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Sl MMARY.-

Nuclear rearrangement processes are investigated within the framework 
of the Yakubovskil approach to the N-body problem. Transition operator 
components having prescribed connectedness properties are proposed in 
order to extract from exact equations the relevant reaction mechanisms . 
Specific applications to single-particle and two-particle transfer reactions 
are treated. 

J. INTRODl CTION. -

As is well known, conventional approaches to nuclear rearrangement reactions 
are usually not based on a rigorous mathematical ground. For calculational purposes, 
the N -body r earrangement scattering problem is replaced by effective two-particle m~ 
dels and approximate expressions for the transition amplitude are proposed on the ba
sis of intuitive arguments or of phenomenological suggestions . 

In such method s the incorrect mathematical description of the problem is usually 
associated with a not well clear physical interpretation of the approximations one made. 
For instance, the distorted-wave Born approximation (DWBA) amplitude has a form r~ 
ther unsymmetrical with respect to the initial and final channel, because the reaction 
mechanism is not described correctly. T he well-known post a nd prior representation 
discrepancy would not exist if the proposed amplitude had a well-defined physical pictu 
re(!, 2, 3). -

Some new insight into the general questions involved in the rearrangement pro
cesses has been obtained withi n the framework of the non-re lativistic Feynman-diagram 
approach to direct nuclear reactions(4-7). This approach gives useful suggestions in 
order to formulate a rigorous mathematical theory, in which all the terms, appearing 
in a meaningful expansion of the exact amplitude, have a well-defined phYSical interpre 
tation (in a diagrammatic form). Such a program has ben carried out, in an exact thre; 
body context, for single-particle transfer reactions(2, 3). For more complex reactions, 
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2. 

one needs to forrnuiate the rearrangement prob.lem in a N-body context. In this paper 
we try to get such a formulation. 

The N -body rearrangement scattering problem can be treated on a rigorous 
theoretical ground by generalizing the three-particle Faddeev equations to any number 
of particles. Iiowever, as Blankenbecler and Sugar showed(8), there are infinite ways 
of constructing integral equations with connected kernels . This explains the large nUI~ 
ber of generalizations proposed in the lileralure(9-J 8) . Among them, the YakubovskH 
formulation represents, as rer·ently pointed out by F'addeev(19), the most natural me 
thod for attacking the N-body problem. 

In order to make t he Yakubovskil approach suitable for describing nu clear r e
arr angement mechanisms, we shall introduce scattering operator compone nts havi ng 
prescriher! connprterlnPRR propprtips from the left as well as from the right-hand side 
(two-sided components). An ear'lier different definition of two-sided compone nts has 
been proposed in the study of the analytic stl'ucture of the N- bod y scattering amplitu
de(20), However, both with respect to these latter components and with respect to the 
original one-sided Yakubovskil ones, the components we define have t he adva ntage of 
leading directly to a physically meaningful expans ion of the transition operators. 

It will be proved that the two-sided components satisfy Yakubovskll-likc equa
tions, Therefore the attractive features of t he Yakubovskil approach are preserved in 
the proposed reformulation, Furthermore, we shall see t hat the contr ibutions to t h e 
transition amplitude, a r iSing from the ncw inholl"lOgeneous terms, have an immediate 
interpretation in te rm s of reaction mechanisms, 

In Sect. 2 we introduce generalized expressions for the transition operators 
and we define their two-sided components. Tn Sect. 3 integral equations for t hese co~ 
ponent!=< are d prived and transition operators are s plitted into parte having a wcll-dcQ. 
ned co nnected ness, Sect. 4 is devoted to specific ap plications: single-par ticle a nd 
two-particle rearrangement processes are discussed in a three-body and in a [our
body context, respectively. The different ro1e played by competitive mechanisms will 
be emphasized. 

Mathematical details conce rni ng integral equations anti a techn ical discussion 
on the operator connectedness proper·ties are given til the Appendi ces. 

2. - GENERAL FORMALISM. -

2.1. - Transition operatoJ's. 

We assume our N-body system to be described by the Hamiltonian: 

(2. 1) 

where HO is the kinetic energy and Vi are two-body potentials . The sum in the eq. (2. 1) 
extends over all the pairs of particles. 

In order to describe scattering processes , one has to consider the possible ini 
tial and final configurations. The YakubovskH notation will be followed(J 8). 

Let ak be a partitio n of the N-padic1c system into k c luslel's ( 1 s k ~ N). Dif
ferent partitions into k clusters will b(' {L~lluted by diffct"enr latin letters ak' bk , . , .. 
Partitions into k+l clusters, obtained fr·om <11<' bk , ... , by breaking up one of their 
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3. 

clusters, will be denoted by a k+1, bk+1, ... , respectively (ak+1 c a k). 

Each partition ak corresponds to an asymptotic configuration in which the clu
sters of ak are not interacting among them; only the interactions acting within the clu 
sters do not vanish. If Yak is the sum of all these interactions, the channel Hamilto-
nian Hak is: 

(2.2) 

The resolvents of the channel Hamiltonians are: 

(2 . 3) 

For k=N one has the resolvent of the free Hamiltonian G =Ga (VaN=O); for k=l one 
has the resolvent of the total Hamiltonian G=G a . (Va.=L'.Ji ). N 

IIi 

Let us introduce the transition operators llajbk(Z): 

(2.4a) 

(2.4h) 

from the initial configuration characterized by the partition bk to the final one chara:::... 
terized by the partition aj. Va. is the sum of all the interactions not contained in the 
clusters of the partition a i . J 

The on-the-energy-shell matrix elements of the operators (2.4) lead directly 
to the S-matrix elements, This has been shown by Alt, Grassberger and Sandhas(14, 21), 
which proposed the nonstandard definition (2.4) and which pointed out its advantages 
with respect to the transition operators generally used in the literature, In the follo~ 
ing, we shall see that eqs. (2, 4) represent, in extracting the relevant reaction mech~ 
nisms, the most natural choice for the transition operators among all the possible off 
energy-shell continuations which coincide on-the-energy-shell. 

For j=k=N, the eqs. (2. 4) give the N-particle scattering operator 

(2.5) 

where V=VaN=V a1 , If one takes into account only the interactions contained in the paE, 

litian ai, one has the scattering operator: 

(2. 6) 

For i=N-l, the eq, (2, 6) gives the two-body scattering operators TaN _
1

(z). acting in 

the N-particle space. Note that each partition aN_1 is in an one-to-one corresponde~ 
ce with a pair of particles. For i=l, the eq. (2. 6) coincides with the eq , (2. 5). 

The formulas (2. 4)-(2,~) can be considered as particular cases of the following 
generalized definition of transition operators between configurations within the parti
tion ai: 

(2.7) 
-1 

Ua .bk- a ' (z) = (1- Sa .bk)GO (z)+Va . - Vbk-(1- Sa .bk)Va .+(Va ·-Va .)Ga · (z)(Va ·-Vb
k

). 
J ,1 J 1 J J 1 J 1 1 
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4. 

2.2.-0 ne-sided components of the transition operators. 

As is well-known, E}fter Faddeev comments on the possible formulations of the 
N-body scattering problem(19), only in the three-body case one can obtain in a natural 
way integral equations directly for the transition operators, These are -the well-known 
equations derived by Lovelace in an approach which is essentially equivalent to the Fad 
deev original one(22 -24). -

Although integral equations directly for the transition operators hav e been pro
posed in the N-body case, difficulties appear in proving both the compactness of the 
kernel and the absence of spurious bound-state solutions. These two important features 
are preserved if one splits the transition operators into components having well-defined 
connectedness properties and one derives integral equations for such components by 
means of the operator inversion technique, firstly suggested by Faddeev. 

The one-sided components of the scattering operators defined by Yakubovskil 
are: 

(2.8a) 

(2.8b) 

(2 . 9a) 

(2.9b) 

where 

(2. 10) 

In the definitions (2.8)-(2.10) the indices Ct k , Bk , •.. denote sequences of partitions 
beginning with ak . bk •... , respectively, c. g . 

Ct
k

::: (a
k 

,a
k 

+ 1 ' ••• ,aN _ 1 ) :;;: (a k ,a k T 1 ) ; 

a k a 
the partitions ak' bk in the matrix elements Aa. k _ fulfil the condition ak' bk C ai 

tthe index ai will be omitted when i=l); the quasluiagonal matrix elements ClkS k 
a, Bk Aa i ( 0) , 

A K(') are defined as: a i 1 

(2. 11) 

The recurrence relations (2. 8b) and (2. 9b) contain the graphic connectedness 
. "kBk ( .) _a , ok ( . . proRerhes of Ma from the left hand sIde and of Ma j( from the rIght hand SI-

de)(20, 25). i i 
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The transition operator components M
0

2 S2) M0
2 P2 for the fully interacting 

N-body system satisfy the Faddeev-Yakubovskii equations(18) 

(2.12a) 

(2. 12b) 

5. 

Note that the eqs. (2. 12) in matrix nolation have a formal Lippmann-Schwinger-like 
structure (M(O) and X play the role of the potential and of the free propagator, respe~ 
lively). 

,, ~ B a a 
From the relation connecting Ma ~ k wi 1:h Me;" ~T 1 k+ 1 (eq . (3.4) of ref. (I 8) ) 

, 1 
and from the definition (2.4) of the tramdtion 0pcl" ;,.lor ::: , it follows that: 

(2.13) Ua.b =(1-6 a . b )(GO'- I Vc )+ I MY2
6

2 
J k J k cN_l~aj,bk N-l Y2jdN_l~bk 

CN_1$D. j 

for arbitrary d2 • ...• dN _2 . Introducing the eq . (2. 12a) in the eq. (2.13), one sees that 
there is a large arbitrariness in constructing convergent expansions of the transition 
operators (one can start from different first-order terms), Furthermore the expres~ 
ion (2, 12) shows a rather unsymmetrical structure with respect to the different poss..! 
ble intermediate state contributions, In order to obtain unique convergent expansions 
and symmetric expressions for the transition operators. we shall introduce two-sided 
compone nts having prescribed connectedness properties from the left as well as from 
the right hand side. 

2,3.-Two-sided components of the transition operators, 
Cl ki:S k Let us now construct two-sided components Na'. of the transition operators , 

by means of the one-sided Yakuhovski! ones (2, R) and (t: . g), We start from 

(2. 14) 

and introduce the recurrence relati ons 

(2. 15) 

l !H 



6, 

(2 , 16) 

(2, 17) N"k-1Sk-l=N"k-1Sk-l_N"k-1Sk-l, 
"itO) ai(O) aiel) 

(2, 18) 
"k-1Sk-l_N"kSk 6 

N"i(l) -I "itO) ak_lbk_l' 

" S The eqs, (2, 14) and (2,15) define N/ k as a sum of a quasidiagonal part and of a 
part which contains the resolvent G3.~' This latter one arises from a direct coupling 
of the resolvent part of the left-hand~sided operators (2. 8b) with the resolvent part of 
the right-hand -s ided operators (2, 9b), The proposed definition oLthe quasidiagonal 
part will assure a k-independent structure of the inhomogeneous part of the Yakubov 
skit-like integral equation system for NClk Bk This essential requisite is not prese;
ved if quasldiagonal terms do not appeal i tn'the eq, (2, 15)(20), -

" a The operato~ Na~(~) have connectedness ak' that is they can be represented 
as a sum of ak -connected graphs(9, 13)(x). In virtue of this interesting property one 
can expand the transition operators into parts having a well-defined graphic connecte~ 
ness, As shown bv the recurrence definitions (2.16)-(2.18), the ak_ I-connectedness 
property of N:~(b~k-l for 0k=Sk i9 obtained by subtracting, with a sequential pr.Q 
cedure, all terrri"s with lower conn -.:ckdness, The sequence terminates with 
Ta 60: 6 ,which is aN_ I-connected. The proof of the connectedness property 

N-l k-l k-l 
of N~~(~~k -l for arbitrary sequences ok and Bk requires a detailed investigation, 

It will b e given in Append! x A. 

3, - THE N-BODY PROBLEM IN TERMS OF TWO-SIDED SCATTERiNG OPERATORS, 

3,1.- Integral equations for two-sided scattering operators, 

In order to derive, bv means of an inductive procedure, integral equations for 
the two-sided operators NClkSk (2<k<N-2, k>i), we start from the Faddeev-like 

ab ai" .. 
equations for Nai (a:aN _I • b:bN _I ) 

(3, la) 

(3, Ib) 

Nab =T 6 +T G ~ Ndb , a. a ab a 0 La. 
~ dfa ~ 

ab ~ ae G T N =T 6 b+ l Na , a b' 
ai a a efb ~ 

For partitions ai=aN_2 which contain a three-particle cluster the eqa. (3. 1) coincide 
with the original Faddeev equations. For partitions ai=aN _2 which contain two two-pa:: 

(x) - A graph consisting of k connected parts is ak-connected if exists an one-to-one 
correspondence between its connected parts and the clusters of the partition ak (gra
phic lines belonging to the same connected part correspond to particles belonging to 
the same cluster). 
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ticle clusters the eqs , (3. 1) are rearranged expressions of the well-known (second) r~ 
solvent equation for Gal\l_2 ' 

Ci I a' ( Using the eqs . (3. 1). one can show that the operators Na . a I = (a I ~a) ~ 
1 

;; (aN _ 2 ,aN _ 1 ) =o.N _ 2 and similarly for S ') satisfy the integral equations (see Appendix 

B) 

(3.2a) 

(3.2b) 

For N=4 (ai =a
l

) the eqs. (3. 2) represent the correct solution of the four-body problem 
in terms of two-sided operators. The kernel of the eqs. (3. 2) coincides with the Yaku
bovskit kernel in the four-body case, 

Let us now suppose that the operators 
tegral equations 

(3.3a) 

(3. 3b) 

CikBk 
Na i satisfy the following linear in-

We shall prove that formally identical equations hold for N~~-l ak _ 1 . In the eqs. (3. 3) 
the inhomogeneous term is the ak -connected operator 1 

7. 

a a 
Na.~(~) ._~Tnte that for k=N-l the eqs. (3. 3) coincid e with the eqs. (3.1), for k=N-2 they 

coincide with the eqs. (3. 2). 

Introducing the eqs . (3. 3) in the definition (2. 15), one obtains the following al
a a ternative formulas for N k-l k-l 
a i . 

(3.4 a) 
x 

(3.4b) 



8. 

Summing over ak_l or bk _1 and taking into account the eqs, (3 . 3) and the well-known 
properties of the partitionsl 18), one gets 

(3 . 5a) " S ~ N k-I k-I= 
L. a i 

(3.5b) " S ~ N k-I k-I= 
L a· 

b
k

_
1 

' 

From the eqs. (3. 4). (3.5). (2.1 7). (2.18) and (3.3) it follows that 

(3. 6a) 

(3.6b) 

By analogy with the Faddeev-Yakubovskii arguments for the one-sided operator case, 
we extract from the latter sum at the right hand side of the eqs, (3, 6) the part corre
sponding to dk _1 =ak_1 or ek_l =bk _l and we transfer it to the left hand side. Thus 
one obtains, in matrix notation, 

(3.7a) 

(3.7b) 

If one takes into account the relations (4, 5), (4.6) of ref. (18) and similar relations for 
the right hand-sided operators, one gets from the eqs. (3. 7) the integral equations for 

", Sk Na~-I -I _In the form (3. 3) . , 
Finally, the above induc tive procedure leads to the following result for the fully 

interacting N-body system 

(3.8a) 



9. 

(3. 8b) 

where CI (0) ~Ci 1 ( 0). According to Hie connectedness properties discussed in Sect. 2, 3, 
one sees that the homogeneous part of the integral eqs. (3, 8) is fully connected (that is 
aI-connected). The kernel of the NCt 2 82 equations coincides with the Yakubovskil ker
nel, so that all the results concerning compactness apply equally to the kernel of the 
eqs. (3. 8), Furthermore the equivalence of the homogeneous equation system (which 
can be extracted from the system (3. 8a) or (3. 8b» to the SchrHdinger equation can be 
easily proved . 

3.2. - Expansion of the transition operators into connected com
ponents. 

The generalized transition operators (2, 7) can be expanded in terms of two
sided components (2. 14) 

(3. 9) 

In order to separate in the eq. (3, 9) the terms having different graphic conne~ 
tedness properties, we will derive some auxiliary formulas, Let uS sum the eq, (3,5a) 
over bk_1 or the eq. (3. 5b) over ak_l. Using the eqs. (3. 3), one obtains 

L NOk-lSk-l:N°kBk_N°kBk 
a b di d i °i(O)' 
k-l k-l 

(3. 10) 

By applying this relation to less and less connected operators. up to N"N"l,bN_l 
0i(O) I 

gets 
one 

(3.11) 

(3. 12) 
a b N-l 

N N-l N-l= r 
n ::3 

Let us consider the eq. (3. 9) for ai=al' In virtue of the relation (3. 12), the 
N-particle scattering operator (2.5) takes the form 

(3.13) 
N-l 

T= L 
n::3 



10. 

Similarly the transition operators U ajbk become: 

(3.14) 

The eqs. (3. 13) and (3.14) give a cluster decomposition of the transition operators into 
terms having a well-defined connectedness. Taking into account the integral equation! 
(3.8). one sees that the terms fully connected appear separated from the terms NYn n 
(n=2, . .. , N-I) having lower connectedness. .( 0) 

4. - SINGLE-PARTICLE AND TWO-PARTICLE REARRANGEMENT PROCESSES. -

4.1.- Single-partic l e rearrangement react ions in a three-body 
formulation. 

Single-partic l e or single-cluster rearrangement processes can be represented 
schematically as 

(4. I) a+(b+c) ..... b+(a+c) 

if one deals with a transfer or exchange reaction, or as 

(4.2) a+(b+c) .... a+b+c 

if one deals with a break-up reaction. Stripping processes (b+c, b). pick-up processes 
(a, a+c) and knock-out processes (a, b) enter in the first scheme (4. 1). If the particles 
or nuclear clusters a, b, c are assumed to act as inert units, the reactions (4. 1) and 
(4.2) can be treated in a three-body context. In the usual notation for the thr ee-body 
problem(23), one has from the general eq. (3. 14): 

(4. 3) 

for processes (4 . 1) and 

(4.4) U =G- 1., Ncd 
oa 0 L 

c 
di_ 

for processes (4.2). The components N"d satisfy the Faddeev equations (see eqs. (3.1) 
for N=3 and ai=al). It is immediately seen that the transition operators Uba and U Oa 
are constructed by means of quantities having a well-defined physical meaning in terms 
of reaction mechanisms. For instance, in correspondence to the inhomogeneous terms 
Tc 0cd.in the eqs. (3. I) (N=3, ai=al), we have: 

(4. ,5) 

(4 . 6) 



Then, in the channel state representation 1!fI a.> (0=0 ,a ,b ,c; 190>= li?,q» one gets 
on-the-energy-shell(3) : 

(4.7) 

(4. 8) 

11. 

The eq. (4. 7) gives t he transition amplitude for the pole diagram describing the tran~ 
fer of the particle c and for the triangle d iagram describing in addition to the c-tran~ 
fer, the a-b off-shell intecac tion (Fig. 1). The eq. (4 . 8) gives the transition amplitu
des for the diagrams represented in Fig. 2, The shaded circles represent form factors 
for the channel bound states, The shaded squares represent two-body off-the-energy
shell (in Fig. 1) or half-off - the-energy-shell (in Fig . 2) scattering amplitudes. 

c 

c 
b ~~/: ' 

~ 

" '/ 

FIG. 1 - Pole and triangle diagrams for the transfer of the particle c. 

=() c 

FIG. 2 - The simplest diagrams for break -up reactions. 

Starting directly from integral equations for the three - body transition opera
tors U 8a (Lovelace equations for the Alt-Grassberger-Sandhas operators) and once 
iterating them. one sees that the inhomogeneous term of such iterated equations (who 
se kernel i s a Hilbert-Schmidt operator) coincides with the quantities (4.5) or (4. 6).
Within the framework of the Alt-Grassberger-Sandhas formulation the role of the pole 
and triangle diagrams in transfer and exchange nuclear reactions has been recently 
investigated(2, 3). If multiple-rearrangement mechanisms are neglected (as it is rea
sonable in many cases), one can obtain from the exact theory a generalized distorted 
wave model which is constructed on the basis of the pole and triangle diagram mech~ 
nisms (not only on the simple pole mechanism). 

As is well known, for a meaningful comparison between the contributions of the 
reaction mechanisms, one must take into account both the singularity positions and the 
vertex function magnitudes of the corresponding diagrams. It is worthwhile noting that 
for break-Up reactions the kinematic features of the final state can affect considera
bly the position of the physical-region boundaries (at fixed energy) in the kinematic 
invariants. 

1 o '''' v • 



12. 

4. 2. - Mechanisms of two-particle transfer reactions in a four
body formulation . 

A two-particle transfer reaction a (A. B)b can be represented schematically as 

(4. 9) a + (b+c+d) - > b + (a+c+<l) 

where c and d are the particles transferred from the initial thr ee-body bound state 
A = (b+c+d) to the final one B = (a+c+dl. If the particles or nuclear clusters a , b, c , d 
are assumed to act as inert entities, the reaction (4 .. 9) can be treated in a four-body 
context. The process (4.9) is described by the on-the-energy-shell matrix e l ements 
of the transition operator Uacd. bcd' From the eq. (3. 14) one obtains: 

(4 . 10) 

where E: I = (e I , e) = (e 2 , e 3) and similarly for ~ I • There are two types of partitions e ' 
into two clusters: partitions into a three-particle c luster and one particle free and paE, 
Htians into two two-particle clusters. We label the former partitions with e '=ijk. the 
latter ones with e'=ij/kl (i, j, k, l=a, b, c, d; if j f k f 1). 

I , I 

The components Nt: satisfy the integral equations (3.2 ) with N=4 and ai=a1, 
The simplest relevant reacUon mechanisms can be extracted from the eq, (4, 10) by r e 

11;1 -

placing ~E with its el-connected inhomogeneous term Ne 7-T <5 • One gets 
e e ez 

(4. 11) U(O) =G-I+T +(V G V -V G V ) 
acd, b cd 0 ab/(cd) b(ac) abc a (bc ) ab ab ab 

+ 

(4.12) 

Tij/(kl) represent the two-body transition operators for the ij-subsystem (disconnec 
ted from the subsystem of interacting particles k and 1) in the four-body space , They 
are of the type Uee .e , with e l = ij/kl and e = kl. Note that the subtraction of the quan
tity VabGab Vab in the third and fourth term of the right hand side of the eq . (4. 11) as 
sures the abc or abd-connectedness of such terms. 

Using the on-the-energy-shell rel a tions (26); 

(4. 13) 

for the channel states J ~ i j k>' one obtains : 

(4.14) 

=<9 Iv (G +G T G)V 19 > aed a(ed) cd cd ab/(ed) cd b(ed) bed' 

1!)3 
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(4.15a) 

with x, Y = c, d (x r y) in the eqs. (4. 15a) and (4.16). 

From the eq. (4. 14) one sees that the first two terms in (4. 11) give the transi
ti\m amplitude for the pole diagram describing the transfer of the subsystem of the i.!!. 
teracting particles c and d and for the triangle diagram describing in addition to such 
a transfer the a-b off-shell interaction (Fig. 3). If the particles c and d are trans
ferred in one of their bound states, one obtains again the basic mechanisms for single
cluster transfer processes, The well-known plane-wave theory for two-nucleon trans
fer reactions corresponds to the first term in the formula (4. 14). 

eel 
\. b 

FIG. 3 - Pole and triangle diagrams for the transfer of the cd-subsystem, 

The terms in bracket in the eq. (4. 11) are represented by quadrangle diagrams 
in which the parti cle y is directly transferred from the initial to the final state and 
the particle x interacts successively with a, ab and b (Fig.4a). Because of the abx-

a) 

FIG. 4 - Quadrangle diagrams 
describing the transfer of the 
particles x and y (x, y=c, d; xi 
fy) and involving a) three-pac. 
tic Ie intermediate states; 
b) two two-particle interme-

b) diate states. 
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connectedness of these terms, the particle x cannot freely propagate in the interme
diat e state . The abx-subsystem can propagate in one of its three-particle bound states. 

The ~wo last terms in the eq. (4.11) give the amplitudes of quadrangle diagrams 
describing the successive and independent transfer of the particles x and y; the parti
cle x is transferred while band y interact and the particle y is transferred while a 
and x interact (Fig. 4bJ. 

Details on the form factors. describing the vertices in the diagrams of the 
Figss . 3 and 4, ean be found in refs. (26, 27J. 

If the resolvent operators Cd. for the d.. -subsystems are approximated in the 
eqs. (4 . 14)-(4. 16) by their dominating bound state separable parts, the graphs in Figs. 
3 and 4 coincide with the simplest graphs for two-particle transfer processes which 
can be obtained in the non-relativistic Feynman-diagram approach to direct reactions 
proposed by Shapiro(4). Obviously, in the above four-body context we cannot investiga 
te diagrams with internal lines corresponding to virtual particles different from a, b. 
c, d. Within the framework of the Shapiro approac h quadrangle diagrams desc ribing 
the successive transfer of two nucleons (see Fig. 4b in correspondence to a bound st~ 
te both of the ax-subsystem and of by-subsystem) have been proposed in the study of 
the (t, p) and (1:, p) reactions(28-30). 

Finally, l et us outline that the physical contents of the eq. (4.1 1) is in a direc t 
correspondence with an intuitive description of two-particle transfer processes . In 
f ac t, from an intuitive point of view, the simplest graphs describing two- pa rticle tra.!! 
sfers can be constructed by starting from one of the following three virtual decays 

(a+b+c) - i + (j+k) (i, j, k = a , b, c; if if k) 

and cons idering the virtual capture of i or (j+k) by d . One obtains six graph s, which 
coincide with those of the Figs . 3 and 4 (for intermediate clusters transferred in one 
of their bound states). Note that the four-ray vertex of the triangle graph in Fig. 3 t~ 
kes the form of a pole graph, in correspondence to a bound state separable term of 

Tab/(ed)' 

5. - CONCLUSIONS. -

Within the framework of a rigorous N -particle theory, th e transition operators 
for nuclear rearrangement processes have been splitted into parts having a well-defl 
ned graphic connectedness. The N -particle fully connected ter ms have the sam e struc 
ture of the homogeneous part of the Faddeev-Yakubovskit integral equations . Th e ter~s 
with a lower connectedness are well -interpreted in terms of Feynman diagram basic 
rearrangement mechanisms. It follows that our approach gives a support to the non
relativistic Feynman diagram technique proposed by Shapiro . 

We have s tarted from the nonstandard off-energy-shell continuation of the tra.!! 
sition operators suggested by Alt, Grassberger and Sandhas and we have found that it 
leads to a physicslly transparent formulation of the N-body problem. This fact s hows 
the advantage of the above special choice for the transition operators, wh ich has not 
yet been sufficiently appreciated in the literature. 

Practical applications of ·the proposed formulation depend on the progress which 
will be made in solving Yakubovskir equations . A first attempt in the four - body case has 
been recently tried(31J. However, it is wothwhile noting that, in virtue of the well-de~ 

"0" (w v 
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ned physical picture of the general formulas. some meaningful approximations can be 
easily proposed. 

Finally. we notice that. in the context of the suggested approach. one can get 
some insight into many-particle heavy-ion transfer processes. for which accurate e~ 
perimental data can be now obtained using modern Tandem Van de Graaff accelerators. 

We wish to acknowledge Prof. C. Villi for encouraging interest and critical 
reading of the manuscript. Thanks are also due to Dr. G. Di Tullio. Prof. A. Basset 
to. Prof. F. Paccanoni and Mr, G. Cattapan for helpful discussions. 
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APPENDIX A.-

We shall prove here, by induction. that the operators :\~ ~ ( ~ ~,, - , have connec ted
nes ak _1 (3 ~ k , N) . 

a B 
By definition the operators NO~~)l N-l are aN_I-connected , It is immediately seen 

that the operators N:~olBN-2 are a~_2-connected both for aN_I rbN_l and for aN _1 = 
= bN_l; in this latter case one has (aN_2= a' ; aN_1 = a) 

(A. 1) 

Let us consider NClk_lBk-l for 3~k ==N-2 
a i ( 0 ) 

and let us distinguish the case ak = bk 
from the case ak 'I bk . For ak = bk one has 

(A.2) 

X"ktl'ktIM'ktIBktl 
"k "i(O) 

From the eq, (2.15) one obtains the following decomposition for NOk+l£k+l 
a k _ 1 

(A.3) 

;-2 ~'-I j - l,j -1 . 6" .y . Y .• . 
( vX)k+J_~ K+ J +J x ~+J k+J. 

I', -l la ,(O) )-2 • 
l dktj - I 

N-k-2 N-k-2 
p=d

N
_ 1 q::e

N
_ 1 

z0 3 
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with 2 ~ i '" N -k-I; J ~+2 = • k+2' E.~+2 = E.k+2 · By extracting Gak from Gak _1 one gets 

from the eq. (A. 3), because p, qcak' 

(A.4) 

where Vai!ai+l=Vai-Vai+l" Introducing this result in the eq. (A. 2) and taking into account 

the identity<20) 

(A.5) 

and a similar identity for the right-hand-sided Yakubovskii operators, one obtains 

(A . 6) 

From this equation one sees that the operator !;a k_ 1 ,ak _ 1 akB k+ 1 
"i(O) 

For ak ~ bk• one has 

is ak_l-connected. 

(A.7) N"kSk_N"kSk = I M"ktlYk+1XYk+lok+1Nok+lck+lxck+l'k+1M'k+1Sk+l 
a k _ 1 "itO) ( y o£')k+l ail O) a k + 1 ak_l a k _ 1 ai(O) 

dk+1cak 
ek+1c:;bk 

By means of suitable splittings of the sums over 
(A. 3), one obtains (with obvious meaning for 

i-I ek+i (1" i,; N-k-2) in the eqs. (A. 7) and 
(MX)k+1 and (XM)k+ 1 : 

(A. 8) ( M X)k+1N:.7~1 £k+l <Xii )k+l_ 
• 

I 
(yo£')k+l 

dk+lcak ,b k 

(MX)k+l 2. 
( YO £')~+ 2 

d~+2te~i'2<:,dkTl 

zo: 
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+ E k+l" N-l 
( 6~) (MX) .. . , N_k_2(KX) VpG p 

Y ~ k+l (y6E~)N_~ 
dkT1cak ~ - k-3 
ekTlcbk po:;;d N_ 2 

N-k-3 qce
N

_
2 

The integral equations (3.1) for N~~_l has been used in order to derive the eq. (A, 8). The 
ak_I-connectedness of all the terms in the eq. (A. 8) follows immediately from the inductive 
assumption and from the fact that every term in the sum 

(A. 9) 

6 
is ~-connected if Aa~+l is dk+1-connected. The eq, (A. 9) is the well-known recurrence 
relation for the left-h~nd sided components of the operators (2.6)(19.20,25), We notice 
that. owing to the severe restrictions one imposed on the indices of the sums in the eq, 
(4.8). several terms vanish. 
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APPENDIX B. -

ab 
Let us derive,from the Faddeev-like equations (3, 1) for Nai , the integral equations 

Ci. I a I 
(3.2) for Na . . 

~ c. ' S ' 
By using th e eqs . (3. I) , the operator ~a. • defined by eq. (2. 15) for k=N-I, can 

be written in the form 
, 

(8.1) 

From th e well-known properties of the partitions and from the eqs. (3. 1) it follows that: 

(8.2) r ,,~ I a~ r "aeG T 
L ·'a. - L ·'a. 0 • 

al~a J. ej.b .!=b' l. b 

Using this relation in the eq, (B. 1) and extracting the terms with d '=a', one obtains: 

(8.3) 

If one tak es i nto account th e e qs . (2. 17). (2.18) and (3 . I), one can easily show that: 

(8 . 4) 

(8.5) 

From th e eqs , (B. 3)-(B. 5) one can immediately derive the integral equ ations (3. 2a). Simi
larly one obtains the eqs. (3. 2b), 

20C 
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