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SUMMARY, -

Nuclear rearrangement processes are investigated within the framework
of the Yakubovskil approach to the N-body problem, Transition operator
components having prescribed connectedness properties are proposed in
order to extract from exact equations the relevant reaction mechanisms,
Specific applications to single-particle and two-particle transfer reactions
are treated,

1. - INTRODUCTION, -

As is well known, conventional approaches to nuclear rearrangement reactions
are usually not based on a rigorous mathematical ground, For calculational purposes,
the N-body rearrangement scattering problem is replaced by effective two-particle mo
dels and approximate expressions for the transition amplitude are proposed on the ba-
sis of intuitive arguments or of phenomenological suggestions,

In such methods the incorrect mathematical description of the problem is usually
associated with a not well clear physical interpretation of the approximations one made,
For instance, the distorted-wave Born approximation (DWBA) amplitude has a form ra
ther unsymmetrical with respect to the initial and final channel, because the reaction
mechanism is not described correctly, The well-known post and prior representation
dis(?rgpgncy would not exist if the proposed amplitude had a well-defined physical pictu
retls 4,

Some new insight into the general questions involved in the rearrangement pro-
cesses has been obtained within the framework of the non-relativistic Feynman-diagram
approach to direct nuclear reactions(4-7)_ This approach gives useful suggestions in
order to formulate a rigorous mathematical theory, in which all the terms, appearing
in a meaningful expansion of the exact amplitude, have a well-defined physical interpre
tation (in a diagrammatic form). Such a program has ben carried out, in an exact three
body context, for single-particle transfer reactions(2, 3). For more complex reactions,

(2
(®.0)
3



one needs to formulate the rearrangement problem in a N-body context, In this paper
we try to get such a formulation,

The N-body rearrangement scattering problem can be treated on a rigorous
theoretical ground by generalizing the three-particle Faddeev equations to any number
of particles, However, as Blankenbecler and Sugar showed(s), there are infinite ways
of constructing integral equations with connected kernels, This explains the large num
ber of generalizations proposed in the literature(9-18) Among them, the Yakubovskil
formulation represents, as recently pointed out by F‘addeev(lg), the most natural me
thod for attacking the N-body problem,

In order to make the Yakubovskii approach suitable for describing nuclear re-
arrangement mechanisms, we shall introduce scattering operator components having
prescribed connectedness properties from the left as well as from the right-hand side
(two-sided components). An earlier different definition of two-sided components has
been proposed in the study of the analytic structure of the N-body scattering amplitu-
de(20), However, both with respect to these latter components and with respect to the
original one-sided Yakubovskii ones, the components we define have the advantage of
leading directly to a physically meaningful expansion of the transition operators,

It will be proved that the two-sided components satisfy Yakubovskii-like equa-
tions. Therefore the attractive features of the Yakubovskil approach are preserved in
the proposed reformulation, Furthermore, we shall see that the contributions to the
transition amplitude, arising from the new inhomogeneous terms, have an immediate
interpretation in terms of reaction mechanisms,

In Sect, 2 we introduce generalized expressions for the transition operators
and we define their two-sided components, In Sect. 3 integral equations for these com
ponents are derived and transition operators are splitted into parts having a wcll-dcti_
ned connectedness, Sect, 4 is devoted to specific applications : single-particle and
two-particle rearrangement processes are discussed in a three-body and in a four-
body context, respectively, The different role played by competitive mechanisms will
be emphasized,

Mathematical details concerning integral equations and a technical discussion
on the operator connectedness properties are given in the Appendices,

2. - GENERAL FORMALISM, -

2.1,-Transition operators,

We assume our N-body system to be described by the Hamiltonian :

L
(2.1) H=Hg* )Wy,

i
where H, is the kinetic energy and V; are two-body potentials, The sum in the eq. (2.1)
extends over all the pairs of particles,

In order to describe scattering processes, one has lo consider the possible ini
tial and final configurations, The Yakubovskil notation will be followed 8 ;

Let aj be a partition of the N-particle system into k clusters (1 = k = N), Dif-

ferent partitions into k clusters will be danoted by different latin letters ap, by, .. ..
Partitions into k+1 clusters, obtained from A, bk, ..., by breaking up one of their
Q0
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clusters, will be denoted by a4, by 4, ..., respectively (a4 <ap).

Each partition a) corresponds to an asymptotic configuration in which the clu-
sters of ag are not interacting among them; only the interactions acting within the clu
sters do not vanish. If V, is the sum of all these interactions, the channel Hamilto-
nian Hak is :

= +
(2.2) Hak H0 Vak'
The resolvents of the channel Hamiltonians are :

(2. 3) Gak(z)= (z-Hak)_I

For k=N one has the resolvent of the free Hamiltonian Gy=Ga
has the resolvent of the total Hamiltonian G=G,. (Vy =) V;).
2 L

V. =0)- =
N ( ay 0): for k=1 one

Let us introduce the transition operators L‘:ajbk(z):
3 = .
T, =(1-&
(2. 4a) ank(Z) ( a]bk)Ga] (Z) +ka+VaJG(Z)ka 3

2, 4t % (fud -1 R =
( ) Uajbk(z) (1 uajbk)Gbk(z)+Vaj+VajG(z)ka,

from the initial configuration characterized by the partition by to the final one chara.
terized by the partition aj. V,. is the sum of all the interactions not contained in the
clusters of the partition aj. J

The on-the-energy-shell matrix elements of the operators (2, 4) lead directly
to the S-matrix elements, This has been shown by Alt, Grassberger and Sandhas(14, 21),
which proposed the nonstandard definition (2. 4) and which pointed out its advantages
with respect to the transition operators generally used in the literature. In the follow
ing, we shall see that eqs, (2, 4) represent, in extracting the relevant reaction mecha
nisms, the most natural choice for the transition operators among all the possible off
energy-shell continuations which coincide on-the-energy-shell,

For j=k=N, the egs. (2. 4) give the N-particle scattering operator

(2. 5) T(z) = (z) = V+VG(2)V,

Vayay

where V=V3-N=Val. If one takes into account only the interactions contained in the par

tition a;

i, one has the scattering operator:

(2. 6) T, (2) =Vai+vaiGa1(ZWai‘
For i=N-1, the eq, (2, 6) gives the two-body scattering operators TaN_l(z), acting in
the N-particle space, Note that each partition ayy_q is in an one-to-one corresponden
ce with a pair of particles. For i=1, the eq. (2. 6) coincides with the eq. (2, 5).

The formulas (2, 4)-(2, 6) can be considered as particular cases of the following
generalized definition of transition operators between configurations within the parti-
tion a;:

i

-1
(2.7) Uajbk;ai(z) =(1- Sajbk)GO (Z)+Vai'vbk'(1‘ Sajbk)vajﬂvai-vaj)c;ai(z)(vai-vbk)_

s
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2,2,-0One-sided components of the transition operators,

As is well-known, fter Faddeev comments on the possible formulations of the
N-body scattering problem , only in the three-body case one can obtain in a natural
way integral equations directly for the transition operators, These are the well-known
equations derived by Lovelace in an approach which is essentially equivalent to the Fad
deev original one(22-24),

Although integral equations directly for the transition operators have been pro-
posed in the N-body case, difficulties appear in proving both the compactness of the
kernel and the absence of spurious bound-state solutions, These two important features
are preserved if one splits the transition operators into components having well-defined
connectedness properties and one derives integral equations for such components by
means of the operator inVersion technique, firstly suggested by Faddeev,

The one-sided components of the scattering operators defined by Yakubovskif

are :
a b
2. M, N-1 N-lzy 84 +v G v
(2. 8a) ay ay.1"8y-; Pyt a3Vby ;2
VR RN YR - IO %Y Y185, 61 B T )
(2. 8b) Mak-17k I'Maz(i)k vy 7 Ma_(§)xa? kMa? k  (35kgN-1);
Yx%k
dkcak-l
#ONa1 Py -1 P
2, 9a ‘i .=M
( ) ai ai 2
T%-18%w1 .7 k=1Pk-1 Tk kg Kk kP 1Y
(2. 9b) Mai _Mai(l) + Z Mai xai l(k) (3sksN-1)3
€, L
K"k
ekak-l
where
N-2 &, B B, a
To%Pr=x"k k
(2.10) X 1: k= ;[k(l aajb 13‘ ajeu, Xk k=x K k.

In the definitions (2. 8)-(2, 10) the indices ey Bk, ... denote sequences of partitions
beginning with ay, by, ..., respectively, e, g. :

a, =(a, ,a — | B

k2% %%+ V=(a, ,a

N=-1 k+1
. “k*”‘k

the partitions aj, by in the matrix elements Aj

(fhe Jndex a; will be omitted when i=1); the qudmdiagonal matrix elements Ag oy By

=21 0092

__fulfil the condition ay, bkc. aj

Aai('?) are defined as :

8 a ] oy B, 5
(2.11) %Pk _a%k+1Pk+1 X K+ .
Aaj(0)™hay Sayby Aaf a5(1) A (U) akbk

The recurrence relations (2, 8b) and (2, 9b) contain the graphic connectedness

pro ert1es of \1 k°k (from the left hand side) and of F:'G‘_S‘( (from the right hand si-
23

de)(20, 25)
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et
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The transition operator components M*282 M%282 for the fully interacting

N-body system satisfy the Faddeev-Yakubovskil equations

(2.12a) m¥2B22y0282, 7 yO2YaxYaSayb2B2
(0) 5, (0) .
Y282
M2B2_ye2Bay Me2€2ge282§0282
(2. 12b) M M%) Ezaz X Moz

Note that the egs, (2. 12) in matrix notation have a formal Lippmann-Schwinger-like
structure (M(OJ and X play the role of the potential and of the free propagator, respec
tively).
. . LB B
From the relation connecting ‘“I " k with M, k‘“ k¥l (eq.(3.4) of ref. (18))
and from the definition (2. 4) of the tr anultwn oper: \tor‘_, it follows that :

(2.13) Ua.bkz(l—sa-bk)(Gal— Z VCN 1)"' E MY252
. * GglyRe sby v23dy %D,
CN-1%%4

for arbitrary dg,... ’dN-Z' Introducing the eq. (2, 12a) in the eq. (2. 13), one sees that
there is a large arbitrariness in constructing convergent expansions of the transition

operators (one can start from different first-order terms), Furthermore the express

ion (2, 12) shows a rather unsymmetrical structure with respect to the different possi
ble intermediate state contributions, In order to obtain unique convergent expansions

and symmetric expressions for the transition operators, we shall introduce two-sided
components having prescribed connectedness properties from Lhe left as well as from
the right hand side,

2,3,-Two-sided components of the transition operators,

%Pk

Let us now construct two-sided components Nz of the transition operators

et
by means of the one-sided Yakubovskil ones (2, 8) and {7, 9). We start from

(2.14) Nan-le—1=Man-1bN-1
ai ai

and introduce the recurrence relati ons

B
(2.15) a1 Bra1 oy ®k=1P%-1_
Nai NC"i(D)
Mok Vhem 1yt Ox- 1V o1 S gt 18k-13775%-15k-1,
"ok Mainy' Kagler Mesto) fap(er Meich)
¥ k=1
¥ Mo KTK x*kakNGkEkiek‘kMCR%K) (3¢keN-1),
(YSec) ST,
4y 1
ekcbk—-l
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where (Ydsc)i=yiéiei;i aisd

b
2.16 AN-10N-1z J
( : Naj o) Tay_, %an-1by-r?
@1 8)-1 % k=1Bk-1_yOk=1Bk-1 (3skgN=-1)
(2.17) No:(o) *Nai(o)  ~Nag(1) .
k=181 kK (3skeN-1).
(2.18) a;(1) o (u) Say.1bk-1’

The eqgs. (2, 14) and (2, 15) define Nz}fsk as a sum of a quasidiagonal part and of a
part which contains the resolvent Gai'. This latter one arises from a direct coupling
of the resolvent part of the left-hand-sided operators (2, 8b) with the resolvent part of
the right-hand-sided operators (2, 9b). The proposed definition of.the quasidiagonal
part will assure a k-independent structure of the inhomogeneous part of the Yakubov
skil-like integral equation system for y Ok k This essential requisite is not preser
ved if quasidiagonal terms do not appe:lr‘a-'L in the eq. (2. 15) 20),

The operator N kf have connectedness ay, that is they can be represented
as a sum of ak—connecte& graphs(9 13)(X) 15 virtue of this interesting property one
can expand the transition operators into parts having a well-defined graphic connected
ness, As shown bv the recurrence definitions (2, 16)-(2, 18), the a) _j-connectedness
property of N, k“ k-1 for ak-ﬂk is obtained by subtracting, with a sequential pro
cedure all terma with lower conncctedness, The sequence terminates with

aN 16 841 Br1’ which is ap_j-connected, The proof of the connectedness property

of N:]_‘?Eéik-l for arbitrary sequences «, and 8, requires a detailed investigation.
i

k
It will be given in Appendix A,

3. - THE N-BODY PROBLEM IN TERMS OF TWO-SIDED SCATTERING OPERATORS.

3.1, -Integral equations for two-sided scattering operators.

In order to derive, bv means of an inductive procedure, integral equations for
the two-sided operators N, k k (2g¢kgN-2, k»i), we start from the Faddeev-like

equations for Nai (a= =ayn_1s b =by_1)

(3. 1a) NPT 5 4T @, ) NEP
a; "a ab 'a Odga a.
ab_ ae

(3. 1b) NZ7=T_8 ab+ Z Na GoTy-

*

For partitions ag=ap_g which contain a three-particle cluster the eqgs. (3. 1) coincide
with the original Faddeev equations. For partitions aj=ay_o which contain two two-par

(x) - A graph consisting of k connected parts is ap-connected if exists an one-to-one
correspondence between its connected parts and the clusters of the partition aj (gra-
phic lines belonging to the same connected part correspond to particles belonging to

the same cluster),



ticle clusters the egs, (3, 1) are rearranged expressions of the well-known (second) re
solvent equation for GaN-z' '

Using the egs. (3. 1), one can show that the operators Nj '8 (a*=(a',a) &
= (aN 28y 1) ®y-2 and similarly for 8" satisfy the integral equations (see Appendix
B)

1 1 1
(3. 2a) NG, ® N Byt 1N GON P
€ cy;d'#a!
d#c,ca
N¢ L L a'e!
N N GaN>Y.
(3. 2b) ai 1(0) Z;eZ#b‘ a; 0 bl
e#z.<b’

For N=4 (a;=a ) the egs, (3. 2) represent the correct solution of the four-body problem
in terms of tw0 sided operators. The kernel of the egs, (3, 2) coincides with the Yaku-

bovski! kernel in the four-body case. "
[+ 5] k
Let us now suppose that the operators Na; satisfy the following linear in-

tegral equations

dkﬂk axBy axYx Yk8x, SkBk
3. 3a
( ) ai =N 1(°)+ [ M l(o)x Nal 3
8 B ik vk B
OxBx_ ekBk “k k—Ek ki kPk
(3. 3b) Na a; =N, | (o) [ Nai "Xaf g az(o)”
€xbx

We shall prove that formally identical equations hold for N:}_"l Bx-1, In the egs. (3. 3)
the inhomogeneous term is the a) -connected operator &
a, 3
Nalf(}g) ._Mote that for k=N-1 the eqs, (3, 3) coincide with the eqs, (3, 1), for k=N-2 they
5,
coincide with the egs. (3. 2).
Introducing the eqgs, (3. 3) in the definition (2, 15), one obtains the following al-
ternative formulas for N:k—lﬂk-l z

i
o
(3.42) Na¥-15k~1= ) yak(igk_lekcl o lNék 1By . M“k*k "
i S 0) l( 1) ( 1("}
Yr-1%%=1 ¥6eg),
d,ca
X 'XZkaN‘Sk kX " kFckBk e]}:cb::—
i Sy a; J.( )* =
(3. 4b) Nuk-lsk-1= ) “%-1%k- 1% Expii®ge lﬁzk 1Bk.1+ 5 Mukyk
’ ai u' (1) l( ) l( ) a.(o) X
€x=1%k=1 (poec); &
d cak .
Tiebpep 1y B e cb
x X . kky_k kx klv L4 Fes]
* fay ey g ag(o)
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Summing over ay 1 or bk and taking into account the eqgs. (3. 3) and the well-known
properties of the partltmnsE1 8), one gets

(3. 5a) ]oNk-1Pke1s o NIRERESREigk Pk
=t fri i a2 i(o0)
Fx-1 Kk
ekcbk_l
Oe1Pror. SxTk xTkCky kP,
(9 50) L Nag L § Mai(oy¥ay "Naj
Bhe=i ik
S

From the eqgs, (3.4), (3.5), (2.17), (2.18) and (3. 3) it follows that

5 5, .8
3. 6a Op-1Br-1oy%k-18K-1_ Ry i T rwtie 3 Y daePleun B ag o
369 Nay Nailo) % Maftiy*-1Xagtoy" Neg{0)
Yk=1"k~1
UpYx YiSk 5k 18k-1
+ ] MK KKy Xk kg
TicO%-1
dkcak—l
B B Nk 1% =175k -1 Pk~
1812 181 Sk-1%5k-1 k-1 k-1 Pke1y
(3. 6b) Ngkn1"kmdalgkel K L, Maftsy* "Ralghy " Maftn)
E"k--lck 1
. - _E B
» . Mg k 15k-17 kR K ks
c l l
Ex-1%k
eusby g

By analogy with the Faddeev-Yakubovskii arguments for the one-sided operator case,
we extract from the latter sum at the right hand side of the egs. (3. 6) the part corre-
sponding to dy_1=a, _q1 or e,_q=b,_; and we transfer it to the left hand side. Thus
one obtains, in matrix notation,

kl k-1 k-1_k-1

(3.72)  (I-M3] () )Xa1 (o)) Vag (T Ma (1 yXa; (o)) Va; (0)Mai(y)¥a; Naj

-lgk-1=k-1

1
(z- Xal(O) = <1>}+N Xa; Ma (1)

k- —k=-1
(@.70) NG (IR oy (1)) *Na

If one takes into account the relations (4, 5), (4. 6) of ref, (18) and similar relations for
the right hand-sided operators, one gets from the egs, (3. 7) the integral equations for

a, _B
N_k=1"k-1_in the form (3. 3).
i

Finally, the above inductive procedure leads to the following result for the fully
interacting N-body system

(3. 8a) N®2B82. N°‘35§ Z M 2“{2XY252\I 2B2
’ (o

4 A
i g =



(3. 8h) nN®2B22 N“%B§+ I N“2€2X52C2M? ?2’
€282

where a(0)=a;(0). According to tlie connectedness properties discussed in Sect, 2, 3,
one sees that the homogeneous part of the integral eqs, (3, 8) is fully connected (that is
aj-connected), The kernel of the N®2P2 gquations coincides with the Yakubovskil ker-
nel, so that all the results concerning compactness apply equally to the kernel of the
egs, (3. 8). Furthermore the equivalence of the homogeneous equation system (which
can be extracted from the system (3, 8a) or (3. 8b)) to the Schrddinger equation can be
easily proved,

3.2, - Expansion of the transition operators into connected com-
ponents,

The generalized transition operators (2, 7) can be expanded in terms of two-
sided components (2, 14)

3.0 g -1_ S o
(3.9) Uajbk;ai (2 aajbk)(eo ) it VCN-1)+C th NaTl_‘ 1 N-1,
eN-1%%833%k N-17%3
dy- %Dy

In order to separate in the eq. (3, 9) the terms having different graphic connec
tedness properties, we will derive some auxiliary formulas, Let us sum the eq, (3.5a)

over by _q or the eq, (3. 5b) over ap_1. Using the egs. (3. 3), one obtains .
(3. 10) X Ngk=1 P12y Br_y OB
1bk 5 4 ai l( 0)

By applying this relation to less and less connected operators, up to V ( h-l, one
gets

B b

(3.11) T Neke k-l:N:H~1bN-1_N:§Eé)N-1_
ak-lsk-l i 1l 1
- 3 N, n-2BNaz_ R E
e 3 @i(0) (U)
N-2"N=-2 “x k
where d (a 33+1""’3N—2)' For aj=a, one has:
N-1
(3.12) NeN-1PN-1 . i N“?s?+_z_ N®282
n=38 o B @ G By

Let us consider the eq, (3, 9) for aj=a;. In virtue of the relation (3. 12), the
N-particle scattering operator (2, 5) takes the form

E NYn ) yY2%2,

(3.13) T= §
= Y ya62

=
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10,

Similarly the transition operators Uajbk become :

s N-1 5
(8.14) Ua b =(1=64.p )(65' = [ Vo D+ 7] ] wmme [ ogvzls,
Ik Tk eN—lgaj’bk N=1 p=3 ¥l @ o862
Cy-1%34 =124
dn-1$bk dN—1$bk

The eqs. (3. 13) and (3, 14) give a cluster decomposition of the transition operators into
terms having a well-defined connectedness, Taking into account the integral equationés
(3. 8), one sees that the terms fully connected appear separated from the terms NYn n
(n=2,...,N-1) having lower connectedness, alo)

4, - SINGLE-PARTICLE AND TWO-PARTICLE REARRANGEMENT PROCESSES, -

4,1.-Single-particle rearrangement reactions in a three-body
formulation,

Single-particle or single-cluster rearrangement processes can be represented
schematically as :

(4.1) a+(b+c)—=>b+(atc)
if one deals with a transfer or exchange reaction, or as :
(4. 2) a+(b+tc) ®»a+b+c

it one deals with a break-up reaction, Stripping processes (b+c, b), pick-up processes
(a, at+c) and knock-out processes (a, b) enter in the first scheme (4, 1), If the particles
or nuclear clusters a, b, ¢ are assumed to act as inert units, the reactions (4, 1) and
(4.2) can be treated in a three-body context. In the usual notation for the three-body
problem(23), one has from the general eq. (3, 14):

(4.3) U, =o'+ § N9
ba s ik
d#a
for processes (4, 1) and
| cd
(4.4) U, 460 +C§ N
d#a

for processes (4. 2), The components ned satisfy the Faddeev equations (see egs, (3,1)
for N=3 and ai=a1)_ It is immediately seen that the transition operators Uia and U(]a
are constructed by means of quantities having a well-defined physical meaning in terms
of reaction mechanisms, For instance, in correspondence to the inhomogeneous terms
Ty Scd_in the egs. (3, 1) (N=3, a;=aj), we have:

4.5 (O): -1

el Uba Co +Tc’
(0)_n=1

(4, 6) Uy, =60 +T,+T .

iy
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11,

Then, in the channel state representation |¢, > (¢=0,a,b,c; | 90>=129>) one gets
on-the-energy-shell 3),

(o =
(4.7) <‘*’b|Uba) o, >=<0, [V, 6oV, |0 >+<o, [V, CoT GoV, |9,
— 0 e s =
(4.8) <5080 o >=<Ba 1V, |0 >+<BaIT, B0V, |9, >+<5aIT G0V, |0, >

The eq. (4. 7) gives the transition amplitude for the pole diagram describing the trans
fer of the particle c and for the triangle diagram describing in addition to the c-trans
fer, the a-b off-shell interaction (Fig. 1). The eq. (4. 8) gives the transition amplitu-
des for the diagrams represented in Fig, 2, The shaded circles represent form factors
for the channel bound states, The ghaded squares represent two-body off-the-energy-
shell (in Fig, 1) or half-off-the-energy-shell (in Fig, 2) scattering amplitudes,

FIG, 1 - Pole and triangle diagrams for the transfer of the particle c,

h

ig]

~
!

i

e |
ettt |

FIG, 2 - The simplest diagrams for break-up reactions,

Starting directly from integral equations for the three-body transition opera-
tors Usu (Lovelace equations for the Alt-Grassberger-Sandhas operators) and once
iterating them, one sees that the inhomogeneous term of such iterated equations (who
se kernel is a Hilbert-Schmidt operator) coincides with the quantities (4. 5) or (4. 6).
Within the framework of the Alt-Grassberger-Sandhas formulation the role of the pole
and triangle diagrams in transfer and exchange nuclear reactions has been recently
investigated(zl 3%. If multiple-rearrangement mechanisms are neglected (as it is rea-
sonable in many cases), one can obtain from the exact theory a generalized distorted
wave model which is constructed on the basis of the pole and triangle diagram mecha
nisms (not only on the simple pole mechanism),

As is well known, for a meaningful comparison between the contributions of the
reaction mechanisms, one must take into account both the singularity positions and the
vertex function magnitudes of the corresponding diagrams, It is worthwhile noting that
for break-up reactions the kinematic features of the final state can affect considera-
bly the position of the physical-region boundaries (at fixed energy) in the kinematic
invariants,

400
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12,

4.2, - Mechanisms of two-particle transfer reactions in a four-
body formulation.

A two-particle transfer reaction a(A, B)b can be represented schematically as
(4, 9) a+(b+c+d) == b+ (at+c+d)

where ¢ and d are the particles transferred from the initial three-body hound state
A = (b+c+d) to the final one B =(at+c+d). If the particles or nuclear clusters a, b, ¢, d
are assumed to act as inert entities, the reaction (4, 9) can be treated in a four-body
context, The process (4, 9) is described by the on-the-energy-shell matrix elements
of the transition operator Uacd, bed- From the eq. (3, 14) one obtains :

(4. 10) =63 !- efy!
Uacd,bcd So Vcd+Tab+ aEC'N
egacd
z¢bed

where t'=(e',e)=(e;,e3) and similarly for ¢'. There are two types of partitions e'
into two clusters : partitions into a three-particle cluster and one particle free and par
titions into two two-particle clusters, We label the former partitions with e'=ijk, the
latter ones with e'=ij/kl (i, j, k,1=a,b,c,d; i#j#k#1).

The tomponents N° ik satisfy the integral equations (3. 2) with N=4 and a;=a,,
The simplest relevant reaction mechanisms can be extracted from the eq. (4. 10) by re

] 1
placing N® ° with its e'-connected inhomogeneous term sz-Tedez. One gets
(0) .
(4, 10) Uacd,bcd GO +Tab/(cd)+(Vb(ac)Gabcva(bc) -VabGabVab) "
% (vb(ad)Gadea(bd) i VabGabVab) * Vbc(“'bc/advad+V]:)dde/.':chac :
where V, Vv and

1)~ Vg~ Vi

i Tig/oe ™ Viy Vi

Ty (k1 represent the two-body transition operators for the ij-subsystem (disconnec-

ted from the subsystem of interacting particles k and 1) in the four-body space, They
are of the type Uge.et With e'=ij/kl and e=kl, Note that the subtraction of the quan-
tity V,1,GapVap i0 the third and fourth term of the right hand side of the eq, (4, 11) as~-
sures the abe or abd-connectedness of such terms,

Using the on-the-energy-shell rEIations(zs):

(4.13) 0., >=6oV. . |0,

1jk>’ lo; 5>=C

14k 14k 197785 15500 1 P19

for the channel states Iq’ijk>’ one obtains :
a1 -
(4.14) <9, calCod*Tan/(ca) Ppea™

e Iva(cd) [ch+chTab/(cd)ch}Vb(cd) 19y6a™

(WY
&2
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4,15 =

: = <$acdlvb(ax)Gabxva(bx) HJ]:’c:c‘1>
& | >
'<¢acdlvy(ax)Gava(ax)Gabxqa(bx)Gbxvy(bx) Iobcd $

(4. 15b) acd | V abvab | q’bcd>=<macd Wa.c:t:l abGabVabG bc:.c:ll s cd>

v

(4,16) <" dlvby by/ax awacd> acdlvy(ax)sax bbey/axvaxGbyvx(by)Ichd>’

with x,y=c,d (x#y) in the eqgs. (4. 15a) and (4. 16).

From the eq, (4. 14) one sees that the first two terms in (4, 11) give the transi-
tion amplitude for the pole diagram describing the transfer of the subsystem of the in
teracting particles ¢ and d and for the triangle diagram describing in addition to such
a transfer the a-b off-shell interaction (Fig. 3). If the particles ¢ and d are trans-
ferred in one of their bound states, one obtains again the basic mechanisms for single-
cluster transfer processes, The well-known plane-wave theory for two-nucleon trans-
fer reactions corresponds to the first term in the formula (4, 14),

@

FIG. 3 - Pole and triangle diagrams for the transfer of the cd-subsystem,

The terms in bracket in the eq, (4, 11) are represented by quadrangle diagrams
in which the particle y is directly transferred from the initial to the final state and
the particle x interacts successively with a, ab and b (Fig, 4a), Because of the abx-

FIG. 4 - Quadrangle diagrams
describing the transfer of the
particles x and y (x, y=c, d; x#
#y) and involving a) three-par
ticle intermediate states ;

b) two two-particle interme-
diate states,
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connectedness of these terms, the particle x cannot freely propagate in the interme-
diate state., The abx-subsystem can propagate in one of its three-particle bound states,

The two last terms in the eq, (4, 11) give the amplitudes of quadrangle diagrams
describing the successive and independent transfer of the particles x and y; the parti-
cle x is transferred while b and y interact and the particle y is transferred while a
and x interact (Fig. 4b).

Details on the form factors, describing the vertices in the diagrams of the
Figss, 3 and 4, can be found in refs, (26, 27).

If the resolvent operators G, for the o« -subsystems are approximated in the
eqs, (4, 14)-(4. 16) by their dominating bound state separable parts, the graphs in Figs,
3 and 4 coincide with the simplest graphs for two-particle transfer processes which
can be obtained in the non-relativistic Feynman-diagram approach to direct reactions
proposed by Shapiro(‘”, Obviously, in the above four-body context we cannot investiga
te diagrams with internal lines corresponding to virtual particles different from a, b,
¢, d. Within the framework of the Shapiro approach quadrangle diagrams describing
the successive transfer of two nucleons (see Fig, 4b in correspondence to a bound sta
te both of the ax-subsystem and of by-subsystem) have been proposed in the study of
the (t,p) and (T, p) reactions 28-30)

Finally, let us outline that the physical contents of the eq, (4, 11) is in a direct
correspondence with an intuitive description of two-particle transfer processes, In
fact, from an intuitive point of view, the simplest graphs describing two-particle tran
sfers can be constructed by starting from one of the following three virtual decays

(a+bte) = i+(j+k) (i,j,k=a,b,c; i#jfk)

and considering the virtual capture of i or (j+k) by d. One obtains six graphs, which
coincide with those of the Figs, 3 and 4 (for intermediate clusters transferred in one
of their bound states), Note that the four-ray vertex of the triangle graph in Fig, 3 ta
kes the form of a pole graph, in correspondence to a bound state separable term of

Tab /(cd)-

5, - CONCLUSIONS, -

Within the framework of a rigorous N-particle theory, the transition operators
for nuclear rearrangement processes have been splitted into parts having a well-defi
ned graphic connectedness, The N-particle fully connected terms have the same struc
ture of the homogeneous part of the Faddeev-Yakubovskif integral equations, The terms
with a lower connectedness are well-interpreted in terms of Feynman diagram basic
rearrangement mechanisms, It follows that our approach gives a support to the non-
relativistic Feynman diagram technique proposed by Shapiro.

We have started from the nonstandard off-energy-shell continuation of the tran
sition operators suggested by Alt, Grassberger and Sandhas and we have found that it
leads to a physicslly transparent formulation of the N-body problem, This fact shows
the advantage of the above special choice for the transition operators, which has not
yet been sufficiently appreciated in the literature,

Practical applications of-the proposed formulation depend on the progress which
will be made in SolvinF Yakubovskil equations, A first attempt in the four-body case has
been recently tried(31 . However, it is wothwhile noting that, in virtue of the well-defi

[ —tees ]

P A)
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ned physical picture of the general formulas, some meaningful approximations can be
easily proposed.

Finally, we notice that, in the context of the suggested approach, one canget
some insight into many-particle heavy-ion transfer processes, for which accurate ex
perimental data can be now obtained using modern Tandem Van de Graaff accelerators,

We wish to acknowledge Prof, C, Villi for encouraging interest and critical
reading of the manuscript. Thanks are also due to Dr. G, DiTullio, Prof. A, Basset
to, Prof. ¥. Paccanoni and Mr, G, Cattapan for helpful discussions.
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APPENDIX A, -

We shall prove here, by induction, that the operators \:"(‘é;"‘ have connected-
nes a, 1(3-‘-k<N) *
By definition the operators N 1‘{ )1 Py-1 are ay_p-connected, It is immediately seen
B
that the operators N ;( )2 N-2 are ap_g-connected both for aN-lbe-l and for an.1
= by_1; in this latter case one has (ap_p=a'; an_ 1= a)

aa
(A1) N, -T =VG_(V,-V)G V.

Let us consider N‘;};Eé? -1 for 3=k = N-2 and let us distinguish the case ay = b

from the case ay #by. For ap =b, one has

(A, 2) Nz;\.""kﬂkn k(’:)ﬁkﬂ 5 Mok é';kﬂx”’k-;-l k+1[\1 k+1 k+1_N§k+1‘-k+z)
k=1 i 8k-1
(Ydsc)kﬂ k
§€k+lck+1M;k+1Bk+l
ay a;(0)
From the eq. (2, 15) one obtains the following decomposition for N_ Sk 1kl
k_.
[ 5l
(A, 3) Skt 1%k 12 k1 Sk <+2 2 k+2 .
Ny "Fai(0) 2 () ¥ g ke R gy pent®
(yésc)k+2 F S
51 1 52 2
+ Z (Mx)k+2{&a£;25k+2 Z (Mx)k+3N k+35k+3(gg)k+36 : 1 }(x,)k+2
{{66C)k+2 i (yds;)k+3 dx+2 ' dg+2ex+2
1
d{+2 dk+1
& k+2=%K+1
k+ Ne
M () T T 0NN s 4y e, Ve y&ET=L, L (Ri)¥ 2
(Yﬁsg)k+ (véez)y P P9 P “k~-
2 N
N=K=3
dk+2 k+1 ? di i
-1 N-k=-3
Ci+25 %K1 =8 s

3 i i b1
where (Yos:)kﬂ +1%%#1 Sxe15ks1 and

1 '1-1 3 -2
Jzk+]MCK+ ER+T
5 a,(0)
3 &

!
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=i B 0 = 0 = £
with 2 = j< N-k-1; Jk+2 6k+z’ £k+2 42" By extracting Gak from Gak-l one gets

from the eq. (A, 3), because p, qgay,

(A.4) akﬂckﬂ N6k+1 ktly J (Mx)k+2 .
k=1 2k
(Ydec)k+2
d21<+2‘: k+1
®k+2” %k+1
ver Lyl - N v ey v Ga,_ V)R L(Ri)
(Y5EC) k Tk=17%)k"%k-1"q
N—k-S
p:dN_z
= N-k-2
°eN-2

Vv, = -
where aj/ﬂ-i.‘.} Vay Vai+1' Introducing this result in the eq, (A, 2) and taking into account

the identity(20

N~k-3 Pofeng JRRKRT Jok=g
(A. 5) 3 Mo Sxe1 k+1xYk+1 Rer . T =1 Ty THel fNel
( 5) i( ) et 0) ai P
T (y 6) et
dy+15%% N3
pedy_,
=V

e v G b o
ANey M-y aN-2/3yap dy.y a /e

and a similar identity for the right-hand-sided Yakubovskii operators, one obtains

a, ;8,8 sd, B
(A.6) N k' KTkl k K k+lzy G v G b3
Bl @i(0) ANey ON-1 3N-2/3-1 BNe2
ealV Gy, V G v G v G v .
/31 Bk 3173k 3kay Py/Prery Cby_, Yy, /by Sby Vb

From this equation one sees that the operator Nuk(l )’ak -1%%Pxa1  gg aj _1-connected,

For ay # by, one has

ay B oy B z % Y § € T < B
A7 §i2%PK 5% kP R TITT k+1 1y S k1 Ckt 155 k41 ke 15 K+1 Pk
A1 Nay  Nag(0)® (ysend,, Mailo) ™ Kaly TNa T TR T N (T
dk+1c' El}c
i B

(1=1i= N-k-2) in the eqgs. (A, 7)and

By means of suitable splittings of the sums over e
e k+1 = k]
(MX) and (XM) -

(A, 3), one obtains (with obvious meaning for

(A.8) N:"Bk Xike 5 (ux)¥ N'sk‘fl ket (g
foe s(0)° (chc>k+1 a,(0)
L AL
" Z (Mx)k+1 Z (Mx)k+2 dﬁﬁl k+z’ k+1 i+z(iqﬁ+zav3
(Y6°C)k+1 (Ydec)k+2
4y 1980 Dy Qiy2rCke2S%ke1

l\\g“
<
k.=
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e
+ 3 9.0 c.»:x)"*zmi}?f%?‘*z(xv)"*zcx.».)k“+...+
(véetk ., (chc)k+2 %
dk+lcak dk+2cdk+1
k1= Pk & +25%Ks1
c-‘k1-1_i"ek-t‘1
+(v§sc) R 2 - 1VPGP ) Niﬁ_l(iﬁ)x'l...(iﬁ)k*l
k+1 (Y5EC)N_i PED
b= peallmk=3
®ier1 =D e
QCBN_Z

The integral equations (3, 1) for Ngq has been used in order to derive the eq, (A, 8), The
-connectedness of all the terms in the eq, (A, 8) follows immediately from the inductive

-1
assumption and from the fact that every term in the sum
[ a & Y § 8,
A9 k< k41 k+tly'k+1 k+lp k+1
S Aay % zﬁ Haito)  *aj Aay
k+1 k+l
G198k
S+1
is a, -connected if A is d| ;q-connected. The eq. (A, 9) is the well-known recurrence
(19, 20, 25). We notice

relation for the left- hénd sided components of the operators (2, 6)
that, owing to the severe restrictions one imposed on the indices of the sums in the eq,

(4. 8), several terms vanish,

L At
D



APPENDIX B. -
Let us derive,from the Faddeev-like equations (3, 1) for Nz'?, the integral equations
a'p! 1
(3.2) for N5, ° .,
i .

By using the eqgs. (3. 1), the operator N: ) * , defined by eq. (2.15) for k=N-1, can
1

be written in the form
(B. 1) ¥¢'8 r goT (1-6_.) +T G x8%g,T
? Na . 0 = = O
i a b ab 'a qd#a%ca' a;o
e#b,eb!

salb b'

From the well-known properties of the partitions and from the egs, (3. 1) it follows that:

e
(B.2) g %= § Ng?eowb.
afsig, F eFEbLED? (Ut

Using this relation in the eq. (B, 1) and extracting the terms with d'=a', one obtains:

1 1 =1 ! ] 1
(B. 3) w3 8 r 6o J 85098 mr Gomy (1-6 06,0 47,6, I W2 P
1 d#a,ca' i

d#a 1 a b a
d'#a!'

If one takes into account the eqs, (2, 17), (2, 18) and (3. 1), one can easily show that:

1At o '
B.4 T G g P =y& 8" . a' Jdp
( ) Ya oTb( 6ab)sa'b' NGi(U) T80 Z j'\‘0‘_1;'30) 2
dra
6'3] Pl 1 o - |
(B.5) TG0 I N P= ] szGoNfi.B -T_ G ] NN IRTTT FUL
dfa,ea’ '+ cse'fa’ = % dfa cjeffar 2 o1
df#a’ efc,ca' efc,ca’

From the eqs, (B, 3)-(B. 5) one can immediately derive the integral equations (3. 2a), Simi-
larly one obtains the eqs. (3. 2b),
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