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SUMMARY. -

The coordinate representation of the standing wave integral 
equation is considered in the complex momentum plane. This equation 
is solved, and the solution is' used to inquire about some properties 
of the reactance matrix. As illustrative application, the pole expan­
sion of the reactance matrix and the two potential problem are then 
investigated. 

x. xxxxxxx 

1. - INTRODUCTION.-

A long-far recognized hindrance in the reactance matrix aE. 
proach to the scattering theory is the ~act that the integral equation for 
the principal value wave function has a kernel which is not an operator 
valued analytiC function of the energy(l-;-3). As a matter of fact, this 
prevents from employing in the framework of the K-matrix the power 
ful methods of functionaL analysis in a general and systematic fashion; 
whether these methods have been proved useful in carefully defining 
the reactance matrix and in eluCidating its operatorial meaning rela­
tive to the S-matrix, they have produced no direct result concerning 
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2. 

intrinsic properties of the K-matrix itself. 

In this paper we resort to ordinary calculus and to the Green 
function methods, in the form they have been used in the study of the 
S-matrix properties for the potential scattering problem(x). Also the 
present work is concerned with the potential scattering problem; many 
features, however, open the path for extension to proper reactions. 

From the mathematical view-point, the features characteri 
zing our approach are the following: 

- whenever possible, we put into evidence and take benefit of several 
results which have been obtained in connection with the study of 
the S-matrix; in particular we shall see that also in the reactance 
matrix theory the regular solution, the two linearly indep·endent 
Jost solutions, and the re l ated Jost functions are likely to playa 
fundamental role; 

- we make a systematic use of two relations which hold between suitably 
defined Green functions that are not kernels of the resolvent; these 
relations are similar in form to well-known relations which hold 
between resolvents; in the problem we are dealing with, however , 
they cannot be proved by functional analysis techniques. 

In Sect. 2 the standing wave integral equation is analytically 
continued in the momentum plane and is solved; the apparatus of the 
Jost solutions and Jost functions is widely used to give compactness 
and systematicity to the derivations. Two examples of the application 
of our formalism are dealt with in the next Sections. More precisely, 
in Sect. 3 we shall be conc erned with the comparison of our formalism 
with the reactanc e matrix resonanc e theory given by Humblet( 4); in 
Sect, 4 the additive interaction problem is analysed: this analysis, bes.!,. 
des the implications concerning perturbation problems, is relevant 
to enlight .the striking differences in the structure of the S matrix-
and the K matrix-theory, 

2. - THE PRINCIPAL VALUE INTEGRAL EQUATION AND ITS SO­
LUTION, -

2.1. - The principal value integral equation.-

Let us consider the scattering of a spinless particle of 
mass M by a central potential, vanishing at infinity faster than r-

1 

(x) - See ref. (1), Chapt. 12. 
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and less singular than r- 2 at the ongm. We shall work in a partial 
wave of definite angular momentum t,; in this connection the operator 

(1 ) \1
2 [d2 t (~ . +1) 1 H=H+V=-~ - - --- +V(r) 

o 2M d 2 2 
r r 

will be simply called the Hamiltonian, while Ho will be called the u~ 
perturbed Hamiltonian (the symbol t will be omitted when it is a. mere 
label). 

Now we consider the function V'P(k, r), defined as a solution 
of the equation 

(2 ) 
P P 

H 11' (k, r) = E V' (k, r) 

(k is the momentum and E=~2k2 /2M is the energy), with the following 
boundary conditions 

(3 ) 
P 

V' (k,O)=O, 
P V' (k, r) -'> F(kr)+K(k)G(kr); 

in the above relations F and G are the Riccati-Bessel and the opposite 
of the Riccati-Neumann functions respectively, which are characteri 
zed by the asymptotic behaviour 

(4) F(k r) - sin(kr - t:lt /2), 
r"""oo 

G(kr) ~ cos(kr- e, :It /2). 
r -00 

For later reference we quote here the unperturbed ingoing and out­
going wave functions, defined by the relations 

I(lcr) = G(kr)-iF(kr) ~ e -i(kr- e:lt /2) 

(5) r_oo 

O(kr) =G(kr)+iF(kr) ~ e+i(kr- t :It/2). 

r --» 00 

The wave function defined byeq. (2) and eq. (3) is the well-known stan 
ding wave solution, which satisfies the following integral equation(O) -

(0) - See ref. (1), Chapts 7 and 11. 
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00 

(6) VlP{k,r) =F{kr)+ J G:{E;r,r')V{r l
) VlP{k,r')dr'. 

o 

In the above equation G P{E;r, r') is the kernel pertaining to the "pri!! 
cipal value Green functi'bn", which is defined by the following relation 

(7) - ] P __ .~ 1 + 1 . 
G (E) -PG (E)- hm 2 lE' HE' H o 0 . +l€ - -1 f -

c -+0 0 0 

in terms of the resolvent Go{E) of the unperturbed Hamiltonian Ho. 
The operator GP{E) has a meaning of its own for E> 0, while for E< 0 
it is trivially c 'binc ident with G (E); no meaningful analytic continua o -
tion of the standing wave integral equation can be obtained starting 
from this definition. 

The kernel of Go{E) is{x) 

(8 ) 
2M F{kr< ) O{kr> ) 

Go{k;r,r')=- ~2 W[O , F), 

where k is that determination of {2MEN2 )1/2 which has Imk2: 0; accor 
ding to this prescription one must take 

2M V2 1/2 . 
lim (w) (E:+:I f) . = lim (:!:,k+ ~: ) =:+:k, 
E~O <-0 

From this one easily gets 

(9 ) 

. G:{k;r, r') =t[Go{k;r, r')+Go{-k;r,r'~ = 

2M F{kr< )G{kr> ) 

= - ~2 k k> O. 

k> O. 

(x) - The wronskian of any two function m{r) and n{r) is defined by the 
relation W[m{r), n{r)]' =m{r)n'{r)-m'{r)n{r), where the prime 
stands for radious deri vati ve. 
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The last member of eq. (9) is capable of an obvious analytic continua 
tion in the momentum plane; this continuation however is not related 
to the operator GP(E) not even for E<O, where one has GP(k;r , r'): 
;; Go(k;r, r') with ok imaginary positive. We shall call ro(l~;r " r') the 
analytic continuation of the kernel (9), i. e. we pilt identically 

(10) r (k;r, r') 
o 

2M 

for any complex value of the momentum; the meaning of ro(k;r,r') 
and its relation with Go(k;r, r') will be discussed in Appendix A. 

(11 ) 

From the above definition it follows that the equati on 

Q) 

P 
1jJ (k,r)=F(kr)+ [ P 

r (k;r , r')V(r') 1jJ (k , r')dr' 
o 

defines a solution of eq. (2) with the boundary conditions (3) in the 
complex momentum plane. By comparison of eq. (11) with the second 
of eqs. (3) it follows that K(k) is given by the relation 

00 

(12 ) 2M ! P K(k) = - - 2 - F(kr) V(r) 1jJ (k, r) dr. 

~ k o 

In order to make easy the comparison with the Humblet the~ 

ry(4) which we shall discuss in Sect. 3, we give here an alternative 
expression for the reactance matrix. We first recall the well-"known 
definitions of the regular solution tp(k, r) and Jost solutions f+(k , r); 

they are solutions of eq. (2) with the following conditions(x) -

(13 ) tp (k, r) ,..------+ 

r-O 
r 
tt-l 

f (k,r) -
r_ 00 

the Jost functions are defined by the identity 

(14) 1'1 = W [f m l 
J' + +' -r J - -

-- O(k r ) ; 

r- 00 

(x) - We explicitly remark that our definition of the Jost solutions 
differs by a phase factor with respect to the standard definition 
(compare with the definitions in ref. (1) , Capt . 12) . 



6. 

Now, since both solutions <p(k, r} and 'ljIP(k, r~ vanish at the origin, 
they are proportional; by expressing <p and 'ljI as a linear combination 
of the Jost solutions, a nd comparing their asymptotic behaviour, one 
obtains 

(15 ) 
P 2k<p(k,r} 

'ljI (k, r) = '] (k) + ')- (k) 
+ -

while the reactance matrix is expressed by the relation 

(16 ) 
?- (k) -?- (k) 

+ -
K(k} = i '}- (k) + 1- (k) 

+ -

The identity of the second members of eq. (12) and eq. (16) 
is easily checked: one expresses the standing wave solution in eq. (12) 
through the relation (15), and represents the regular solution by means 
of the Jost solutions; the integrals so obtained are then compared with 
the integral representation of the Jost functions. 

2.2.- The Green functions and their relations.-

In this Subsection we shall introduc e in full generality the 
Green functions in which we shall be interested in the following, and 
establish some relations between them. 

Let US consider the partial wave Hamiltonian 

,,2 r d 2 
Q.. e. J H.=H-rv.c_.'I"---L-- (+) +V.(r}, 

1 0 1 2M d 2 2 1 
r r 

where i is a label which identifies a generic potential of the type sp~ 
cified in the previous Subsectionjwhen we shall consider more poten­
tials together we use the labels iI' i 2 ..•• We define now two classes 
of solutions of the equation 

(17) H. 'ljI.=E 'ljI., 
1 1 1 

by specifying the boundary conditions at the origin and at infinity re­
s pecti vely: 

- the solutions which we shall call q> i (k, r) s atisfy e q. (17) and the re­
gularity condition. at the origin 

<p .(k, r) -;;. 
1 

r~ 0 

~+l 
r 
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- the solutions which we shall call Xa(k, r} satisfy eq. (17), and condi-
1 

tions at infinity of the type 

(18 ) X~(k, r} _ ha (k, r) 
1 

where h 0. (k, r) is an as~igned solution of the unperturbed equation: the 
label a identifies the solution; when we shall need more solutions 
at once, we shall label them as aI' a 2' ...•• 

(19) 

By means of these solutions we construct the Green function 

G~(k;r, r'} 
1 

- - 2M 

t;,.2 

gJi(k, r< } X~(k, r) } 

w[X~,gJJ 
it is well known that a Green function of this type can be associated 
with the resolvent of Hi only for very particular boundary conditions; 
so that, in general, eq. (19) does not define a resolvent. As a conse­
quence, we cannot resort to standard functional analysis to state rela 
tions between such a type of Green functions. 

In Appendix B the following relations will be proved: 
• 

a} the difference of two Green functions defined by the same 
asymptotic boundary conditions and belonging to different potentials 
Vi' and Vi is given by 

2 

(20a) 

G. (k;r, r'}-G. (k;r, r') = 
11 12 

00 

= j dr"[Gi (k;r,r"}{vi (r"}-V. (r"}}Gi (k;r",r')] 
1 1 12 2 

o 

(the label a has been omitted, since it is the same in both Green fun~ 
tions ). 

b} The difference of the two Green functions pertaining to 
the same potential and to the different asymptotic conditions is given 
by 

(20b) 



8. 

(the index i has been omitted, sinc e it is the same in both Green functions). 

In the scattering theory, relations of the type (20) are well 
known when they can be obtained in the framework of functional analysis. 

2.3.- Solution of the standing wave integral equation.­

We now return to the specific problem of the standing wave 
integral equation, and consider the operator 

(21) 

As it is well known, this Green function does not solve the standing 
wave equation(X). It will be briefly investigated here in order to co~ 
pare it with the operator r(k;r, r') we introduce below; explicit use 
of GP(E) will be made in Section 4. . 

(22 ) 

where 

(23 ) 

Now, to the operator (21) we associate the kernel 

GP(k;r, r') =+ [G(k;r, r')+G(-k;r, r')] 

G(k;r,r')= 
2M 

~2 

gJ (k, r< )f + (k, r> 

:r + (k) 

is the Green function pertaining to the complete Hamiltonian (1). From 
this one has 

(24) 

where 

p. ,_ -l 2M 
G (k,r,r)-- 22 gJ(k,r< 

?-_ (k) f + (k, r > )+~+ (k)f _ (k, r> ) 

) if. (k)i (k) 
~ 

2M 
- -

l 
gJ(k,r»g(k,r< ) 

W[g,gJ] 

+ -

1 - ~ g(k, r) = - 2 L:r (k)f (k, r)+ J. (k)f (k, r) . 
- + +-

(x) - See ref. (1), Chapt . 7. 

= 
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From the above definition one sees that g(kr} is a solution of the com 
" -plete Schrodinger equation; for positive real energies its asymptotic 

behaviour is the following 

(25 ) 
. tJ (k) 

g(k,r} _ .1)k}/ cos{kr+ tJ(k}- .en/2}; 
r_oo 

the phase shift is related to the Jost functions by the relation 'if _ (k) / 
/7+(k} = e 2i tJ (k). It appears evident from this that GP(k;r, r'} cannbt 
give rise to a solution characterized by conditions (3). 

relation 

(26) 

Then we consider the kernel r(k;r, r'} defined by the following 

2M 
r(k;r,r'}=- -2-

~ 

p(k, r< } l' (k, r> ) 

W[l',pJ 

where it has been introduced the function 

(27a) l' (k, r) = t[ f+ (k, r}+f _ (k, r)] 

" which is a solution of the Schodinger equation and has the following 
asymptotic behaviour 

(27b) l' (k, r) ~ G(kr} _ cos(kr- tn/,2} 

(compare defs (13) and (5}). It follows that the kernel (26) solves the 
integral equation (6) and gi ves the solution in the form 

00 

(28 ) 1pP(k,r}=F(kr}+ J r(k;r,r'}V(r'}F(kr'}dr'. 

o 

By putting this solution into eq. (12) we get for the reactanc e 
matrix the expression 

(29 ) 

K(k} = _ 2M 

~2k 
[ ;OOF(kr}V(r}F(kr}dr+ 

o 

+ 100 

dr foodr'F(kr}V(r}r(k ;r,r'}V(r'}F(kr ' ~ . 

339 
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This may be viewed as the matrix e l ement of the operator 

R=v+vrv, 

evaluated between the unperturbed states F(kr). We note that an oper~ 
tor endowed) with this property is usually defined through the integral 
equation(1+3 

(30 ) 

What is the relation between r (k;r, r') and l'(k;r, r')? It o 
obtained from the relation (20a) by putting Vi =0 and V· = V : can be 

one immediately gets 
1 12 

(31 ) r = r + r Vr . o 0 

(We observe that this relation could be obtained also by comparison of 
the standing wave integral equation [eq. (16L] with its formal solution 
Ceq. (27L]; !lOwever, since rand r have been defined independently 
of each other, we ought to pr~ve that relation (31) is consistent with 
the definitions). 

We remember that Tobocman and Nagarajan(3) have also achi~ 
ved a relation formally coincident with our eq. (31), although they op~ 
rated in a quite different conceptual framework. They started from 
eq. (30) and summed formally the series that can be obtained by ite­
rating that equation; in this fashion, a formal solution is achieved in 
the form 

Then they defined 

(32 ) r =GP (l_VGP )-l. 
o 0' 

from this definition an equation for r coincident with eq. (31) for E> 0 
is obtained: for positive energies one has therefore r= r. We remark 
that while in ref. (3) eq. (31) is taken as the definition of r, in our der..!. 
vation eq. (31) is a relation between independently defined operators. 

We finally observe that eq. (31) can be iterated and a Born­
-type expansion of K can be obtained. 

We will now deduce the relation betwe en the K matrix expres 
sed in the form (12), (29) and the S matrix element defined by 



(33 ) 
co 

+ I dr 

o 

[co dr' F(kr)V(r)G(+)(k;r, r')V(r')F(kr')] ; 

o 

11. 

in eq. (33) 1p(+)(k, r) is the pnysical solution pertaining to the complete 
Hamiltonian, and G(+)(k;r, r') is the analytical continuation in the com­
plex momentum plane of the kernel G(k;r, r') defined by eq. (23). 

a For this purpose we specialize eq. (20b) to the case in which 
G I~G(+) andGa2~ r. We have(x) 

(+ ) 
G (k;r, r') - r(k;r, r') = 

(34 ) 
2M W[f+,y] 2M· () P 

(k ) (k ') --:o;-----=::-=---.2.'"+(r)''' (1") 
= ~2-g; ,r g; ,r W(f+g;]W[y,g;] ~2 k'l' 'I' 

We now multiply at the right and at the left by V(r)F(kr) and integrate: 
we get 

co co j dr f dr' F(kr)V(r)G(+)(k;r , r')V(r')F(kr')-

o 0 

(35 ) 
co co 

- / dr f dr'F(kr)V(r) f(k;r, r')V(r')F(kr') = 

o 0 

.;:, ~ [ l F'kdV'd ~ ,+) ,k, dd,j [ fOO ~ P'k,,' )V',"F'kc' )d'] 
o 

(x) - In the last step of eq. (34) we use the relation (15) and the easily 
proved relations 

(+) kg; 

= W(f+, g;] 

:)1.1 
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comparing the above equality with the definitions (12), (29) and (33) 
one gets 

l;S+iK=f(l-S}K, 

and finally 

(36 ) 

which is the Heitler relation(l+3}. The deduction now give:1- is valid 
in every point of the complex plane in which the functions ;t-+(k} and 
;;-_ (k) are analytic al. 

For later reference we remember that for positive energy 
the standing wave solution and the pnysical solution can be given in 
the asymptotic region the following expression 

p 
(37) 1p (k,r) _ sin(kr+ 0- t :1:/2} 

cos a 

in terms of the phase shift. 

1p(+}(k, r} ~ e iO sin(kr-+o - .e :1:/2} 
r~co 

3. - POLES AND RESIDUES OF THE REACTANCE MATRIX. -

Recently Humblet proposed a nuclear resonance theory, based 
on the Cauchy expansion of the reactance matrix(4}. The pole expansion, 
which is valid for finite range interactions , is made starting from the 
expression of K which one may obtain by the wave function matching 
method. The merit of this theory is that it provides through the Hei ­
tler relation (36) a unitary resonant parametri zation of the S-matrix; 
contrary to the R-matrix theory(5}, in the Humblet approach the para ­
meters describing a resonance are independent of the channel radii. 

In this Section it will be shown that an alternative derivation 
of the results of the Humblet theory can be given in the framework of 
the integral representation of the reactance matrix given by eq. (29); 
and that this representation provides an alternative expression for the 
residues which will be commented on. An important part of H.umblet 
work is devoted to the analysis of the location of the poles in the asyl!!. 
ptotic momentum region, in order to verify that the conditions for the 
expansion convergence are satisfied. We shall see that the problem 
of the pole location has in our approach the same analytical formula­
tion as in the Humblet formalism, so that this analysis will be not re-

n " 2 t.i 1:J; 
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peated here. In this Section finite range potentials are dealt with. 

The reactance matrix element in the actual form analysed 
by Humblet can be easily obtained from the Jost function representa­
tion of K given by eq. (16); one may think of the Wronskians if.+ which 
appear in that formula as evaluated at the point r = a: using the defini 
tions (5) and (13) for the reactance matrix one immediately obtains 
the expression 

(38 ) K(k) = -

W[ep,F;a] 

W[ep,G;aJ 

which is, apart from the notations, the expression analysed by Humblet(x) 

Starting from eq. (38) the deduction of the poles and the resi 
dues goes as follows. Besides the K matrix, it is introduced the thte­
shold matrix(4) 

(39) 

-t-1 [ l 
-2t-1 Q. k W ep,F;al 

X=-k K=(-l) _ 
(_k)t weep, G;aJ 

where 

-e-1 r. l w+(k)=k WLep,F,aJ; ~ [ ~ w_(k)=(-k) W ep,G;aJ. 

This matrix has the noteworth property of being meromorfic in the 
energy plane; it follows that half a plane in the momentum variable 
is equivalent to the full energy plane: on this ground a biunivocal co!:. 
respondence between the energy and momentum variables can be sta­
ted. 

Apart from the exceptional case (which will be here excluded) 
where k=O is a pole, the poles of k are associated to the zeros of w Jk)' 
Let kn be such a zero, so that for the residue of X we have the expres­
sion 

(40 ) (J = lim 
n E-o-E 

n 

(E-E )~=(-l)~ 
n 

w (k) 
+ 

(x) - We note that the expression (16) lends in a natural fashion to the 
study of the analyticity properties of the K matrix for the wider 
class of potential for which the J03t functions can be defined. 
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A straightforward (!alculation shows that 

(41 ) 

where 

G(k a) v 
n n d [e, -] ----;-- (-k) W [<p, G;aJ 

dE E=E <p (k ,a) 
n 

n 

a 

v =j dr<p2(k l')+t 
n n' 2M 

- J 2 d G'(k a) 

<p (kn , a) dE . G(k -a)- E=E 

- n 
o 

in eq. (40) the numerator w+(kn ) can be simplifies by taking into account 
that the condition wJkn)=O gives <p'(kn , a) = <p(kn,a)G'(kna)/G(kna); 

then one gets for the residue the final expression 

(42) =L 
Q n 2M 

The residues of K are immediately obtained from eq. (39). 

We deduce n ow the residues of K startlng from the integral 
representation (29). The deduction can be done in st?veral ways, on 
the line of a similar analysis the authors made in some previous pa 
per concerning the pole expansion of the S matrix(6, 7). For the pot;;-~ 
tial scattering problem, in which we are concerned, it is enough to 
resort to the simplest method, described in ref. (6). Let us re-write 
the matrix element (29) by exploiting the finite range of the potential 
and evidencing the threshold factor; we gd 

K(k) ~ 0 (k) + k2~ +1VZ (k) 

where B (k) is the Born integral, while 

(43 ) 

2 (j) _ 2M __ 1 _ 1 
V" (k) - ( 2) n +2 W [ m-J 

~ k . Y,y-

a 

J F(kr) V(r) x 

o 

x ·{Ir 

<p(k,r') Y(k,r)+ fa y(k,r') <p(k,r)}V(r')F(kr')drdr' 

o r 

is the resonant term. The analyticity properties of &(k) are quite si~ 
pIe; the only singularities one can have are the poles arising from 

., f ' 
U .t ::1' 
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the zeros of W [y, rp], since the radial functions are analytic in the 
whole k plane, and the integration covers the finite square interval ° ":!: r, r' ~ a (we observe that by the same reasoning it comes that 8(k) 
is an entire function). Because of the behaviour of Y in the external re 
gion (cfr. eq. (27 b)) one has , -

W[Y,rp] W [y, rp ;a] =W[G, rp ;aJ; 

then it is verified that the integral representation and the matching 
method give the same pole location, as it must be. 

As far as the residues of ~ (k) are concerned, we observe 
that for k = k

n 
one has W [rp (k

n
), Y (kn )] = 0, so that one can put 

(44) Y(k ,r)=b rp(k ,r). 
n n n 

The integral in eq. (43) assumes then, for k = k , the simple form 
n 

By the position a 

J(k ) = J F(k r)V(r) rp (k , r) dr n n n 

o 

and using eqs. (41), (43) and (44) we have finally 

(45 ) tR (k) 2M 1 
res n = J,{2 k2t +2 

n 

By a procedure similar to ' that used in ref. (6) we may prove 'the follo 
wing identity 

(46 ) 
L rp (k

n
, a) 

- 2 M k n ----'''---­
G(k a) 

n 

= J (k ) 
n 

Taking into account this relation, a straightforward calcul~ 
tion proves that the residue (45) is identical to that given by eq. (42). 
Since also the pole location is the same, it follows t hat a pole expansion 
equivalent to the Humblet expansion can be given; in our case, the re 
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sidues would have the integral form given by eq. (45). 

Relation (46) can also be used in order to give the residue 
a more homogeneous form, by eliminating from the denominator the 
boundary evaluated resonant state rp (kn; a) . Adva,ntages of using such 
an expression instead of the form arise in connection with approximate 
c ale ulations; in fact, whereas formula (42) requires the knowledge of 
the resonant state in a critical point as the boundary, the integral 
form involves av.erage properties of the resonant state, since it ap­
pears in an integral which smears point properties. 

4. - THE ADDITIVE INTERACTIONS PROBLEM. -

We consider here a problem in which the whole interaction 
is separated into the sum of two terms, one of whic h is exactly accou~ 
ted for, while the other is regarded, in the case, as a perturbation. 
Besides the practical implications concerning perturbation problems, 
this analysis i s likely to be relevant to enlight the striking differences 
of the internal structure of the K matrix with respect to the S matrix. 

Let US consider the Hamiltonian 

(47) H~H +V +V ~-Ll-~-
o 122M dr2 

Our purpose is to seek for a standing wave solution of the type (x) 

-P P 
1jJ (1,2;k,r)~1jJ (l;k,r)"cM(k,r); 

this separatedform has been chosen in analogy to the expression one 

(x) - The notations we shall use in this Section are the following. For 
radius-dependent quantities, such as the wave functions and the 
Gre en functions, notations of the type m(l;k, r), n(l;k, r, r') ... 
or m(l, 2;k, r), n(l, 2;k, r, r') respectively, will be used, according 
as they are related to the Hamiltonian H1 ~Ho+V I or to the co~ 
plete Hamiltonian H. Radially integrated quantities, such as m~ 
trix elements,will be denoted MI,NI ... or M(I,2), N(I,2) ... , 
respectively, whether they are pertaining to the Hamiltonian HI 
or to the Hamiltonian H; notations of the type M 2, N

2
, will be 

us e d for the so-called reduced quantities, i. e. for quantities which 
are properly combined with M 1, N1 to give M(l, 2), N(I, 2) .... 
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uses for the physical solution in the additive interaction problem 

-(+) (+) 
1p (1,2;k,r)=1p (1;k,r)+N(k,r). 

The structure of M(k, r) and N(k, r) can be deduced by comparison of 
these expressions with the "direct solutions" 1pP(1, 2;k, r) and 
1p(-!)(l, 2 ;k, r,), in the form they assume by putting 0 (1, 2) = 0 1+ 02 in 

the solution (37) quoted in Sect. 2. The comparison shows an important 
difference in the asymptotic behaviour of M(k, r) and N(k, r): while 
N(k, r) is ruled by kr, one immediately sees that M(k. r) is ruled by 
kr+ d l' By iI)troducing the reduc ed matrix K2 =tg 02 and the reduc ed 
matrix S2 =e2 

1 02 one has the following explicit expression 

(48 ) 
-P 
1p (1, 2;k, r) 

P K2 
-_. 1p (l;k. r)+ Q 

cos 1 

(49 ) - (+) 
1p (1, 2;k, r) 

(+), e 2i 01- 1 i(kr- e ~/2) 
--+. 1p (1 ;k, r )+ S 2 "'---2-i -- e 

furthermore it is interesting to observe that the solution 1p(+)(1, 2) 
has the same normalization as 1p(+)(1.2) while ijjP(l. 2) satisfies the 
relation 

(50 ) 

The standing wave solution ViP (1, 2) satisfies the following 
integral equation 

CD 

(51) 1pP(1,2;k,r)= 1pP(1;k,r)+ I G
P

(1;k,r,r')V
2

(r') 1pP(1,2;k,r')dr', 

o 

where the kernel G P (l ;k. r, r') is coincident with the kernel GP(k;r, r') 
defined in Sect. 2.3 (the notation has been modified here for unifor­
mity with the symbolism of this Section). This equation can be solved 
by the techniques we used in Sect. 2. We define the kernel 

(52) 
2M 9'(1,2;k,r( ) Y(1,2;k.r» 

T(1,2;k,r.r')=- \d,2 W[Y(1,2),9'(1,2)} 

0'.[7 J :l 
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9' (1, 2) is the angular solution pertaining to the complete Hamiltonian, 
while the fu nction )'(1,2), which is also a solution of the complete 
SChrl::ldinger equation defined by the relation 

(53a) 

is characterized by the following asymptotic behaviour 

(53b) )' (1, 2;k, r) ---4>~ JI\(l;k) e 
r -+ co 

It follows that 

co 

-P P J P (54) 1jJ (1,2;k,r)=1jJ (l;k,r)+ r(l,2;k,r,r')V
2

(r')1jJ (l;k,r')dr' 

o 

is the formal solution of the above integral equation . By the techniques 
examined in Subsection 2.2 the relation 

(55 ) 

is immpdiately proved. 

We are now in a position to make a precise comparison bet 
ween the kernels which appear in the S matrix and those which appear 
in the K matrix. In the K-matrix problem, in order to define the equa­
tions which satisfy the standing wave functions 1jJP(l) and 1jJ P(l, 2) 
(eqs. (11) and (51)), together with the formal solutions of these equ~ 
tions (eqs. (28) and·(54)), we ought to introduce the four Green functions 
r 0' GP(l), f(l) and r (1, 2); these kernels are connected by the unlin­

ked relations (31) and (55). In the S-matrix theory, in order to define 
the integral equations for 1jJ (+)(1) and iP(+)(l\ 2) and their formal solu­
tions, one needs the three kernels G(+), G(+I(l) and G(+)(l, 2), which 
are connected by the symmetric rela~ions 

These different properties of the Green functions are ultimately rela­
ted to the different asymptotic behaviour characterizing the physical 
solution 1jJ(+)(l, 2) and the standing wave solution iP P (l, 2) (compare 
eqs. (48) and (49)). A direct consequence of these facts is the striking 
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difference between the formulae which correlate the matrices Sand 
S2 on one hand and the matrices K and K2 on the other, which are 
respectively 

K; 

Another problem which is related to these properties of the 
Green functions is the relation between the reduced matrices S2 and 
K2 . It is trivial to obtain on the ground of the definition of S2 and K2 
in terms of the phase shift the Heitler-type relation 

(56 ) 
1+iK

2 
S2; l-iK 

2 

This relation will be here deduc ed in the frame work of our formalism , 
starting from their integral representation. 

The reduced matrix element K2 is easily obtained by co~ 
paring eq. (48) with eq. (51): one has 

(57) 
i 0 1 e - - -

'J- (l) 
cos 

by putting in this the expression (54) for Vi P(l, 2}, one gets the more 
explicit expression 

(58) 

i III 

; (l) cos 01 [( t:p (1}V
2 

1pP(l)}+ (t:p(1}V
2 

T(l, 2)1pPO}~ . 

where the following compact notation 

0) 

j u(r}v(r}dr ; (uv} 

o 

has been used, In order to make easy the comparison with S , it is 
useful to introduc e the function 1p (1 ;k, r) which is defined in t~e follo­
wing way 

--i>- sin(kr+ III - ~.rr /2} . 
r ...... 0) 
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With this notation K2 assumes the form 

{59} 

K = - 2M cos {j 1 {1/1 (1 }V
2 

1/1 P (1, 2» = . 
2 ¥2k 

while S2 can be written in the form 

{ 60} 

= 1 - 4i~ [( 1/I{1}V
2

1/1(1)}+("i'{1}V
Z

G{+){1, 2}\(21/1{l»J. 

¥ k 

b . hf d 1 1 . t (x) Now, ya stralg or war ca cu ahon, one ge s 

{+} 2M 
G (1, 2;r, r')- r{l, 2;r, r'} = -2-!]l(1, 2;r} !]l{1, 2;r'} x 

y! 

W[f+{1, 2), Y (1, 2}J 2iM {+} _p -i 61 
x W [4{1,2)' !]l{1,2}]W[Y{1,2),!]l{1,2}] -- y!2k 1/1 {1 ;2;r}1/I (l,2;r'}e cod 1 

By multiplying on the left and on the right the first and the third me!!!. 
ber of the above relation by 1/I{1}V

2
, and comparing with formulae (59) 

and (60), one immediately gets 

(x) - We only remember that because of relations (15) and {50fr the 
regular solution !]l{1, 2} and the standing wave solution 1/1 (1,2), 
are connected by the relation 
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from which the relation (56) is obtained. 

The authors are pleased to thank Professor C. Villi for 
his stimulating interest throughout the preparation of this work. 
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APPENDIX A.-

It is immediate to see that the kernel r 0 defined in Sub­
sect. 2.1 by the relation (10) is capable of the following representation 

(±) 
where the kernels Go (k;r, r ') are defined for any complex value of 
the momentum by the relations 

G (+)(k' ') = _ 2M 
o ,r,r ~2 

G (-)(k' ') = _ 2M 
o ,r,r ~2 

F(kr <. )O(kr> 

w[o, F)' 

F(kr < )I(kr> ) 

WeI, F] 

These kernels can be given the following interpretation. The outgoing 
wave kernel G~+)(k;r, r') is obtained from the resolvent of Ho by taking 
the physical determination of (2MEN2 )1/2; it follows that in the re­

gion Imk?!O the kernel G~+)(k;r, r') is coincident with Go(k;r, r'), while 
for ImK< 0 it is to be interpreted as the analytic continuation of this 
kernel: in this region G(+)(k;r, r') is not related to the resolvent, nei-

o 
ther is it an Hilbert spac e operator. A symmetric definition holds 
for the in going wave kernel G(-) (k;r, r'): for Imk""'O it is the kernel 
of the resolvent of Ho ' while Por Imk>- 0 it is the analytic continuation 
of this kernel. From the definition it follows that r o(k;r, r') is defi­
ned in any point of the momentum plane, but it is a resolvent for no 
value of the momentum, neither is it an Hilbert space operator; this 
fact causes no trouble, provided we avoid to resort to functional ana­
lysis. 

A straighforward calculation proves that 

(-) (+) 
G (k-rr')=G (-k-rr') o " a " I 

so that formula (A.1) can be written in the alternative form 

(A.2) • 1 = 1...- -l (+). 1 (+) . 1 ] ro(k,r, r) 2 Go (k,r, r )+G
o 

(-k,r, r) , 



which for k>O is coincident with GP(k;r, r'). 
o 
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Some words to enlight the relation between the kernel T 
defined byeq. (A. 2) and the kernel GP . In our notations the kernel 

0 

of GP(E) can be viewed as the aver~ge of Go(+)(k;r, r') and G(+)(-k;r, r') 
o 0 

where k can be only positive because of the condition Im(:':.k)~ 0: our 
formula (A. 2) can be interpreted as the generalization of this defini­
tion to any c~mplex value of the momentum. As a firlal remark we o!? 
serve that Go (E), because of its very definition, is capable of a sp~ 
tral representati~n on the axis -~ <. E < 00; on the converse, our defi 
nition involves Go+)(k;r, r') and Go-)(k;r, r') which are spectrally re':-

presentable for Imk~ 0 and Imk~O respectively. It follows that To x 
To(k;r, r') is capable of a spectral representation only on the axis 
Imk = 0, th~ is for E'> 0, and there the representation is coincident 
with the Go (E) representation. 

APPENDIX B.-

We wish here to prove relations (20a) and (20b) of Sect. 3. 
To simplify the notations, the dependence on the momentum will not 
be explicitly written. 

Let us call AG(r. r') the second member of eq. (20a), 
and consider it first for r~r'. By resorting to the definition (19) 
for Gi , one gets 

[jr dr" rp. (r") Xi (r){ V. (r")-
11 1 11 

o 

r' 

J dr" Xi (r")rp. (r){Vi (r") -
1 11 1 

r 

Q) 

J dr"rp. (r)X· (r") {V1· (r")-
11 11 1 

r' 

- V· (r")(rp. (r')X. (r")] _ 
12 5 12 12 
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where I(a, b) are the integrals appearing in the second member with 
the limits of integration there specified. Each of the t erms, I (a, b) 
will be handled as follows: the terms depending on rand r' are ex­
tracted, while the remaining is integrated by part. One easily obtains 

L -" Jm I(r',m)= 2M p. (r) p. (r')lx' X· - X· X. 
11 12 12 11 12 11 r' 

We take into account now' that the regular functions vanish at the orl 
gin and that X i

1 
and X. satisfy the same asymptotic conditions. The 

12 
simplified expression we obtain from this is 

The terms in curl brakets are Wronskian, which can be Simplified 
with the denominator. Then one obtains 

LlG(r,r')=G. (r,r')-G. (r,r') 
11 12 

r <: r' . 

For r> r' one uses the same procedures. It follows that relation (20a) 
is proved. 

We turn now to the relation (20b). From the definitions of 
the Green function G a we have 



Since the Wronskian has the same value for any value of r, we can 
write 

a1 a2 2M rp(r< ) 
G (r,r')-G (r,r')=-2- L- a2 J i: a 1 l 

~ w X ,rp 'W~ , rp J 

since W [X aI, X a2] is independent of r, formula (20b) is proved. 
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