ISTITUTO NAZIONALE FISICA NUCLEARE

INFN/BE - 71/4 24 Maggio 1971

U. Abbondanno, R. Giacomich, M. Lagonegro and G. Pauli

CROSS-SECTIONS FOR THE PRODUCTION OF GAMMA RAYS FROM THE INTERACTION OF 14.2 MeV NEUTRONS WITH ²⁹Na, ³²S, ⁴⁸Ti AND ⁵²Cr.

251

CROSS-SECTIONS FOR THE PRODUCTION OF GAMMA RAYS FROM THE INTERACTION OF 14.2 MeV NEUTRONS WITH ^{23}Na , ^{32}S , 48 Ti AND 52 Cr.

U. Abbondanno, R. Giacomich, M. Lagonegro and G. Pauli

Istituto di Fisica, Università di Trieste, Italia Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Italia

ABSTRACT

Gamma rays resulting from the interaction of 14.2 MeV neutrons with $^{23}Na, \,^{32}S, \,^{48}Ti$ and ^{52}Cr have been investigated.

The differential gamma-ray production cross-sections are presented for gamma rays with energies of 0.44, 0.64, 1.27, 1.63 MeV for ²³Na; for gamma rays with energies of 1.27, 2.06, 2.24 MeV for ³²S; for gamma rays with energies of 0.99 and 1.31 MeV for ⁴⁸Ti; for gamma rays with energies of 0.93, 1.33, 1.43 MeV for ⁵²Cr.

The integrated gamma-ray production cross-sections are also given.

255

1. - INTRODUCTION

The work presented in this report has been performed along the line of a program of measurements of angular distributions of gamma rays produced in the interaction of 14.2 MeV neutrons with various elements.

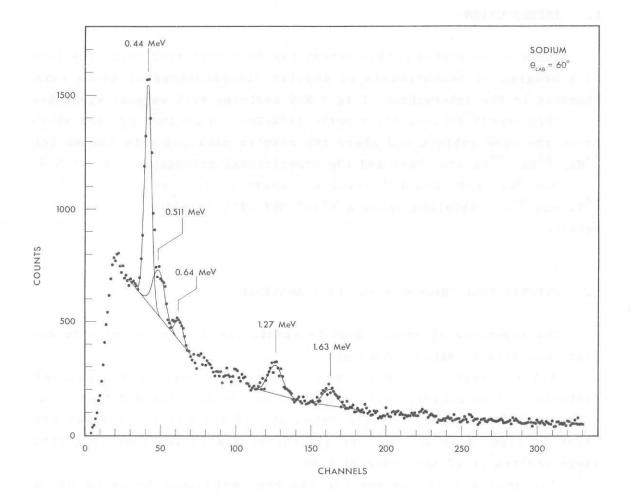
This report follows the reports INFN/BE-69/8 and INFN/BE-70/6 which treat the same subject and where the results obtained with the nuclei ²⁴Mg, ²⁸Si, ⁵⁶Fe are shown and the experimental procedure is described.

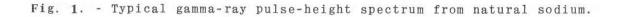
The last experimental results concerning the nuclei 23 Na, 32 S, 48 Ti and 52 Cr, obtained using a 3"x3" NaI (Tl) detector, are reported herein.

2. - EXPERIMENTAL PROCEDURE AND DATA ANALYSIS

The experimental system used to obtain the data reported here has been described in detail elsewhere $(^{i})$.

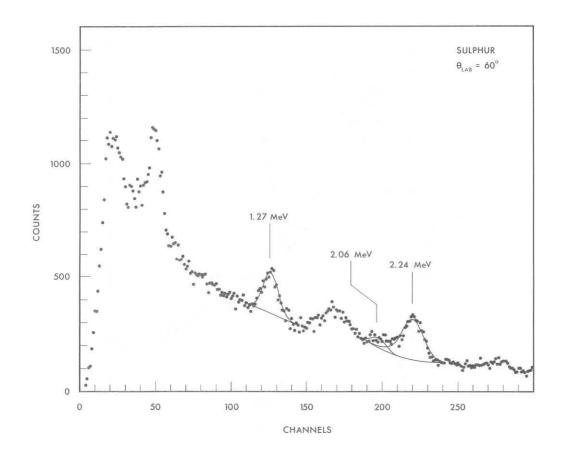
All the samples used for the measurements were of the natural isotopic mixture and were right cylinders 6cm in diameter and 12cm long.


Typical gamma-ray spectra taken at 60° for all the samples are shown in figs. 1 to 4. The overall energy resolution characterizing these spectra is of the order of 8.5%.

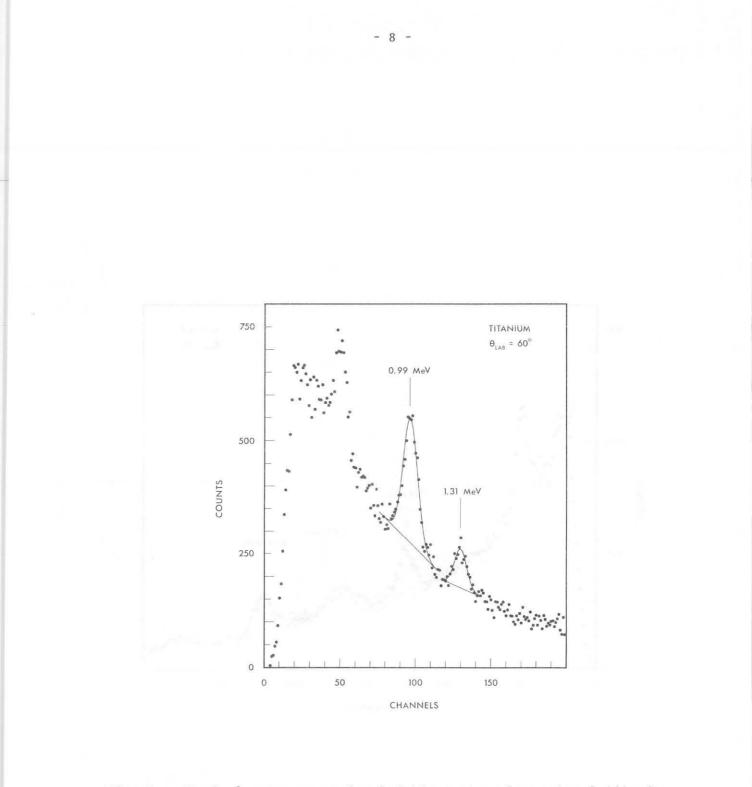

The analysis of the spectra has been performed by means of a computing program, which is described in detail elsewhere $\binom{2}{}$, consisting essentially of two parts. One part, which is based on a modified method of Mariscotti $\binom{3}{}$, determines the energy position of the gamma rays. The other part makes the fit of the gamma peaks, using a function which is a combination of a gaussian with exponential tails, and calculates the areas of the peaks.

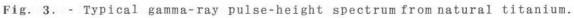
In the case of the gamma-ray spectra obtained in the measurements reported here, the areas of the peaks have been determined with an error which is not greater than the error due to the counting statistics and which is anyway as large as 20% in the worst case of unresolved peaks like that of the 2.06 MeV gamma ray of 32 S (fig. 2).

257


- 5 -

258


- 6 -



- 7 -

Fig. 2. - Typical gamma-ray pulse-height spectrum from natural sulphur.

259

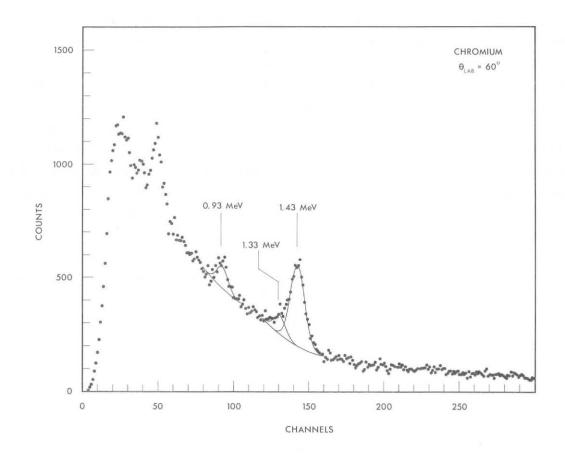


Fig. 4. - Typical gamma-ray pulse-height spectrum from natural chromium.

3. - RESULTS AND CONCLUSIONS

The observed gamma rays are listed in table 1.

The differential cross-section values are plotted in figs. 5 to 8. The Legendre coefficients obtained for the least-squares fit to these distributions are given in table 2. They yielded the total crosssection values reported in the same table.

The gamma rays studied in this report are produced by the de-excitation of the residual nuclei left in an excited state in a nonelastic reaction of the type (n,x), where x can be a nucleon or several combinations of nucleons. Perhaps with the exception of a few cases, it is not possible to assign without any doubt anyone of the observed gamma rays to a definite nonelastic process.

In table 1 the reactions which are likely to be predominant in producing a nucleus emitting the observed gamma ray are proposed, together with the possible transition between two levels which gives that gamma ray. The relevant part of the nuclear-level schemes, derived from the compilation of ref. $(^4)$, required for illustrating these transitions, are shown in fig. 9.

Anyhow, it should be clear that other reactions and transitions in addition to those listed in table 1, probably involving the other isotopes which are present in the natural mixture of the samples used for the experiment, could be responsible for the production of the observed gamma rays; the list is limited to those reactions and transitions which can be conceived on the basis of the nuclear data presently available, and for the principal isotope.

Moreover, it has to be noticed that the cross-sections which are reported in table 2 are the production cross-sections for gamma rays, but they do not represent the excitation cross-sections of the nuclear levels because these can be excited directly or through cascade processes from higher levels.

For the sake of comparison, the total production cross-sections obtained by multiplying by 4π the cross-sections measured at 90° by Engesser and Thompson (⁵) are listed in table 2. The values of the total production cross-sections for the 0.44-MeV gamma ray from ²³Na and for the 2.24-MeV gamma ray from ³²S deduced by Martin and Stewart (⁶) are also reported. No other data concerning the total production cross-sections have been found in the literature.

The only angular distributions published in the literature are those of Martin and Stewart (⁶) for the 0.44-MeV gamma ray from ²³Na and for the 2.24-MeV gamma ray from ³²S. It should be noticed that in the case

Table 1. Gamma rays from 14.2 MeV neutron int	ractions with various nuclei
---	------------------------------

Gamn	na-ray energy E _Y (MeV)	Proposed reaction	Q-value (MeV)	Transition in final nucleus (Roman number denotes exci- ted level, g. s. denotes ground state)
	0.44	²³ Na(n, n') ²³ Na [*]	-0.44	I, $5/2^+$ — g.s., $3/2^+$
	0.64	²³ Na(n,n') ²³ Na* ²³ Na(n,α) ²⁰ F*	-2.71 -4.52	VI, $7/2^+ \longrightarrow II$, $7/2^+$ I, $(2,3^+) \longrightarrow g.s.$, 2^+
	1.27	²³ Na(n,d) ²² Ne [*] ²³ Na(n,α) ²⁰ F [*]	-7.84 -5.92	I, $2^+ \longrightarrow g.s.$, 0^+ VIII, $(+) \longrightarrow II$, $(+)$
	1.63	²³ Na(n,n ["]) ²³ Na [*]	-2.08	II, 7/2 ⁺ → I, 5/2 ⁺
	1.27	$^{32}S(n, \alpha)^{29}Si^{*}$ $^{32}S(n, d)^{31}P^{*}$	+0.25 -7.91	I, $3/2^{+} \rightarrow g.s.$, $1/2^{+}$ II, $3/2^{+} \rightarrow g.s.$, $1/2^{+}$
	2.06	${}^{32}S(n, n^{\dagger}){}^{32}S^{*}$ ${}^{32}S(n, \alpha){}^{29}Si^{*}$	-4.29 -0.50	III, $2^+ \longrightarrow I$, 2^+ II, $5/2^+ \longrightarrow g.s.$, $1/2^+$
	2.24	³² S(n,n [†]) ³² S [*] ³² S(n,d) ³¹ P [*]	-2.24 -8.87	I, $2^{+} \longrightarrow g.s., 0^{+}$ III, $5/2^{+} \longrightarrow g.s., 1/2^{+}$
	0,99	⁴⁸ Ti(n,n') ⁴⁸ Ti*	-0.98	I, 2 ⁺ -> g.s., 0 ⁺
	1.31	⁴⁸ Ti(n,n [†]) ⁴⁸ Ti [*]	-2.29	II, $4^+ \longrightarrow I$, 2^+
	0.93	⁵² Cr(n,n') ⁵² Cr* ⁵² Cr(n,d) ⁵¹ V*	-2.37 -9.21	II, $4^+ \longrightarrow I$, 2^+ II, $3/2^- \longrightarrow g.s.$, $7/2^-$
	1.33	⁵² Cr(n,n [†]) ⁵² Cr [*]	-2.76	IV, $4^+ \rightarrow I$, 2^+
	1.44	⁵² Cr(n,n ¹) ⁵² Cr [*]	-1.43	I, 2 ⁺ → g.s., 0 ⁺
	Gam	0.44 0.64 1.27 1.63 1.27 2.06 2.24 0.99 1.31 0.93 1.33	$E_{\gamma} (MeV) = Proposed Teaction = 0.44 = 2^{3} Na(n, n')^{23} Na^{*} = 2^{3} Na(n, n')^{23} Na^{*} = 2^{3} Na(n, \alpha)^{20} F^{*} = 1.27 = 2^{3} Na(n, \alpha)^{20} F^{*} = 1.63 = 2^{3} Na(n, \alpha)^{20} F^{*} = 1.27 = 3^{2} S(n, \alpha)^{20} Si^{*} = 3^{2} S(n, \alpha)^{20} Si^{*}$	$E_{\gamma} (MeV) = Proposed reaction (MeV)$ $0.44 = \frac{2^{3} Na(n, n')^{2^{3}} Na^{*}}{2^{3} O.44} = \frac{2^{3} Na(n, n')^{2^{3}} Na^{*}}{2^{3} O.44} = \frac{2^{3} Na(n, n')^{2^{3}} Na^{*}}{2^{3} O.44} = \frac{2^{3} Na(n, n)^{2^{0}} F^{*}}{2^{3} O.92} = \frac{2^{3} Na(n, n)^{2^{0}} F^{*}}{2^{3} O.92} = \frac{2^{3} Na(n, n')^{2^{3}} Na^{*}}{2^{3} O.92} = \frac{2^{3} Na(n, n')^{2^{3}} Na^{*}}{2^{3} O.92} = \frac{2^{3} Na(n, n')^{2^{3}} Na^{*}}{2^{3} O.92} = \frac{2^{3} S(n, n')^{2^{3}} S^{*}}{2^{3} S(n, n')^{3^{2}} S^{*}} = \frac{4.29}{3^{2} S(n, n')^{3^{2}} S^{*}} = \frac{4.29}{2^{3} S(n, n')^{3^{2}} S^{*}} = \frac{4.29}{2^{3} S(n, n')^{3^{2}} S^{*}} = \frac{4.29}{2^{3} S(n, n')^{3^{2}} S^{*}} = \frac{2.24}{2^{3} S(n, n')^{3^{2}} S^{*}} = \frac{2.29}{2^{3} S(n, n')^{4^{3}} Ti^{*}} = \frac{2.29}{2^{3} O.99} = \frac{4^{8} Ti(n, n')^{4^{8}} Ti^{*}}{1^{3} O.98} = \frac{5^{2} Cr(n, n')^{5^{2}} Cr^{*}}{2^{3} O.92} = \frac{2.37}{5^{2} Cr(n, n')^{5^{2}} Cr^{*}} = \frac{2.37}{2.37} = \frac{5^{2} Cr(n, n')^{5^{2}} Cr^{*}}{2.27} = \frac{2.37}{5^{2} Cr(n, n')^{5^{2}} Cr^{*}} = \frac{2.71}{2.76}$

Nucleus	Ε _γ (MeV)	ao	a ₂	a	^σ n,G(Eγ) (mb) a)	Results of others (mb)
²³ Na	0.44	35.06	-1.324	0.361	440 <u>+</u> 37	$\begin{cases} 496^{b} \\ 463^{\pm}56^{c} \end{cases}$
1981.00	0.64	5.086	-1.110	-0.102	64+12	80 ^{b)}
	1.27	15.76	2.164	-2.590	198 <u>+</u> 23	183 ^{b)}
1.1	1.63	13.24	-2.492	1.780	166_23	236 ^{b)}
		1	6. S	Second?		
³² S	1.27	14.23	-4.455	-1.814	179-21	113 ^{b)}
1.0	2.06	9.165	3.021	-0.739	115+26	
	2.24	22.17	2.880	-1.973	278_43	$\begin{cases} 192^{\text{b})} \\ 332^{+}_{-}50^{\text{c}} \end{cases}$
had a		y 21 - 1		al reacht.		
⁴⁸ Ti	0.99	75.79	23.11	-7.727	952+86	652 ^{b)}
	1.31	33.68	3.338	-16.56	423 <u>+</u> 78	216 ^{b)}
⁵² Cr	0.93	17.59	6.682	2.707	221_31	
100	1.33	19.01	9,048	4.737	239±36	
12	1.43	60.29	10.45	-4.678	757±56	

Table 2. - Legendre coefficients and total production cross-sections of gamma rays from nonelastic processes.

$$\frac{dO}{d\Omega} = a_0 + a_2 P_2 + a_4 P_4$$

a) The total production cross-section of gamma rays from nonelastic processes is indicated with the notation $\sigma_{n,\,G}(E_{\gamma})$ as recommended by CINDA $(^7)$.

b) Obtained by multiplying by 4π the differential cross-section for 14.7 MeV neutrons measured at 90°, and reported in Ref. ($^5)$

c) Total production cross-section for 14.1 MeV neutrons given in Ref. $(^{\rm 6})$

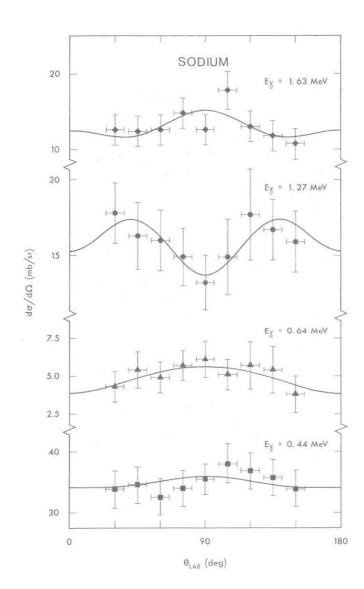


Fig. 5. - The angular distributions for the 0.44-, 0.64-, 1.27-, 1.63-MeV gamma rays from sodium.

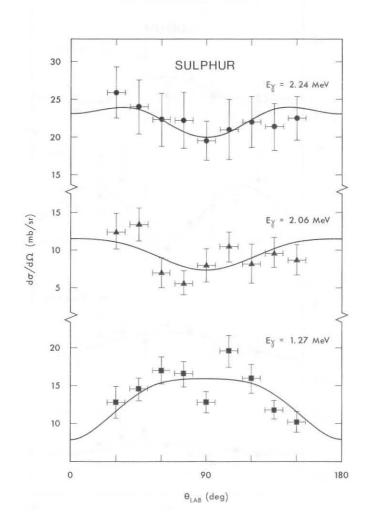
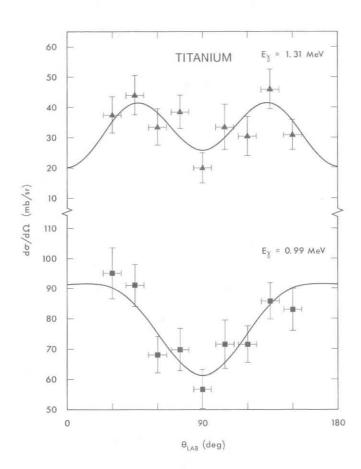



Fig. 6.--The angular distributions for the 1.27-, 2.06-, 2.24- MeV gamma rays from sulphur.

- 15 -

Fig. 7. - The angular distributions for the 0.99- and 1.31- MeV gamma rays from titanium.

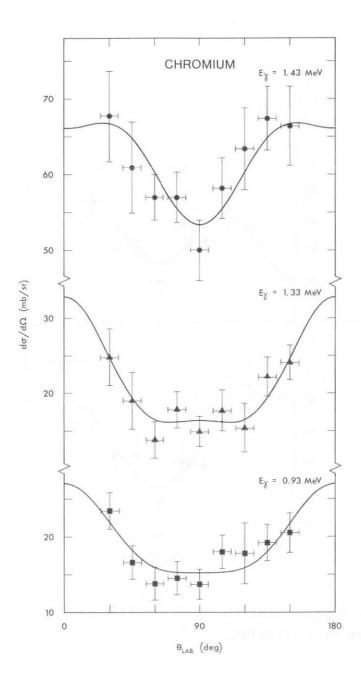
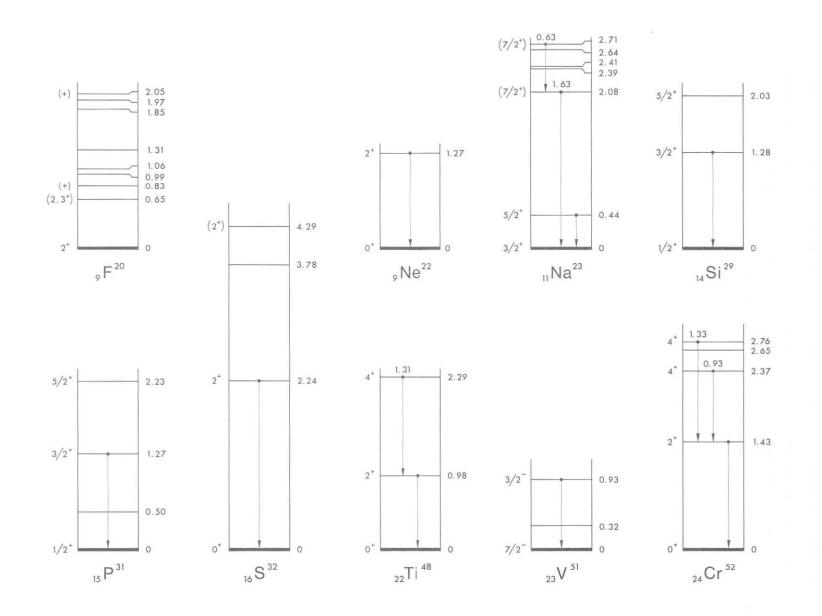



Fig. 8. - The angular distributions for the 0.93-, 1.33-, 1.43- MeV gamma rays from chromium.

03

69

Fig. 9. - Nuclear level schemes of the ²⁰F, ²²Ne, ²³Na, ²⁹Si, ³¹P, ³²S, ⁴⁸Ti, ⁵¹V and ⁵²Cr nuclei for the low energy levels concerned with in this report.

- 17 -

of the 0.44-MeV transition of ²³Na the results of Martin and Stewart seem to indicate some isotropy in the angular distributions while the results presented in this report do not. Moreover, the differential cross-sections given by Martin and Stewart for the 2.24-MeV gamma ray from ³²S are smaller at small angles amd rather greater at large angles, than the differential cross-sections presented in this report.

The authors should like to acknowledge the interest shown in this work by Professor G. Poiani.

REFERENCES

(¹) U. Abbondanno, R. Giacomich, L. Granata, M. Lagonegro and G. Pauli, Report INFN/BE - 70/6, (1970)

- 19 -

- (²) L. Vallon, Doctorate Thesis, University of Trieste, 1970 (unpublished)
- (³) M. A. Mariscotti, Nucl. Instr. & Meth., <u>50</u> (1967) 309
- (⁴) C. M. Lederer, J. M. Hollander, I. Perlman, "Table of Isotopes", 6th Edition, (John Wiley, 1968)
- (⁵) F.C. Engesser and W.E. Thompson, Journ. Nucl. Energy, <u>21</u> (1967) 487
- (⁶) P.V. Martin and D.T. Stewart, Journ. Nucl. Energy, (Parts A/B),<u>19</u> (1965) 447.
- (⁷) CINDA 69 (Second Supplement), "An Index to the literature on microscopic neutron data", USAEC Division of Technical Information Extension (August 15, 1970).