 m 

Z -z 
1 0 

from this one gets 

(31 ) lim 
a 

m - - - = 
m -)co a 

m+1 
lim 

m-}OJ 

(z - z ) 
1 0 

m+1 
a' (z -z) -R 

m 1 0 1 
m+2 

a' (z -z) -R 
m+1 1 0 1 

wher e one has taken into account that 

(32 ) lim a' (z -z )m=O 
m--+OJ m 1 0 

19. 

= z -z 
1 0 

because of the convergence of the series (29) at z=zl' Finally one gets 
for the pole affix the simpl e formula 

z = z + lim 
1 0 

a 
m 

m~oo a 
m+1 

The residue is easily obtained by rewriting eq. (30) in the form 

m+1 m+l 
a (z-z) =-R+a'(z-z) ; 
m10 1m10 

because of eq. (32) one gets 

(33) R = - lim 
1 

m-tOJ 

m+1 
a (z -z) . 

m 1 0 

We have so succeeded in determining the nearest pole affix and the 
related residue starting from the Taylor series of f(z) about zo; the 
coefficients of the Taylor expansion of the background function rp (z) 
can be determined from eq. (30). 1 

The above analyticity hypothesis on the function to be expanded 
are in general verified for the S-matrix (difficulties are to be expec
ted only if the expansion point is pure imaginary; this case is discu~ 
sed in connection with the general Hadamard method outlined in the 
next Subsection). Starting from the C~-function Taylor series (21) and 
formula (11), the above proc edure allows one therefore to determine 



20. 

the parameters of the one-level formu la (26). Numerical results obtai 
ned by thi s m ethod can be found in the n ext Subsection (Table n. 

T h e procedure could now be a ppli ed to the function !PI (z ) { which 
is explicitly known from eqs. (29) and (30 )1 in order to determine the p~ 
rameters o f the two-level approximation formula 

and so o n. The iterative procedure implies, however, that the first 
pole ha s been determine d exactly, oth erwise !PI (z ) h as still a polar 
singularity in z~z l' These difficulties can be avoided by resorting to 
the general Hadamar d t h eory, displayed in the n ext Subsection. 

4.4.- Th e Gen er al H ada mard Procedure for t h e Deter 
mination of the S-Matrix Poles.-

The procedure o ut lined in the previous Subsection for the de
termination of the n earest pole to the Taylor series expansion point 
Zo can be generalized(8,16) in order to include all the poles lying in 
the meromorphism circle (namely th e l a r gest circle centered in z 

a 
and including polar si ngularities only ). Since to the a ut hors ' knowledge 
this analytic tool has not been previously used in quantum scattering 
theory, the essentials of the method will be sketc hed here . 

F irs t we su ppose that the poles occur at increasing distance 
from the expansion pc int zo ' i. e. 

(34) I z -z I '- I z - z 1'- · ·· <. I z -z I.:: c 1 0 2 a p 

In this case a th eorem by Hadamard states that the p-th pole is de
termined starting from the Taylor (27) by the simple relation 

(35) z ~ z + lim 
p a 

m-)co D 

D 
m, p-l 

D 

m+l , p-l 
D 

where D iJ'j,1. are the determinants 

(36) D ~ 
fL ,,1. 

a 
iJ'+,1. 

.. l' r. , , . 
,-,Uv 

m+l, p-2 
p ~ 2, 

m, p-2 

• 

I 
I 
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The applicability of formula (35) is based on the assumption that re
lation (34) has been somehow ascertained. As a matter of fact, the 
Hadamard method is more general since it allows, in principle, to 
determine all the poles in the meromorphism circle however they 
are distributed. The general procedure consists of two different stages 
which can be summarized as follows. 

In the former the radii rq of the circumferences on which poles 
do lie, and the number" mq of poles on the general q-th circumference 
are determined (more precisely mq stays for the sum of the pole mu! 
tiplicities). This is achieved through the evaluation of the superior Ii 
mits 

e). = lim 
1-'--) 00 

d I d f h b h " f h " n / e (8, 16) an t1e stu yo tee aVlOur 0 t e rahos "').+1). . 

When only one pole lies on the q-th circumference (m =1), 
the affixes are again determined by formula (35) where in thi~ case 
one must put 

p=m +m 2+ ... +m 1+1, 
1 q-

(the circumferen~e have been ordered according to increasing radii). 
When mqf1, the affixes are obtained as the solutions of an equation of 
degree m q, whose coefficients are determined through the Taylor s~ 
ries expansion coeffic :~ ents am' The method allows also to determine 
the distance of the closest non-polar Singularity. The method is not 
suitable for the determination of the poles lying outward the meromor 
phism c ircle. 

The actual procedure to be applied in the S-matrix problem 
emerges from the following considerations. First the S-matrix for 
cut-off potentials is known to be a meromorphic function in the whole 
momentum plane; secondaly, the hypothesis (34) is verified, save acci 
dentally, for any f~o not pure imaginary. For these reasons formula
(35) can be safely applied and the cumbersome complete procedure avoi 
ded. 

Formula (35), though formally rigorous, 
limitations. As it is apparent from eq. (31), one 

lim 
m-)oo 

a 
m 

- --= 2 -2 =const; 
a 0 1 

m+1 

:) 57 

meets with numerical 
has that 
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it follows from this that when /k-) 00 the rows of the determinant (36) 
tend to become proportional one to the other. It is evident that in such 
a connection the acc urac y of the final result is strictly connected with 
an accurate knowledge of the coefficients am; in our problem this is 
ultimately connected with the accuracy of the numerical integration 
(20). In the pr esent work, whose aim is to po.int out th e feasibility of 
our general program, we have just carried out the integration with «. 
the simple trape zoidal rule with hundred points. 

The numerical results we obtained are summarized in Table 1. 
The experiment has been carried out on the same potential as descr~ 
bed in Section 4.2, again in the p - wave; in Fig. 2 the exact poles in the 

~l 
r 
r' 1. 2. 

0 " 
-1. 

-2. 

r 
FIG. 2 - Poles of the S-matrix in the ----
plane in the region -5. !:::,Re \Z~5. and 
(units 10- 13 em-I). 

3. 4. 5. 

III " OJ 

momentum 
o 

-2. 5.0; 1m \'U .. 2. 5 

Rek 

region -5. f:: Re ~~5 . and -2. 5:':. 1m It::2. 5 are displayed; the momentum 
k is expressed in unit 10- 13 em-I. As a general rule ten derivatives 
are enough to stabilize two poles, the nearest to the expansion point, 
to the values quoted in Table I; the third pole, which is obtained with 
an acceptable accuracy with a few low order derivatives, becomes 
then completely instable. These difficulties get more remarkable when 
the .neares t pol e has a large residue: in these cases only the nearest 
pole has been determined. In Table I the S-matrix residue of the first 
pole, evaluated by formula (33) is qu oted too. 

In a less general but more concrete perspective, the poles can 
be determined separately by a suitable choi~e of expansion points f-o ; 

• 
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TABLE I 

Poles and residues of the S-Matrix evaluated by the Hadamard mehtod 

Expansion 
point rco 
(units 
10-13 cm-l) 

O. + i 

O. + i2 

O. - i 

O. - 12 

1 . 

2. 

3. 

Exa.::t Values 

(units 10- 13 em- l 

Values obtained by 
the Hadamard method 

I pole O. 
Residue O. 
II Pole O. 

I Pole O. 
Residue O. 
II Pole O. 

I pole O. 
Residue O. 
II Pole O. 

I Pole O. 
Residue O. 
II Pole -0. 

I Pole 1.471 
Residue -1.65xl0- 2 

II Pole O. 

I Pole I 1. 471 
Residue f -1.65 x 10- 2 

III Pole I 2.773 
r----

I Pole i 2.773 
Residue : -4.61 x 10- 2 

+i 1. 
-i 4. 

222 
05xl03 

00 +i 2. 1 

O. 
O. 

Unstable 

+i 2. 1 
-i 2.9 
+i 1. 2 

00 
Ox 106 

22 

O. 
O. 

Unstable 

-i 1. 688 O. 
-i 6. 82xl0- 7 0. ' 
-1 2.4 

- 1 1. 6 
-1 6 . 8 
- i 2. 4 

-i 0.2 
-1 7.8 
-1 1. 2 

-i 0.2 
-i 7.8 
-1 0.3 

42 O. 

88 I O. 
2XI0- 7 .0. 
42 O. 

66 
4 x 10- 2 

1.471 
-1.64xl0-2 

:: __ I 1.4~;stable 
4xl0- 2 . -1.45xl0-2 

12 2.769 

+11.222 
-14.06x103 

+1 2.100 
-i2.91xl06 

-i 1. 688 
-i 6.79 x 10- 7 

-i 2.473 

-1 1. 688 
-1 6.83 x 10- 7 

- 1 2.441 

-1 0.266 
-17.82xl0- 2 

-1 0.265 
-17.91 x 10- 2 

-i 0.311 
--~------------

- 1 O. 3 
- 1 7. 1 

12 ; 
2xl0- 2 . 

-i 0.312 
-i 7.11xl0- 2 

II Pole ; , , 
I Pole I 

! ~IResldue I 4. III Pole 

3.801 

3.801 
-5.79 x 10- 2 

4. 738 

- i O. 3 49 

2.772 
-4.59 x 10-2 

3.800 -i 0.349 
- ----t--------------f 

- i O. 3 49 , 
-i 7.01xlO- 2 ; 
-10.380 i 

3.800 
-5.78xl0- 2 

4.735 

-1 0.348 
-1 7.02 x 10- 2 

-1 0.381 
L 1 

by this method all the poles in any finite region are singled \Jut solving 
the Sch8dinger equation in a finite number of points. An example of 
this is given by Table I itself. 

5. - CONCLUDING REMARKS.-

It has been proved that the solution of the Sch8dinger equation 
in an arbitrary (regular) point ~o' that is in any case necessary for 
the evaluation of S(~o)' is endowed with much more information, since 
it allows to determine the S-matrix in the whole momentum plane. We 
believe that this fact is capable of a remarkable practical relevanc e in 

5L9 
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connection with problems for which a compact solution is not avail~ 
ble and approximation schemes are to be used. As an exampl e, the 
cumbersome perturbative procedur e , which is ofte n necessary for 
the evaluation of the S-matrix had to be r epeatedly applied for eac h 
value of the energy: the method pointed out i n the present work allows 
to focus all efforts on an (arbitrary) ener gy only. In principle, our pr~ 
cedure can be used also in the case of reaggangement collisions, for 
which expression (16) is still for mally valid (see Sections 3.1 and 3.2). 

Finally we observe t hat many results obtained in the present 
work for the cut-off potential can be extended to potentials for which 
the ingoing and outgoing Jost solutions are explicitly known for r~ a; 
the previous res ults are directly generali z ed to this case by substi
tuting the ingoing and outgoing unpertur bed solutions with the Jos t so 
lutions in r = a. 
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APPENDIX. -

In this Appendix we give, in the framework of the standard 
analysis methods, an alternative derivation of the integral equation (17) 

(A. 1) 

[ 
,,2 

x 1+--
2M 

; L((;)-L( t .) ] 
o (r-a }i -.;;;-~- -~ II (;(2;r", r') dr" 

\. c,.- .~J d 
o 

relating the finite -interval Green's function at two different energies. 
The equality of the two members of equation (A. 1) will be proved for 
r,:', r'; for r;. r' the procedure is quite analogous. 

According to the explicit coordinate representation (8) of ~m;r, r') 
the two members of equation (A - 1) represented by I and II respectively), 
can be expressed in the form 

(A . 2) 
cp ( ~'z , r)f( ~:, r')j=(( )- cp(R r)f(\{ r'):]'('[.,,) 

o 0 0 _._-- - - ------
](f,) ') (\'~ ) 

o 

and 

cp(\'"r)cp(\"- ,r')f( ~~, a)f(e, ,a) 
__ . ___ ._0 _ __ ___ _ -",0 _ _ 

(A. 3) 

r' ,a 
+cp(i~, r)f(~: ,r') r f(\'~, r")CP (lt ,r")dr"+cp(fz, r)cp(~ ,r') j. f(~, r")f(~ ,r")dr" 

o I 0 0, 0 
~r r 

The value of the integrals appearing in (A. 3) can be easily obtained by 
resorting to the Green's theorem: we obtain 

(A.4a) 
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(A. 4c ) 
r" = a fa p, ,II) (- , ") II _ .~_ 

J fb" r f t... J r d -~) ~~ 
.I. , 0 ....,..- t". 
r 0 rll = r I 

where we have used the notation W(ul (r), u2(r) for the Wronskian of 
ul(r) and u2(r). 

By inserting relations (A. 4) in (A. 3), and suitably collecting 
the terms, we get 

(A. 5) 
2M 

<p(\~, r)f( (,-, r '):;z( \z )- <p(~ ,r)f(I" ,r' ) ~(\'..) 
000 

II = - x
2 
-----9'(h).7(f~,-)-·--- - -_._ --

n 0 

Comparison of expressions (A.2) and (A. 5) proves the validity of equ!,,: 
tion (A. 1). 

• 
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